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Abstract

For an elliptic curve E over Q, and a positive integer n satisfying
some properties, we introduce analytic quantities δn using modular
symbols, and give conjectures that these quantities control the maps
of reduction modulo primes dividing n on E(Q). These conjectures also
describe the structure of Selmer groups and the Tate-Shafarevich group
of E. One of the aims of this paper is to provide an exposition on the
theory of these analytic quantities. In the direction of the conjectures,
we generalize, to all good reduction primes p, an injectivity theorem
which was proven only for good ordinary primes in our earlier paper
[15].

0 Introduction

The aim of this paper is to introduce a theory on some analytic quantities δn
and to describe its role in the arithmetic of elliptic curves. This introduction
is an exposition of this theory for non-specialists, and we explain here and
in the next §1 some fundamental and typical phenomena of this theory.

In general, for an algebraic variety defined over the field of rational num-
bers Q, the maps given by reduction modulo primes ℓ provide perhaps the
first elementary attempt to understand rational points of the variety. In
particular, for an elliptic curve E over Q, and for any prime ℓ we write
rℓ : E(Q) → E(Fℓ) for the reduction modulo ℓ map. Let E(Q)tors denote
the torsion subgroup of E. Then we know (using Nagell-Lutz’s theorem)
that, for any odd prime ℓ at which E has good reduction, rℓ induces an
injective homomorphism

E(Q)tors ↪→ E(Fℓ).

These maps for several ℓ’s give enough information on the torsion subgroup
E(Q)tors. In the present paper, we go further, and study the whole Mordell-
Weil group E(Q) using the maps rℓ’s for various good reduction primes ℓ.
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For distinct good reduction primes ℓ1,...,ℓr, put n = ℓ1 · ... · ℓr, and denote
by rn the map

rn : E(Q) −→
⊕
ℓ|n

E(Fℓ),

whose each ℓ-component is rℓ. For a prime number p, we write

rn,p : E(Q)⊗ Z /p −→
⊕
ℓ|n

E(Fℓ)⊗ Z /p

for rn modulo p, which is a homomorphism of finite dimensional Fp-vector
spaces. In the following, we always work with prime numbers ℓ such that
E(Fℓ)⊗Z /p ≃ Z /p and their squarefree products n (for the precise setting,
see §1.1).

We fix an odd prime number p at which E has good reduction. In §1.2
we introduce an analytic quantity δn ∈ Fp, which is defined explicitly using
modular symbols (see (3) in §1.2), and which is numerically computable.
The first aim of this paper is to formulate conjectures asserting that δn ∈
Fp controls the homomorphism rn,p, and to provide an exposition of these
conjectures, with many numerical examples. We also prove Theorem 2.1
which asserts that δn ̸= 0 implies that rn,p is injective, under some minor
conditions (concerning the conditions, see the beginning of §2.2).

For simplicity, we assume only for the rest of this Introduction that both
E(Q) and the Tate-Shafarevich group X(E/Q) have no element of order p
(see §1.4 for more general case). Note that if p is big enough, this condition
is satisfied if we admit the conjecture that X(E/Q) is finite. We define
ν(n) to be the number of primes dividing n. Following the terminology of
our previous paper [15], we say that n is δ-minimal for p if δn ̸= 0 and δd = 0
for every proper divisor d of n. We conjecture that such δ-minimal n always
exist. We can always find such n in numerical examples.

Conjecture 0.1. Assume that n is δ-minimal for p. Then rn,p is bijective,
so that

rankE(Q) = ν(n).

Conjecture 0.1 predicts a connection of the rankE(Q) with these analytic
quantities δn, in a form very different from the conjecture of Birch and
Swinnerton-Dyer. An important aspect of our conjecture is that a single n
gives the rank of E(Q). For a more general form of this conjecture on the
Selmer group, see Conjecture 1.7 in §1.4.
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Next we take general n which is not necessarily δ-minimal and which
satisfies ν(n) = rankE(Q), and consider a question whether rn,p is bijective
or not. We note that the answer to this question gives information on the
rational points on E.

Conjecture 0.2. Let n be such that ν(n) = rankE(Q). Then rn,p is bijec-
tive if and only if δn ̸= 0.

We urge the reader to look at the numerical examples in §1 to understand
the phenomenon on the bijectivity of rn,p. We prove in this paper the “if”
part of this conjecture. Actually, it follows from the injectivity theorem
(Theorem 2.1) because the source and the target of rn,p have the same
dimension. A remarkable point of this conjecture is the observation that the
converse should also hold. Thus Conjecture 0.2 asserts that δn completely
controls the bijectivity of rn,p.

Concerning the converse, we remark here the following. We can also
formulate in §3 some analogous statement for ideal class groups, and prove
the “if” part (Theorem 3.1). However, the converse (the “only if” part) does
not hold in this case. Also the analogous statement to Conjecture 0.1 does
not hold in the class group setting.

We extend rn,p to the classical Selmer group Sel(Q, E[p]) and a certain
Selmer group SelFn(Q, E[p]) to get maps rSeln,p and r

Fn
n,p . We study these maps

and make conjectures in §1.3.

We conjecture that the system (δn)n should determine not only the
Mordell-Weil rank, but also the structure of Selmer groups. A conjecture
on the structure of X(E/Q) is given in Conjecture 2.3 in §2. When p is
a good ordinary prime, this conjecture was studied in our previous papers
[15], [14], and proved in [14] Theorem B under several assumptions.

Our injectivity theorem (Theorem 2.1) gives information on the structure
of X(E/Q). We will give some numerical examples in §2.3 for which we
can determine the structures of their Tate-Shafarevich groups.

In this way this theory gives a relationship between the algebraic (arith-
metic) objects and the L-values of elliptic cuvres in a different style from the
Birch and Swinnerton-Dyer conjecture. We note that the BSD conjecture
gives the information on the order of X(E/Q), but not on the structure of
it (see Examples 3, 4 in §2.3 to understand the difference between our theory
and the BSD conjecture). We do not know currently the direct connection
of this theory with the BSD conjecture.
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We state several conjectures in §1. The numerical examples in §1 would
be helpful to understand the subject of this paper. We restrict ourselves to

Fp-vector spaces in §1, but we develop in §2 a theory for Z /pm-modules. We
study in §3 the class groups for CM-fields in order to compare them with
the theory in §1. In §4 we give proofs of theorems stated in §2.2, especially
Theorem 2.1. The key tool of the proof is the Euler systems of Gauss
sum type. To construct the Euler systems, we study Iwasawa theory for
elliptic curves with supersingular reduction at p. We work on the equivariant
Iwasawa theory (see Theorem 4.3), and get a result on the annihilation of
Selmer groups (see Theorem 4.7). We give an explicit construction of an
equivariant p-adic L-function from modular symbols in §4.2. The strategy
of the proof of Theorem 2.1 is the same as that in our previous paper [15].
In this sense this paper is a sequel of [15].

The author would like to thank late John Coates for his hospitality when
the author stayed in Cambridge where the author developed the subject in
this paper and gave talks on this subject in 2012 and 2019. The author
thanks very much John for his interest in the theory of this paper, and for
his careful reading of this manuscript and giving the author many comments.
The author thanks the organizers, N. Fakhruddin, E. Ghate, A. Nair, C.S
Rajan and S. Varma of the International Colloquium on Arithmetic Geome-
try held in 2020 at Tata Institute for inviting him and for organizing a very
pleasant conference. The author also thanks D. Prasad who gave the au-
thor his preprint [23] with S. Shekhar during the conference. We determine
the structure of the Tate-Shafarevich group in Example 4 in §2.3 of a curve
treated in their paper [23].

After the first version of this manuscript was written in 2020, much
progress on this theory was made, especially by Ryotaro Sakamoto and
Chan-Ho Kim. See Remark 1.8 for the new progress.

1 Reduction maps and Conjectures

1.1 Setting and a problem

We suppose that E is an elliptic curve over Q with no complex multiplication
(for simplicity). We denote by N the conductor of E.

In the following, we fix an odd prime number p such that p is a good
reduction prime (p ∤ N), and the action of the Galois group on the group
E[p] of p-torsion points Gal(Q/Q) → AutE[p] is surjective. Consider the
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set

P = {ℓ : prime | ℓ ≡ 1 (mod p), ℓ ∤ N, and E(Fℓi)⊗ Z /pZ ≃ Z /pZ}.

We know that P is an infinite set using Chebotarev density theorem (see
[14] §5.8).

We denote by N the set of squarefree products of primes in P. We
suppose that 1 is also in N . For n ∈ P we write ν(n) for the number of
primes dividing n.

Let rℓ and rn = ⊕ℓ|nrℓ : E(Q) →
⊕

ℓ|nE(Fℓ) be as in Introduction for
n ∈ N . We consider rn,p which is rn mod p, and since we fixed p, we write
simply rn for it;

rn : E(Q)⊗ Z /pZ −→
⊕
ℓ|n

E(Fℓ)⊗ Z /pZ ≃ (Z /pZ)ν(n) . (1)

In this paper we show that this fundamental map is controlled by some
analytic quantities δn which we introduce in the next subsection.

Before we proceed, we give some numerical examples. We take n ∈ N
such that rankE(Q) = ν(n). Then our assumption implies E(Q)[p] = 0, so
rn in (1) is the map between two Fp-vector spaces with the same dimension
ν(n). In this situation we ask whether rn is bijective or not.

Example 1. Let E be a curve y2 + y = x3 + x which is of conductor 91.
Take p = 3. Then

P = {19, 37, 43, 61, 73, 103, 127, 163, 181, 229, 271, 337, 349, 367, 397, 409, 439, 499, ...}.

For this curve we know that E(Q) is free of rank 1 and is generated by the
point P = (0, 0).

Take several ℓ ∈ P. Since the order of P = (0, 0) in E(Fℓ) can be easily
computed, it is easy to check whether rℓ is bijective or zero by checking
whether rℓ(P ) generates E(Fℓ)/p. Here is a table

ℓ 19 37 43 61 73 103 127 163 181 229 271 337
rℓ bij bij bij bij bij bij bij zero bij bij bij bij

ℓ 349 367 397 409 439 499
rℓ bij bij zero bij zero zero

Example 2. We consider E : y2 + xy + y = x3 + x2 − 15x + 16. In this
case the Mordell-Weil group E(Q) is free of rank 2 and is generated by two
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points P = (2,−2) and Q = (−4, 7). Take p = 3. Then P can be computed
as

P = {13, 61, 103, 109, 127, 139, 163, 211, 229, 271, 283, 313, 349, 367, 433, ...}.

We consider
rn : E(Q)/p −→ E(Fℓ1)/p⊕ E(Fℓ2)/p

for n = ℓ1 · ℓ2 ∈ N .

ℓ 61 103 109 127 139 163 211 229 271 283 313 349

r13×ℓ bij not bij bij bij not bij bij bij not bij bij bij bij not bij

ℓ 103 109 127 139 163 211 229 271 283 313 349 367

r61×ℓ bij not bij bij bij bij bij not bij not bij bij not bij bij bij

We will see later that, surprisingly, just one analytic quantity δn which
will be defined in the next subsection determines completely whether rn is
bijective or not.

1.2 Analytic quantities δn

Let fE(z) be the cusp form of weight 2 corresponding to the elliptic curve
E. We consider the modular symbol

[a
n

]
= Re

(
2πi

∫ a/n

∞
fE(z)dz

)
/Ω+

E ∈ Q

for a, n ∈ Z where Ω+
E =

∫
E(R) ωE is the Néron period (if the Néron lattice is

nonrectangular, it is the minimal positive real number in the Néron lattice,
and if the lattice is rectangular, it is twice of the minimal positive real
number in the Néron lattice, cf. [19] (1.1)). For n ∈ N and a ∈ Z, since we
assumed that the Galois representation E[p] is irreducible, we have [a/n] ∈
Zp, namely its denominator is prime to p (see Stevens [30] §3). Therefore
one can consider [ an ] mod p ∈ Fp.

Let ℓ be a prime in P. Fixing a generator gℓ of F×ℓ , we define logFℓ by

logFℓ : F
×
ℓ ≃ Z /(ℓ− 1)Z −→ Fp (2)

where the first map is defined by fixing the generator gℓ and the second map
is the natural homomorphism Z /(ℓ− 1)Z −→ Z /pZ = Fp.
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Writing [ an ] for [
a
n ] mod p, we define

δn =
n∑
a=1

(a,n)=1

[a
n

]∏
ℓ|n

logFℓ(a)

 ∈ Fp . (3)

This appears as a coefficient of the modular element θQ(µn)+ ∈ Zp[Gal(Q(µn)
+/Q)]

of Mazur and Tate [19] (see §4.5). We stress here that δn can be easily com-
puted numerically when E and n are given.

We give here a fundamental conjecture (cf. Conjecture 1 on page 320 in
[15]). We denote the Tamagawa factor of E by Tam(E) = Πℓ:bad(E(Qℓ) :
E0(Qℓ)).

Conjecture 1.1. Assume that p is prime to Tam(E). Then there exists
n ∈ N such that δn ̸= 0 in Fp.

As we mentioned, the numerical computation of δn is easy. For two
examples in the previous subsection, the values of δn are as follows.

Example 1. For y2 + y = x3 + x, taking p = 3, we have

ℓ 19 37 43 61 73 103 127 163 181 229 271 337
δℓ 2 1 1 2 1 1 2 0 2 2 1 1

ℓ 349 367 397 409 439 499
δℓ 2 1 0 2 0 0

Example 2. For y2 + xy + y = x3 + x2 − 15x+ 16, taking p = 3, we have

ℓ 61 103 109 127 139 163 211 229 271 283 313 349

δ13×ℓ 1 0 1 1 0 2 1 0 2 2 2 0

ℓ 103 109 127 139 163 211 229 271 283 313 349 367

δ61×ℓ 1 0 1 1 2 1 0 0 2 0 1 1

1.3 Conjectures on rn and δn

Comparing the tables in Subsections 1.1 and 1.2, we are led to the following
conjecture.

7



Conjecture 1.2. Suppose that p does not divide #X(E/Q)Tam(E) where
X(E/Q) is the Tate-Shafarevich group. For any n ∈ N such that rankE(Q) =
ν(n),

rn : E(Q)/p −→
⊕
ℓ|n

E(Fℓ)⊗ Z /pZ is bijective ⇐⇒ δn ̸= 0

holds.

Let Sel(Q, E[p]) be the Selmer group over Q with respect to E[p]. So we
have an exact sequence

0 −→ E(Q)/pE(Q) −→ Sel(Q, E[p]) −→ X(E/Q)[p] −→ 0

where X(E/Q)[p] is the subgroup of X(E/Q) consisting of elements that
are annihilated by p. For a prime ℓ ∈ P and x ∈ Sel(Q, E[p]), the image
of x in H1(Qℓ, E[p]) is by definition in E(Qℓ)/pE(Qℓ) which is naturally
isomorphic to E(Fℓ)/pE(Fℓ) since ℓ is a good reduction prime and is prime
to p. Thus rn can be naturally extended to

rSeln : Sel(Q, E[p]) −→
⊕
ℓ|n

E(Fℓ)⊗ Z /pZ ≃ (Z /pZ)ν(n) . (4)

for each n ∈ N .
Conjecture 1.2 is a special case of the following conjecture.

Conjecture 1.3. Suppose that p does not divide Tam(E). For any n ∈ N
such that dimFp Sel(Q, E[p]) = ν(n),

rSeln : Sel(Q, E[p]) −→
⊕
ℓ|n

E(Fℓ)⊗ Z /pZ is bijective ⇐⇒ δn ̸= 0

holds.

If p does not divide the order of X(E/Q), the natural map E(Q)/p ≃
Sel(Q, E[p]) is bijective, so Conjecture 1.3 clearly implies Conjecture 1.2.

We will prove in Theorem 2.1 that the right hand side implies the left
hand side in Conjecture 1.3 (under some mild assumptions in the beginning
of §2.2).

Remark 1.4. We can make an analogous statement for ideal class groups.
But this statement does not hold in general. We will see in §3 that the
analogous claim (11) for class groups does not hold with numerical examples.
This phenomenon will be explained in §3.
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Remark 1.5. Here, we explain a little recent argument of Sakamoto on his
Kolyvagin systems of rank 0. One can extend the homomorphism rSeln to a
certain subgroup SelFn(Q, E[p]) of H1(Q, E[p]).

We use the terminology of Mazur and Rubin in their theory of Koly-
vagin systems [18]. For any prime ℓ, we regard E(Qℓ)/p as a subgroup of
H1(Qℓ, E[p]) by the Kummer map. We define H1

tr(Qℓ, E[p]) to be the kernel
of the natural map H1(Qℓ, E[p]) → H1(Qℓ(µℓ), E[p]) where Qℓ(µℓ) is the
cyclotomic field of ℓ-th roots of unity over Qℓ.

For any n ∈ N , we define SelFn(Q, E[p]) to be the subgroup ofH1(Q, E[p])
consisting of elements whose image in H1(Qℓ, E[p]) is in E(Qℓ)/p for any
prime ℓ that does not divide n. We consider a natural map

rF
n

n : SelFn(Q, E[p]) −→
⊕
ℓ|n

H1(Qℓ, E[p])/H1
tr(Qℓ, E[p]) ≃

⊕
ℓ|n

E(Fℓ)/p.

Since the diagram

Sel(Q, E[p])
rSeln−→

⊕
ℓ|nE(Fℓ)/py y≃

SelFn(Q, E[p])
rF

n
n−→

⊕
ℓ|nH

1(Qℓ, E[pm])/H1
tr(Qℓ, E[p])

is commutative, rF
n

n is an extension of rSeln . We denote the kernel of rF
n

n by
SelF(n)(Q, E[pm]), which is a finite dimensional Fp-vector space.

Sakamoto constructed in [27] a theory of Kolyvagin systems of rank 0.
The space of Kolyvagin systems of rank 0 has rank 1, and using a basis κ of
the space one can define δn(κ) by the method in [27]. Sakamoto proved in
[27] Theorem 5.8 that

FittFp(SelF(n)(Q, E[p])) = (δn(κ)).

We note that δn(κ) in [27] is defined algebraically and has no relation with
elements with analytic origin. However, we can expect the equality (δn(κ)) =
(δn) of ideals (see Remark 1.8). Therefore we can conjecture that

SelF(n)(Q, E[p]) = 0 ⇐⇒ δn ̸= 0 . (5)

Then this conjecture (5) and the next proposition imply that the left hand
side of Conjecture 1.3 implies the right hand side of Conjecture 1.3.

Proposition 1.6. Suppose that rSeln : Sel(Q, E[p]) −→
⊕

ℓ|nE(Fℓ)⊗ Z /pZ
is bijective. Then we have SelF(n)(Q, E[p]) = 0.

This proposition will be proved in §4.1.

9



1.4 Conjectures on the Selmer group Sel(Q, E[p])

In the previous subsection we proposed conjectures on the map rn. In this
subsection we propose a conjecture on the structure of the classical Selmer
group Sel(Q, E[p]).

For general n ∈ N which may not satisfy dimFp Sel(Q, E[p]) = ν(n), we
prove in Theorem 2.1 that if δn ̸= 0 in Fp, then rn is injective (under some
mild assumptions in the beginning of §2.2). Therefore, if δn ̸= 0, we have

dimFp Sel(Q, E[p]) ≤ ν(n).

Suppose that n ∈ N . As we mentioned in §0, we say that n is δ-minimal
if δd = 0 for all divisors d of n such that 1 ≤ d < n and δn ̸= 0. We propose
the following conjecture (see also Conjecture 2 on page 322 in [15]).

Conjecture 1.7. Suppose that p does not divide Tam(E). If n ∈ N is
δ-minimal, then rSeln is bijective. In particular,

Sel(Q, E[p]) ≃ (Z /pZ)ν(n).

Suppose that both n and n′ are δ-minimal. Then Conjecture 1.7 also
asserts that ν(n) = ν(n′). This conjecture asserts that a single n which is
δ-minimal determines the Selmer rank.

One can always find δ-minimal n conjecturally. In fact, suppose that
there is m ∈ N such that δm ̸= 0 (the existence of such m is conjectured
in Conjecture 1.1). Then, rSelm is injective by Theorem 2.1. Therefore, there
exists a divisor n ofm such that rSeln is bijective. Then for any proper divisor
d of n, rSeld is not injective since ν(d) < dimFp Sel(Q, E[p]). This implies that
SelF(d)(Q, E[p]) ̸= 0. By conjecture (5) in the previous subsection, we must
have δd = 0. This shows that n is δ-minimal. In this way, one can expect
to find δ-minimal n ∈ N among divisors of m.

Remark 1.8. After the first version of this paper was written, so much
progress on these conjectures was made. First of all, when p is a good ordi-
nary prime, Sakamoto in [28] proved Conjecture 1.7. He also showed in the
ordinary case that the conjecture (5) in the previous section is equivalent
to the Iwasawa main conjecture for the cyclotomic Zp-extension. More gen-
eral theory which can be applied to any non-ordinary p is developed in [17].
Chan-Ho Kim also has obtained a general theory on the structure of Selmer
groups in his recent new work [8]. Especially he has also proved Conjecture
1.7 in it.
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2 Main theorem

2.1 Setting and notation for Z /pm Z-modules

In the previous section we considered only Fp-vector spaces. In this section
we study more general theory for Z /pm-modules with m ∈ Z>0.

We assume that the action Gal(Q/Q) → AutE[p∞] ≃ GL2(Zp) on p-
power torsion points E[p∞] is surjective. We fix a positive integer m > 0.
We define

P(m) = {ℓ | ℓ ≡ 1 (mod pm), ℓ ∤ N, and E(Fℓ)⊗ Z /pm Z ≃ Z /pm Z}.

Thus P(1) coincides with P in the previous section, and

P = P(1) ⊃ P(2) ⊃ P(3) ⊃ ... .

The set P(m) is an infinite set, which can be checked by using Chebotarev
density theorem (see [14] §5.8).

We define N (m) to be the set of squarefree products of primes in P(m).
Again, we suppose 1 ∈ N (m).

Next we define several subgroups of H1(F,E[pm]) for a number field F .
For a positive integer n, we define

SelFn(F,E[pm]) = Ker(H1(F,E[pm]) −→
⊕
v∤n

H1(Fv, E[pm])/(E(Fv)⊗Z /pm))

where we regard E(Fv)⊗Z /pm as a subgroup of H1(Fv, E[pm]) by the Kum-
mer map as usual. If n = 1, we just write Sel(F,E[pm]) for SelF1(F,E[pm]),
which is the classical Selmer group. If p divides n, we also use the notation
H1
Fn(F,E[pm]) for SelFn(F,E[pm]). We note that H1

FnpN (F,E[pm]) coin-
cides with the étale cohomology group H1

et(Spec OF [1/npN ], E[pm]) where
N is the conductor of E.

We define SelFn(F,E[p∞]), SelFn(F, Tp(E)) similarly, using the local
conditions E(Fv) ⊗ Qp /Zp and E(Fv) ⊗ Zp, respectively. For n = 1, we
also write Sel(F,E[p∞]) for SelF1(F,E[p∞]), and sometimes denote it by
Sel(E/F ). If p divides n, H1

Fn(F, Tp(E)) means SelFn(F, Tp(E)).
For F = Q, as in the case m = 1, following Mazur and Rubin [18], we

define H1
tr(Qℓ, E[pm]) to be the kernel of the natural map H1(Qℓ, E[pm]) →

H1(Qℓ(µℓ), E[pm]) where Qℓ(µℓ) is the cyclotomic field of ℓ-th roots of unity
over Qℓ. For positive integers n, k such that n is prime to p and k is prime
to np, we define SelF(n)k(Q, E[pm]) by

SelF(n)k(Q, E[pm]) = Ker(SelFnk(Q, E[pm]) −→
⊕
ℓ|n

H1(Qℓ, E[pm])/H1
tr(Qℓ, E[pm])).
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If k = 1, we just write SelF(n)(Q, E[pm]) for SelF(n)1(F,E[pm]).

For any prime ℓ ∈ P(m), we have E(Qℓ)/p
m ≃ E(Fℓ)/pm ≃ Z /pm. The

local cohomology group H1(Qℓ, E[pm]) is free of rank 2 and decomposes into

H1(Qℓ, E[pm]) = E(Fℓ)/pm ⊕H1
tr(Qℓ, E[pm]),

so we have
H1(Qℓ, E[pm])/H1

tr(Qℓ, E[pm]) ≃ E(Fℓ)/pm.

For n ∈ N (m), as in the previous section, we have a natural homomor-
phism

rSeln : Sel(Q, E[pm]) −→
⊕
ℓ|n

E(Fℓ)⊗ Z /pm Z ≃ (Z /pm Z)ν(n),

which can be extended to

rF
n

n : SelFn(Q, E[pm]) −→
⊕
ℓ|n

H1(Qℓ, E[pm])/H1
tr(Qℓ, E[pm]) ≃

⊕
ℓ|n

E(Fℓ)/pm.

(6)

2.2 Injectivity theorems

Put ap = p + 1 − #E(Fp) as usual. From this subsection throughout this
paper, we assume that if E has good ordinary reduction at p, then ap ̸≡ 1
(mod p) (not anomalous), and that if E has supersingular reduction at p,
then ap = 0. The latter is always satisfied if p ≥ 5. Also, we assume that
the µ-invariant for the cyclotomic Zp-extension vanishes if p is ordinary, and
that µ+ = 0, or µ− = 0 if p is supersingular (for the precise definition of
the latter, see the definition just before Lemma 4.1 below). The conditions
on the µ-invariants are conjectured by Greenberg to hold true always. We
assume the conditions on the µ-invariants though there is a possibility to
remove them by using a recent result of Kataoka [5].

For n ∈ N (m), we can define δn ∈ Fp since n is in N .

Theorem 2.1. Suppose that m is a positive integer, and n ∈ N (m) satisfies
δn ̸= 0 in Fp. Then the natural map

rSeln : Sel(Q, E[pm]) −→
⊕
ℓ|n

E(Fℓ)/pm ≃ (Z /pm Z)ν(n)

is injective. In particular, we have

rankE(Q) + dimFp X(E/Q)[p] ≤ ν(n)
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where X(E/Q)[p] is the subgroup of X(E/Q) consisting of elements that
are annihilated by p.

Remark 2.2. This theorem was proved in our previous paper (see §4.1 in
[15]) in the ordinary case, so in this paper we prove this theorem in the
supersingular case.

2.3 Structure of Tate-Shafarevich groups and some numeri-
cal examples

Theorem 2.1 is useful to determine the structure of the Tate-Shafarevich
group of E. We denote by X(E/Q)[p∞] the p-primary component of the
Tate-Shafarevich group X(E/Q).

Example 3. We take E to be

y2 + xy = x3 − x2 − 22959594440x− 1339036978455744

with conductor N = 152330 (Cremona label 152330l1). We know E(Q) = 0
and Tam(E/Q) = 2. Take p = 3. Then a3 = 0 (so 3 is a supersingular
prime), the Galois action on E[3∞] is surjective and both the cyclotomic
µ±-invariants vanish. Therefore, all the conditions in the beginning of §2.2
are satisfied and we can apply Theorem 2.1.

In this case since N is squarefree, we know by the main theorem of
X. Wan in [31] that the Iwasawa main conjecture for p = 3 holds true
for E. Therefore, it follows from L(E, 1)/ΩE = 162 that the 3-component
X(E/Q)[3∞] of the Tate-Shafarevich group has order 81 (while the Birch
and Swinnerton-Dyer conjecture asserts that the whole X(E/Q) has order
81). Thus there are two possibilities for the structure of X(E/Q)[3∞] as
an abelian group, namely (Z /3Z)⊕4 and (Z /9Z)⊕2.

Taking p = 3 and computing P, we have

P = {13, 31, 61, 127, ...}.

We can easily compute δ13×ℓ and δ31×ℓ to get the following table.

ℓ 31 61 127
δ13×ℓ 1 0 2

ℓ 61 127
δ31×ℓ 1 0

Applying n = 13× 31 for example, we get from δ13×31 ̸= 0 and Theorem
2.1 that

dimF3 X(E/Q)[3] ≤ ν(13× 31) = 2,

13



which implies that dimF3 X(E/Q)[3] = 2 and

X(E/Q)[3∞] ≃ Z /9Z⊕Z /9Z .

Thus we also have X(E/Q) ≃ Z /9Z⊕Z /9Z if we admit the Birch and
Swinnerton-Dyer conjecture.

Example 4. We take E to be

E : y2 + y = x3 − 17034726259173x− 27061436852750306309.

This is the curve studied by Prasad and Shekhar in [23] Example 2. The
conductor is N = 423801 (Cremona label 423801ci1). Take p = 5. Then
the action on E[5∞] is surjective, 5 is good ordinary with a5 = 4, and the
cyclotomic µ-invariant is 0, so all the conditions in the beginning of §2.2 are
satisfied and one can apply Theorem 2.1. For this curve, we know E(Q) = 0
and Tam(E/Q) = 16.

We know a11 = a41 = 2 and a191 = −18 for this curve (aℓ is the coefficient
of the modular form corresponding to E), and

P = {11, 41, 191, ...}.

We compute δ11×41 to get δ11×41 = −1628692 = 3 ̸= 0 in Fp.
In order to see that the main conjecture for (E, p) holds, we cannot apply

the main theorem by Skinner and Urban in [29] because N = 423801 =
32 · 72 · 312 is a perfect square. Instead, we can use the main theorem in
C.-H. Kim, M. Kim and H.-S. Sun in [7]. In fact, using Corollary 1.2 in [7]
and δ11×41 ̸= 0, we know that the main conjecture for (E, p) holds true.

Since L(E, 1)/ΩE = 10000, the main conjecture implies that the 5-
component of X(E/Q) has order 625 = 54.

It follows from Theorem 2.1 and δ11×41 ̸= 0 that dimF5 X(E/Q)[5] ≤ 2.
This implies that

X(E/Q)[5∞] ≃ Z /25Z⊕Z /25Z .

If we admit the Birch and Swinnerton-Dyer conjecture, X(E/Q) has only
5-components and we have X(E/Q) ≃ Z /25Z⊕Z /25Z.

For general E over Q, concerning the structure of the Tate-Shafarevich
group X(E/Q), we have the following conjecture (see Theorem B in [14]).

To state the conjecture, we have to define δ
(m)
n that is δn mod pm for any

14



n ∈ N (m). For any ℓ ∈ P(m), log
(m)
Fℓ : F×ℓ ≃ Z /(ℓ−1)Z → Z /pm is naturally

defined by using the fixed generator gℓ of F×ℓ , and [a/n](m) is defined as [a/n]

mod pm. Then as in (3) we define δ
(m)
n by

δ(m)
n =

n∑
a=1

(a,n)=1

[a
n

](m)

∏
ℓ|n

log
(m)
Fℓ (a)

 ∈ Z /pm Z . (7)

LetX(E/Q)[pm] be the kernel of the multiplication by pm onX(E/Q).

Conjecture 2.3. Suppose that p does not divide Tam(E/Q), and rankE(Q) =
r. For any integers m > 0 and i ≥ 0, we define Im,i to be the ideal of Z /pm Z
generated by all δ

(m)
n with n ∈ N (m) such that ν(n) = r + i. Then for any

even i ≥ 0 we have

Fitti,Z /pm X(E/Q)[pm] = Im,i

where Fitti,Z /pm X(E/Q)[pm] is the i-th higher Fitting ideal ofX(E/Q)[pm].

We have to restrict i to even numbers ≥ 0 in Conjecture 2.3. In fact,
for odd i the above equality in Conjecture 2.3 does not hold. But Con-
jecture 2.3 is enough to determine the structure of X(E/Q)[pm]. Assume
that X(E/Q)[p∞] is finite. Then, by the existence of the Cassels-Tate
pairing, X(E/Q)[p∞] is isomorphic to A⊕A for some finite abelian group
A, and X(E/Q)[pm] is isomorphic to (Z /pk1 Z)⊕2 ⊕ ...⊕ (Z /pks Z)⊕2 with
some k1,...,ks such that m ≥ k1 ≥ ... ≥ ks. Then by the definition of the
higher Fitting ideal, Fitt0,Z /pm X(E/Q)[pm] is generated by p2(k1+...+ks),

Fitt2,Z /pm X(E/Q)[pm] is generated by p2(k2+...+ks), Fitt4,Z /pm X(E/Q)[pm]

is generated by p2(k3+...+ks), etc. So taking m sufficiently large such that
X(E/Q)[p∞] = X(E/Q)[pm] and Fitti,Z /pm X(E/Q)[pm] ̸= 0, we can
determine the structure of the Tate-Shafarevich group X(E/Q)[p∞] from
Conjecture 2.3.

We proved Conjecture 2.3 in Theorem B in [14] under several (strong)
conditions including the finiteness of X(E/Q)[p∞] and the ordinary condi-
tion on p.

3 Analogous results for ideal class groups

Concerning Conjectures 1.2, 1.3 in §1.3, “the left hand side ⇐= the right
hand side” can be proved under some mild assumptions, as we explained in
§2. So the problem is to show the converse.
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In this section we first state Theorem 3.1 for ideal class groups, which
corresponds to Theorem 2.1 for the Selmer group. For ideal class groups,
we will show in this section that “the converse” of the analogy of the above
conjectures does not hold.

Since the unramified cohomology H1
f (Qℓ, E[p]) is E(Qℓ)/p and the map

rSeln can be regarded as rSeln : Sel(Q, E[p]) →
⊕

ℓ|nH
1
f (Qℓ, E[p]), its dual is⊕

ℓ|n

H1(Qℓ, E[p])/H1
f (Qℓ, E[p]) −→ Hom(Sel(Q, E[p]),Z /pZ). (8)

Conjecture 1.3 studies the bijectivity of this map.
For a number field K and the Galois module µp consisting of p-th roots

of unity, H1(Kv, µp) = K×v ⊗ Z /pZ and H1
f (Kv, µp) = EKv ⊗ Z /pZ for

a finite prime v of K where EKv is the unit group of Kv. Therefore,
H1(Kv, µp)/H

1
f (Kv, µp) ≃ Z /pZ where the isomorphism is defined by the

normalized additive valuation of Kv.
Let CK be the ideal class group of K. For a squarefree product n of

finite primes of K, the analogous map of (8) is⊕
L|n

Z /pZ −→ CK/pCK (9)

where L runs over all primes of K dividing n, and eL = (0, ..., 1, ...0) (the
element whose L-component is 1 and other components are zero) goes to
the class of L in CK/pCK .

Let k be a totally real field and K be a CM-field such that [K : k] = 2.
Theorem 3.1 we will prove below can be generalized to more general abelian
extension K/k, but here we restrict ourselves to this simple setting [K : k] =
2.

We assume that p is an odd prime and that K does not contain a prim-
itive p-th root of unity. For a finite prime ℓ of k such that N(ℓ) ≡ 1 (mod
p), we define nℓ ∈ Z>0 by pnℓ∥N(ℓ)− 1. We say ℓ is suitable if k has a cyclic
extension k(ℓ)/k of degree pnℓ such that k(ℓ)/k is unramified outside ℓ and
totally ramified at ℓ. If k = Q, all prime numbers are suitable. We define a
set Pcl of finite primes of k by

Pcl = {ℓ | N(ℓ) ≡ 1 (mod p), ℓ splits in K and ℓ is suitable}.

By Chebotarev density theorem one knows that Pcl is infinite (see §3 in
[13]). We define N cl the set of squarefree products of primes in Pcl. For
each ℓ we take a cyclic extension k(ℓ)/k of degree pnℓ such that k(ℓ)/k is
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unramified outside ℓ and totally ramified at ℓ, and define k(n) to be the
composite field of all k(ℓ) for ℓ dividing n.

Suppose that n ∈ N cl. We consider the composite field Kk(n) of K and
k(n). For σ ∈ Gal(Kk(n)/k), we consider the partial zeta function

ζk(s, σ) =
∑

(
Kk(n)/k

a
)=σ

N(a)−s

where a runs over all integral ideals of k whose Artin symbol is σ. This
function has a meromorphic continuation to the whole complex plane. Since
µp is not in Kk(n) by our assumption, we know that ζ(0, σ) ∈ Zp by Deligne
and Ribet [2], and Pierrette Cassou-Noguès [1].

For ℓ ∈ Pcl we define logclFℓ by

logclFℓ : Gal(Kk(n)/k) −→ Gal(k(ℓ)/k) ≃ F×N(ℓ)⊗Zp ≃ Z /pnℓ Z
−→ Z /pZ = Fp,

fixing a generator of F×N(ℓ). We denote by χ the quadratic character of

Gal(Kk(n)/k) defined by

χ : Gal(Kk(n)/k) −→ Gal(K/k) = {±1}.

We define δcln for n ∈ N cl by

δcln =
∑

σ∈Gal(Kk(n)/k)

χ(σ)ζk(0, σ)

∏
ℓ|n

logclFℓ(σ)

 ∈ Fp .

We denote by (CK⊗Zp)− the subgroup of CK⊗Zp consisting of elements
on which the complex conjugation acts as −1.

The following theorem is the analogous result corresponding to the in-
jectivity theorem for the Selmer group (Theorem 2.1 in §2). We can prove
this theorem using Euler systems of Gauss sum type in our paper [13] (see
also [25] when k = Q) by the same method as the proof of Theorem 2.1 in
§4.6.

Theorem 3.1. Suppose that δcln ̸= 0 for some n ∈ N cl. Then (CK ⊗ Zp)−
is generated by the classes of primes of K dividing n. In other words, the
minus component of the homomorphism (9)

(
⊕
L|n

Z /pZ)− −→ (CK/pCK)−

is surjective.
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We think that this theorem is interesting in the sense that we know
generators of the class group explicitly from the information on zeta values
which are computable.

We consider the simplest example. Suppose that k = Q and K is an
imaginary quadratic field. Let χK : (Z /dZ)× → {±1} be the Dirichlet
character corresponding to K. For a cyclotomic field Q(µm)/Q and a ∈ Z
with 0 < a < m and (a,m) = 1, it is well-known that ζ(0, σa) = 1

2 − a
m

where σa ∈ Gal(Q(µm)/Q) ≃ (Z /mZ)× corresonds to a mod m. Therefore,
δcln has a simple form which is similar to and simpler than (3) in §1.2;

δcln = −
dn∑
a=1

(a,dn)=1

χK(a)
a

n

∏
ℓ|n

logFℓ(a)

 ∈ Fp (10)

where logFℓ is as in §1.2. So the numerical computation of δcln is very easy
in this case.

Example 5. Take K = Q(
√
−23) over k = Q and p = 3. We know

CK ≃ Z /3Z, so (CK ⊗ Z /3Z)− = CK ⊗ Z /3Z = CK . By definition,

Pcl = {ℓ | ℓ ≡ 1 (mod 3), (
−23

ℓ
) = 1}

= {13, 31, 73, 127, 139, 151, 163, 193, 211, 223, ...}.

For ℓ = 13, 31, 73, 127, 139, 193, by computations using (10) we have
δclℓ ̸= 0. Also for ℓ = 151, 163, 211, 223, we have δℓ = 0. For ℓ such that
δℓ ̸= 0, we know by Theorem 3.1 that a prime above ℓ generates CK . In the
terminology of quadratic forms, this means that

2x2 + xy + 3y2 = ℓ

has an integer solution. This can be also checked easily for the above ℓ’s.

The analogy of Conjecture 1.3 for class groups can be formulated as
follows. Suppose that (CK ⊗ Zp)− is generated by exactly m elements.
Then for n ∈ N cl such that ν(n) = m, the analogous claim for class groups
is

(CK ⊗ Zp)− is generated by primes of K above n⇐⇒ δcln ̸= 0. (11)
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We showed that “⇐=” holds true by Theorem 3.1. However, the above
equivalence does not hold. In fact, consider Example 5, namely K =

Q(
√
−23). Then the above equivalence claims that

2x2 + xy + 3y2 = ℓ has an integer soultion ⇐⇒ δclℓ ̸= 0

for any ℓ ∈ Pcl with p = 3. But the left hand side does not imply the
right hand side, in general. For example, for ℓ = 151, 163, we have δclℓ = 0
but a prime above ℓ generates CK because 2x2 + xy + 3y2 = ℓ has an
integer solution. (In fact, for ℓ = 151, (x, y) = (4,−7) is a solution, and
for ℓ = 163, (x, y) = (8,−5) is a solution.) Thus the analogy (11) for class
groups corresponding to Conjecture 1.3 does not hold.

For ℓ = 211, 223, we have δclℓ = 0 and primes above ℓ are principal since
211 = 22 + 23 · 32 and 223 = 42 + 23 · 32.

Next we consider the analogy of Conjecture 1.7, which claims that

dimFp CK/pCK = ν(n)

if n is “δcl-minimal”. We consider again Example 5, namely K = Q(
√
−23),

and will give a counterexample of the above equality. By computation we
know δcl151×211 ̸= 0. Since δcl151 = δcl211 = 0, we know that 151 × 211 is “δcl-
minimal”. But, of course, we know dimF3 CK = 1 ̸= 2 = ν(151 × 211).
This shows that the analogy for class groups corresponding to Conjecture
1.7 does not hold. This single n which is δcl-minimal does not determine the
p-rank of the class group.

An essential difference between the Galois representations Tp(E) and

Zp(1) is that the former is self-dual.

4 Proofs of statements

4.1 Proof of Proposition 1.6

We first prove Proposition 1.6. We use the notation SelFn(Q, E[p]) in Re-
mark 1.5. We define SelFn(Q, E[p]) to be the kernel of

rSeln : Sel(Q, E[p]) −→
⊕
ℓ|n

E(Fℓ)/p.

Then by the global duality theorem, the sequence

0 −→ SelF(n)(Q, E[p]) −→ SelFn(Q, E[p])
α−→
⊕
ℓ|n

H1(Qℓ, E[p])/H1
tr(Qℓ, E[p])

−→ SelF(n)(Q, E[p])∨ −→ SelFn(Q, E[p])∨ −→ 0

19



is exact where M∨ means Hom(M,Fp) for an Fp-vector space M .
Suppose that rSeln is bijective. Then the surjectivity of rSeln implies

the surjectivity of α in the above exact sequence. Therefore, we have
SelF(n)(Q, E[p]) = SelFn(Q, E[p]) by the above exact sequence. The in-

jectivity of rSeln means SelFn(Q, E[p]) = 0, so we have SelF(n)(Q, E[p]) = 0.

4.2 Construction of equivariant p-adic L-functions in the su-
persingular case

The rest of this paper is devoted to the proof of Theorem 2.1 in the super-
singular setting. We assume ap = 0, so E has supersingular reduction at
p. In this subsection, we construct a certain equivariant p-adic L-function
explicitly from modular symbols, following the argument in our previous
work [15] §2.1 where the ordinary case is treated.

For any m ∈ Z>0 we denote by µm the group of m-th roots of unity, and
put Gm = Gal(Q(µm)/Q). We consider a modular element

θQ(µm) =

m∑
a=1

(a,m)=1

[
a

m
]σa ∈ Q[Gm] (12)

where [a/m] is the modular symbol defined in §1.2 and σa is the automor-
phism in Gal(Q(µm)/Q) characterized by σa(ζ) = ζm for ζ ∈ µm (cf. [19]).

We first construct signed p-adic L-functions θ±K∞
by the method in §1

in [16]. Suppose that n is a squarefree positive integer which is prime to
pN where N is the conductor of E. From our assumption that the action
on E[p] is surjective, we know θQ(µnpi )

is in Zp[Gnpi ] for any i ∈ Z≥0 (see

[30]). We decompose Gpi+1 = ∆ × Γi where ∆ is cyclic of order p − 1 and
Γi is cyclic of order p

i. We take a generator γ of Gal(Q(µnp∞)/Q(µnp)) and
write

Zp[Gnpi+1 ] = Zp[Gnp][Γi] ≃ Zp[Gnp][[T ]]/ωi

where 1+T corresponds to the image of γ in Γi and ωi = (1+T )p
i−1. Define

Φi by Φi = ωi/ωi−1 which is a cyclotomic polynomial. So ωi = Φiωi−1.
Suppose that i ≥ 2, and denote by

π : Zp[Gnpi+1 ] −→ Zp[Gnpi ]

the natural projection. We also write

ν : Zp[Gnpi−1 ] −→ Zp[Gnpi ]
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for the norm homomorphism which is defined by σ 7→
∑
τ where for σ ∈

Gnpi−1 , τ runs over elements in Gnpi which projects to σ. Then using the
formula in (1.3) (4) in [19] we have

π(θQ(µnpi+1 )) = −ν(θQ(µnpi−1 )). (13)

This shows that θQ(µnpi+1 ) is divisible by Φi−1. Applying the same argument

to θQ(µnpi−1 ), θQ(µnpi−3 ),...repeatedly, we know that θQ(µnpi+1 ) is divisible by

Φi−1 · Φi−3 · ... · Φ1 if i is even, and Φi−1 · Φi−3 · ... · Φ2 if i is odd. Put

ω̃+
i =

∏
2≤j≤i, 2|j

Φj , ω̃−i =
∏

1≤j≤i, 2∤j

Φj .

When i is even, we write θQ(µnpi+1 ) = ω̃−i hi(T ) for some hi(T ) ∈ Zp[Gnpi+1 ].

Put ω±i = T ω̃±i . Then we have ωi = ω̃−i ω
+
i . Therefore, the equation

θQ(µnpi+1 ) = ω̃−i hi(T ) determines hi(T ) in Zp[Gnpi+1 ]/ω+
i . The relation (13)

implies that ((−1)
i+2
2 hi(T ))i:even is a projective system and defines an ele-

ment in lim
←

Zp[Gnpi+1 ]/ω+
i = Zp[[Gnp∞ ]] where Gnp∞ = lim

←
Gnpi . We put

θ+Q(µnp∞ ) = ((−1)
i+2
2 hi(T ))i:even ∈ lim

←
Zp[Gnpi+1 ]/ω+

i = Zp[[Gnp∞ ]].

When i is odd, we can write θQ(µnpi+1 ) = ω̃+
i hi(T ) for some hi(T ) ∈

Zp[Gnpi+1 ]/ω−i . The same method as above using (13) shows that ((−1)
i+1
2 hi(T ))i:odd

is a projective system, so we define

θ−Q(µnp∞ ) = ((−1)
i+1
2 hi(T ))i:odd ∈ lim

←
Zp[Gnpi+1 ]/ω−i = Zp[[Gnp∞ ]].

These two elements θ±Q(µnp∞ ) are Pollack’s p-adic L-functions in [22], and

θ−Q(µnp∞ ) log
+±

√
−pθ+Q(µnp∞ ) log

− gives p-adic L-functions of Amice -Vélu

and Vishik.
For a real abelian fieldK with conductorm, we define θK to be the image

of θQ(µm) under the natural restriction map Zp[Gm] → Zp[Gal(K/Q)]. Let

K∞/K be the cyclotomic Zp-extension. We define θ±K∞
∈ Zp[[Gal(K∞/Q)]]

to be the image of θ±Q(µnp∞ ) under the natural restriction map Zp[[Gnp∞ ]] →
Zp[[Gal(K∞/Q)]].

Consider θ±Q∞
∈ Zp[[Gal(Q∞ /Q)]] ≃ Zp[[T ]]. By µ± we denote the µ-

invariant of θ±Q∞
. Therefore, µ± = 0 means that p does not divide θ±Q∞

,
respectively.
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Lemma 4.1. Suppose that K/Q is a finite abelian extension with conductor
n which is prime to p. Let π0 : Zp[[Gal(K∞/Q)]] → Zp[Gal(K/Q)] be the
natural projection map. Then we have

π0(θ
+
K∞

) = (σp + σ−1p )θK , π0(θ
−
K∞

) = (p− 1)θK ,

where σp is the Frobenius automorphism of p in Gal(K/Q).

Proof. This follows from the construction of θ±K∞
. For a finite abelian ex-

tension L/K, we denote by πL/K the natural projection Zp[Gal(L/Q)] →
Zp[Gal(K/Q)] and by νL/K the norm homomorphism Zp[Gal(K/Q)] →
Zp[Gal(L/Q)], which sends σ ∈ Gal(K/Q) to

∑
τ where τ runs over ele-

ments in Gal(L/Q) projecting to σ. Using (1.3) (1), (4) in [19], we have

πQ(µnp3 )/Q(µn)(h2(T )) = πQ(µnp3 )/Q(µn)(θQ(µnp3 )
/Φ1)

= πQ(µnp)/Q(µn)(−θQ(µnp)) = (σp + σ−1p )θQ(µn)

which implies the first formula. The second formula follows from

πQ(µnp2 )/Q(µn)(−h1(T )) = πQ(µnp2 )/Q(µn)(−θQ(µnp2 )
)

= πQ(µnp)/Q(µn)(νQ(µnp)/Q(µn)(θQ(µn)))

= (p− 1)θQ(µn)

where we used (1.3) (4) in [19].

Next we modify θ±Q(µnp∞ ), following the argument in our previous work in

§2.1 [15]. We assume that n is a squarefree positive integer with (n,Np) = 1.
For any d and n such that d | n, we define πn,d : Zp[[Gnp∞ ]] → Zp[[Gdp∞ ]]
to be the natural projection. Let ℓ be a prime not dividing npN . By (1.3)
(1) in [19] we have

πnℓ,n(θ
±
Q(µnℓp∞ )) = (aℓ − σℓ − σ−1ℓ )θ±Q(µnp∞ ) (14)

where σℓ ∈ Gnp∞ is the Frobenius automorphism. We put

α±d,n = (
∏
ℓ|n
d

(−σ−1ℓ ))θ±Q(µdp∞ ) ∈ Zp[[Gdp∞ ]]

and
ξ±Q(µnp∞ ) =

∑
d|n

νn,d(α
±
d,n) ∈ Zp[[Gnp∞ ]] (15)

where νn,d : Zp[[Gdp∞ ]] → Zp[[Gnp∞ ]] is the norm map defined similarly as
νL/K in the proof of Lemma 4.1.

Put Pℓ(x) = x2 − aℓx+ ℓ.
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Lemma 4.2. Suppose that ℓ is a prime not dividing npN . Then we have

πnℓ,n(ξ
±
Q(µnℓp∞ )) = (−σ−1ℓ Pℓ(σℓ))ξ

±
Q(µnp∞ )

where σℓ ∈ Gnp∞ is the Frobenius automorphism.

Proof. This can be proved by the same method as (7) on page 325 in [15]
(where we wrote P ′ℓ(x) for Pℓ(x)). We give here the computation for the
convenience of readers. First of all, we note that

−σ−1ℓ = (−σ−1ℓ Pℓ(σℓ)− (aℓ − σℓ − σ−1ℓ ))/(ℓ− 1) (16)

which can be verified very easily. We have

πnℓ,n(ξ
±
Q(µnℓp∞ )) = πnℓ,n(

∑
d|n

νnℓ,d(α
±
d,nℓ) +

∑
d|n

νnℓ,dℓ(α
±
dℓ,nℓ))

= (ℓ− 1)
∑
d|n

νn,d(α
±
d,nℓ) +

∑
d|n

νn,d(πdℓ,d(α
±
dℓ,nℓ))

= (ℓ− 1)
∑
d|n

νn,d(−σ−1ℓ α±d,n) +
∑
d|n

νn,d((aℓ − σℓ − σ−1ℓ )α±d,n)

= (−σ−1ℓ Pℓ(σℓ))
∑
d|n

νn,d(α
±
d,n)

= (−σ−1ℓ Pℓ(σℓ))ξ
±
Q(µnp∞ )

where we used (14) to get the third line and (16) to get the fourth line.

Suppose that K is a real abelian field with conductor n. We define
ξ±K∞

∈ Zp[[Gal(K∞/Q)]] to be the image of ξ±Q(µnp∞ ) under the natural

restriction map. Thus we have constructed an equivariant p-adic L-function
ξ±K∞

from modular symbols explicitly.
As in §3, for a prime ℓ in P, we define nℓ ∈ Z>0 by pnℓ∥ℓ− 1. We write

Q(ℓ) the unique subfield of Q(µℓ) such that [Q(ℓ) : Q] = pnℓ . For any n ∈ N ,
we define Q(n) to be the composite field of all Q(ℓ) for ℓ dividing n. The
conductor of Q(n) is n and we use these fields below.

4.3 Annihilation results in the supersingular case

In this subsection we still assume ap = 0.
We first consider±-local conditions to define±-Selmer groups, which was

first defined by Kobayashi [10]. Suppose that k/Qp is a finite unramified
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extension, k∞/k the cyclotomic Zp-extension, and ki the i-th layer. We
define E+(ki) (resp. E−(ki)) to be the module consisting of elements x ∈
E(ki) such that Tri,j+1(x) ∈ E(kj) for any even (resp. odd) j with 0 ≤ j < i
where Tri,j+1 : E(ki) → E(kj+1) is the trace map (see [10] Definition 2.1
and [4] Definition 2.2).

Suppose that K/Q is a finite abelian p-extension which is unramified at
p, and that n ∈ Z>0 is a squarefree integer which is prime to pN . As in the
previous subsection, Ki denotes the i-th layer of the cyclotomic Zp-extension
K∞/K. We define

Sel±Fn(E/Ki) = Ker(SelFn(Ki, E[p∞]) −→
⊕
v|p

H1(Ki,v, E[p∞])/E±(Ki,v)⊗Qp /Zp)

and
Sel±Fn(E/K∞) = lim

→
i

Sel±Fn(E/Ki).

Therefore, the local conditions for Sel±Fn(E/K∞) are relaxed for primes
above n, E±(K∞,v)⊗Qp /Zp for primes v above p, and E(K∞,v)⊗Qp /Zp
which is zero otherwise. When n = 1, we simply write Sel±(E/K∞) for
Sel±F1(E/K∞).

Put ΛK∞ = Zp[[Gal(K∞/Q)]]. Let n be a positive integer which is
prime to pN and a multiple of the conductor of K/Q. We denote by
Sel±Fn(E/K∞)∨ the Pontrjagin dual of Sel±Fn(E/K∞). By a celebrated ar-
gument by Kato [6] and Kobayashi [10], it is known that Sel±Fn(E/K∞) is
a torsion ΛK∞-module. We also know by Kataoka [4] Theorem 5.8 that
the projective dimension of Sel±Fn(E/K∞)∨ is ≤ 1 over ΛK∞ . Consider the
Fitting ideal of the ±-Selmer groups (for the definition of Fitting ideal, see
[21]).

Theorem 4.3. Suppose that K/Q is a finite abelian p-extension with con-
ductor n that is prime to pN . We also assume that E satisfies ap = 0 and
µ+ = 0 (resp. µ− = 0). Then we have ξ+K∞

∈ FittΛK∞ (Sel+Fn(E/K∞)∨)

(resp. ξ−K∞
∈ FittΛK∞ (Sel−Fn(E/K∞)∨)).

Proof. This can be proved by the same method as Theorem 6 (1) in our
previous paper [15]. We have an exact sequence

0 −→ Sel±Fn(E/K∞) −→ H1
FnpN (K∞, E[p∞]) −→

⊕
ℓ|pN

H1(K∞⊗Qℓ, E[p∞])/Lℓ −→ 0

where Lℓ =
⊕

v|ℓE(K∞,v)⊗Qp /Zp = 0 if ℓ dividesN , and Lp =
⊕

v|pE
±(K∞,v)⊗

Qp /Zp. The surjectivity of the third map follows from [4] Proposition 5.6.
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We also note that H1
FnpN (K∞, E[p∞]) is isomorphic to the étale cohomology

group H1
et(Spec OK∞ [1/npN ], E[p∞]).

Put G = Gal(K/Q) and regard it as a subgroup of Gal(K∞/Q). For
a subgroup H of G, let F be the fixed subfield of K by H. Then taking
the H-invariant part of the above exact sequence and comparing it with the
same exact sequence for F∞, we have an isomorphism

Sel±Fn(E/F∞)
≃−→ Sel±Fn(E/K∞)H . (17)

Put X±K∞
= Sel±Fn(E/K∞)∨ and X±F∞

= Sel±Fn(E/F∞)∨ in this proof.
Note that n is not necessarily the conductor of F/Q.

By [4] Proposition 5.6, we have an exact sequence

0 −→ Sel±(E/F∞) −→ Sel±Fn(E/F∞) −→
⊕
v|n

H1(F∞,v, E[p∞]) −→ 0.

Let Tp = Tp(E) be the Tate module. For a prime v of F∞ dividing n we con-
sider the maximal unramified extension F∞,v,nr and Γv = Gal(F∞,v,nr/F∞,v)
which is isomorphic to

∏
ℓ̸=p Zℓ since n is prime to p. Since primes dividing

n are good reduction primes, the inertia group of v acts trivially on Tp and
we regard Tp as a Γv-module. Taking the dual of the above exact sequence,
we have an exact sequence

0 −→
⊕
v|n

(Tp)
Γv −→ X±F∞

−→ Sel±(E/F∞)∨ −→ 0. (18)

Since (Tp)
Γv is Zp-torsion free and Sel±(E/F∞)∨ has no non-trivial finite

submodule by Kitajima and Otsuki [9] Theorem 1.3, X±F∞
also has no non-

trivial finite submodule (this fact also follows from the projective dimension
of X±F∞

≤ 1 by Kataoka [4] Theorem 5.8).
Let ψ be any character of G. For any Zp[G]-module M we denote by

Mψ the ψ-quotient Mψ = M ⊗Zp[G] Oψ where Oψ = Zp[Image ψ] on which
G acts via ψ,

Lemma 4.4. For any character ψ of G, (X±K∞
)ψ has no non-trivial finite

submodule.

Proof. Let H be the kernel of ψ, and F the subfield of K corresponding
to H. So ψ is a faithful character of G/H = Gal(F/Q) which is a cyclic
p-group. We use the notation X±F∞

above.
By the above isomorphism (17) we have

(X±K∞
)ψ ≃ (X±F∞

)ψ
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where X±F∞
= Sel±Fn(E/K∞)∨. Note that n is not necessarily the conductor

of F/Q.
We first assume H ̸= G. Let F ′ be the subfield of F such that [F : F ′] =

p. Put NF/F ′ = Σσ∈Gal(F/F ′)σ, which we regard as an element of Zp[G/H].
Then Oψ = Zp[G/H]/(NF/F ′). Let σ be a generator of Gal(F/F ′). Then
σ − 1 induces a homomorphism

σ − 1 : (X±K∞
)ψ = X±F∞

/(NF/F ′) −→ X±F∞
.

This homomorphism is injective because H1(Gal(F/F ′), X±F∞
) = 0. Also,

since X±F∞
has no non-trivial finite submodule as we saw before Lemma 4.4,

the above injective homomorphism shows that (X±K∞
)ψ also has no non-

trivial finite submodule.
In the case H = G, ψ has to be the trivial character and (X±K∞

)ψ ≃
(X±Q∞

) which has no non-trivial finite submodule as we explained before
Lemma 4.4.

Put Λψ = ΛK∞ ⊗Zp[G] Oψ ≃ Oψ[[Gal(K∞/K)]] for a character ψ of G.
We write ψK∞ : ΛK∞ → Λψ for the ring homomorphism induced by ψ.

Lemma 4.5. We have ψK∞(ξ±K∞
) ∈ FittΛψ((X

±
K∞

)ψ) for any character ψ
of G.

Proof. Let H be the kernel of ψ as above, F the subfield corresponding to
H, πK∞/F∞ : ΛK∞ → ΛF∞ the restriction map, and ψF∞ : ΛF∞ → Λψ
the ring homomorphism induced by ψ. We denote by u(ψ) the product of
primes dividing n, that are unramified in F . Then Lemma 4.2 implies that

ψK∞(ξ±K∞
) = ψF∞(πK∞/F∞(ξ±K∞

)) = ψF∞(
∏
ℓ|u(ψ)

(−σ−1ℓ Pℓ(σℓ))ψF∞(ξ±F∞
).

The construction of the p-adic L-function ξF∞ in (15) shows that ψF∞(ξ±F∞
) =

ψF∞(θ±F∞
), so we get

ψK∞(ξ±K∞
) = ψF∞(

∏
ℓ|u(ψ)

(−σ−1ℓ Pℓ(σℓ))ψF∞(θ±F∞
). (19)

On the other hand, by the isomorphism (17) we have (X±K∞
)ψ = (X±F∞

)ψ.
Lemma 4.4 implies that

FittΛψ((X
±
K∞

)ψ) = FittΛψ((X
±
F∞

)ψ) = charΛψ((X
±
F∞

)ψ) (20)
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where the right hand side means the characteristic ideal.
We take ψ-quotients of the exact sequence (18). If a rational prime

ℓ dividing n is ramified in F , (
⊕

v|ℓ(Tp)
Γv)ψ is finite. If ℓ divides u(ψ),

namely ℓ is unramified in F , then charΛψ((
⊕

v|ℓ(Tp)
Γv)ψ) = (ψF∞(Pℓ(σℓ)))

where Pℓ(x) is the polynomial defined just before Lemma 4.2 in the previous
subsection.

By an argument due to Kato and Kobayashi we know that ψF∞(θ±F∞
) is

in charΛψ((Sel
±(E/F∞)∨)ψ), which we will explain briefly in the following.

Put H1(F∞,v) = lim
←
H1(Fi,v, Tp(E)) for a prime v of F∞ above p. Let

H1
±(F∞,v) ⊂ H1(F∞,v) be the exact annihilator of E±(F∞,v) ⊗ Qp /Zp ⊂

H1(F∞,v, E[p∞]) with respect to the Tate pairing, Sel0(E/F∞) the kernel of
Sel±(E/F∞) →

⊕
v|pE

±(F∞,v) ⊗ Qp /Zp, H1
Fp(F∞) = lim

←
H1
Fp(Fi, Tp(E)).

Then by definitions and global duality theorem we have an exact sequence

H1
Fp(F∞)

locp−→
⊕
v|p

H1(F∞,v)/H
1
±(F∞,v) −→ Sel±(E/F∞)∨ −→ Sel0(E/F∞)∨ −→ 0.

(21)
There exists Kato’s zeta element zF∞ ∈ H1

Fp(F∞) and Coleman homomor-
phisms

Col± :
⊕
v|p

H1(F∞,v)/H
1
±(F∞,v)

≃−→ ΛF∞ ,

which are bijective in our setting (see Kataoka [4] Theorem 4.26) such that
Col±(locp(zF∞)) = θ±F∞

by Kataoka [4] Theorem 6.9. LetM be the cokernel
of locp in (21). Then, putting Z to be the submodule generated by zF∞ , we
have an exact sequence

(H1
Fp(F∞)/Z)ψ −→ Λψ/(ψF∞(θ±F∞

)) −→Mψ −→ 0.

Since ψF∞(θ±F∞
) ̸= 0, the first map is injective. Therefore, by (21) and the

above exact sequence we have

charΛψ(Sel0(E/F∞)∨)ψ charΛψ Mψ

= charΛψ(Sel0(E/F∞)∨)ψ(charΛψ(H
1
Fp(F∞)/Z)ψ)

−1ψF∞(θ±F∞
)

⊂ charΛψ Sel
±(E/F∞)∨.

Applying Theorem 12.5 (4) in Kato [6] for the modular form fE twisted
by ψ where fE is the modular form corresponding to E, we know that
charΛψ(H

1
Fp(F∞)/Z)ψ ⊂ charΛψ(Sel0(E/F∞)∨)ψ. Therefore, using the above

inclusion, we have

ψF∞(θ±F∞
) ∈ charΛψ Sel

±(E/F∞)∨. (22)

27



It follows from (18), (19), (20), (22) that ψK∞(ξ±K∞
) ∈ FittΛψ((X

±
K∞

)ψ).

We go back to the proof of Theorem 4.3. Suppose that µ+ = 0. Then
there is a coefficient of θ+Q∞

∈ ΛQ∞ = Zp[[T ]] which is not divisible by p.

Then by the construction of θ±K∞
and (1.3) (1) in [19], there is a coefficient of

θ+K∞
∈ ΛK∞ = Zp[G][[T ]] which is not divisible by p. Thus for any character

ψ of G, the µ-invariant of ψF∞(θ+F∞
) is zero. Therefore, the µ-invariant of

(H1
Fp(F∞)/Z)ψ is zero. By Kato [6] Theorem 12.5 (4) the µ-invariant of

(Sel0(E/F∞)∨)ψ is also zero, which implies the vanishing of the µ-invariant
of (Sel+(E/F∞)∨)ψ. Therefore, applying Lemma 4.1 in [11] for example, we
obtain ξ+K∞

∈ FittΛK∞ (X+
K∞

) from Lemma 4.5.
The same proof works in the case µ− = 0. This completes the proof of

Theorem 4.3.

Remark 4.6. (1) It is conjectured that FittΛK∞ (Sel±Fn(E/K∞)∨) is gener-
ated by ξ±K∞

. The main conjecture forQ∞ /Q, namely char(Sel±(E/Q∞)∨) =

(θ±Q∞
), implies this conjecture.

(2) We cannot apply Theorem 1.5 in Kataoka [4] to show Theorem 4.3 be-
cause he assumes E(Qℓ)[p] = 0 for primes dividing the conductor n of K/Q
in Theorem 1.5 (a) in [4].

Theorem 4.3 implies the following.

Theorem 4.7. Let K be as in Theorem 4.3.
(1) If µ+ = 0 (resp. µ− = 0), then θ+K∞

(resp. θ−K∞
) annihilates Sel+(E/Ki)

∨

(resp. Sel−(E/Ki)
∨) for any i > 0.

(2) Suppose that µ+ = 0 or µ− = 0. Then θK annihilates Sel(E/K)∨.

Proof. (1) This can be proved by the same method as Theorem 8 in our
previous paper [15] which treats the ordinary case. We prove the state-
ment for +. The statement for − can be proved by the same method. If
µ+ = 0, then by Theorem 4.3, ξ+K∞

annihilates Sel+(E/K∞)∨. We can

show that θ+K∞
annihilates Sel+(E/K∞)∨ by induction on [K : Q]. In fact,

θ+F∞
is in AnnΛF∞ Sel+(E/K∞)∨ for any subfield F ⊊ K by induction on

[K : Q], which implies νK∞/F∞(θ+F∞
) ∈ AnnΛK∞ Sel+(E/K∞)∨. By the

construction of ξ+K∞
, we know that ξ+K∞

− θ+K∞
is a linear combination of

(νK∞/F∞(θ+F∞
))F⊊K where F runs over all subfields of K with F ⊊ K. It

follows from ξ+K∞
∈ AnnΛK∞ Sel+(E/K∞)∨ that

θ+K∞
∈ AnnΛK∞ Sel+(E/K∞)∨.
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Since E(K)[p] = 0, the natural map Sel±(E/Ki) → Sel±(E/K∞) is
injective. So the dual of this map is surjective. Therefore, θ+K∞

annihilates

Sel+(E/Ki)
∨.

(2) Using Lemma 4.1, we know that the image of θ±K∞
in Zp[Gal(K/Q)]

is uθK for some unit u ∈ Zp[Gal(K/Q)]×. Therefore, the injectivity of
Sel(E/K) → Sel±(E/K∞) and θ±K∞

∈ AnnΛK∞ Sel±(E/K∞)∨ imply θK ∈
Sel(E/K)∨.

4.4 Euler systems of Gauss sum type in the supersingular
case

We continue to assume ap = 0 in this subsection. We also assume µ± = 0
by which we mean µ+ = 0 or µ− = 0. In this and the next subsections
we prove several statements on the objects with ±, which mean that if we
assume µ+ = 0, then the statements on the objects with + hold, and if we
assume µ− = 0, then the statements on the objects with − hold.

In this subsection we construct Euler systems of Gauss sum type in the
case ap = 0. Concerning the ordinary case, see our previous papers [15] §3
and [14] §§6, 7.

We defined the set P(m) of prime numbers for m ∈ Z>0 in the beginning
of §2.1. For any number field F , we define

P(m)(F ) = {ℓ ∈ P(m) | ℓ splits completely in F}.

If ℓ is in P(m)(F ) and v is a prime of F above ℓ, we have

H1(Fv, E[pm])/(E(Fv)⊗Z /pm) ≃ E(Fv)[p
m](−1) = E(Fℓ)[pm](−1) ≃ Z /pm.

For any ℓ ∈ P(m), we define

H2
ℓ (F ) =

⊕
v|ℓ

H1(Fv, E[pm])/(E(Fv)⊗ Z /pm) ≃
⊕
v|ℓ

E(Fv)[p
m](−1). (23)

The notation H2
ℓ (F ) comes from the second local cohomology with support

(cf. Milne [20] II §1). For a finite abelian extension F/Q we put RF =

Z /pm[Gal(F/Q)]. For ℓ ∈ P(m)(F ) we fix a prime v of F above ℓ and a
generator tv ∈ E(Fv)[p

m](−1) ≃ Z /pm, and take an element tℓ,F ∈ H2
ℓ (F )

whose v component is tv and whose other components are zero. Then H2
ℓ (F )

is a free RF -module of rank 1 with basis tℓ. When F ′ ⊂ F and ℓ ∈ P(m)(F ),
we always take the prime vF ′ of F ′ below v and define tℓ,F ′ as the image of
tℓ,F in H2

ℓ (F
′).
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Let K/Q be a finite abelian p-extension which is unramified at p, and Ki

the i-th layer of the cyclotomic Zp-extension K∞/K. For a p-adic prime v of
Ki with i ∈ Z>0, E

±(Ki,v) is defined in the previous subsection. For i = 0,
namely for K0 = K, we define E±(K0,v) = E(K0,v). Note that for a prime
v of Ki with i ≥ 0, E(K0,v) ⊂ E±(Ki,v). As in the previous subsection, we
define Sel±(E/Ki) to be the kernel of the natural map from H1

Fp(Ki, E[p∞])
to
⊕

v|pH
1(Ki,v, E[p∞])/(E±(Ki,v) ⊗ Qp /Zp) for any i ≥ 0. When i = 0,

Sel±(E/K) = Sel(E/K) by definition.
For any m > 0 we define L±i,v,m to be the inverse image of E±(Ki,v) ⊗

Qp /Zp under E(Ki,v)/p
m → E(Ki,v)⊗Qp /Zp, and define Sel±(Ki, E[pm])

by

Sel±(Ki, E[pm]) = Ker(Sel(Ki, E[pm]) −→
⊕
v|p

H1(Ki,v, E[pm])/L±i,v,m).

Since E(Q)[p] = 0, we get E(Ki)[p] = 0, which implies that Sel±(Ki, E[pm])
coincides with the kernel of the multiplication by pm on Sel±(E/Ki).

Put Tp = Tp(E). Let H1
±(Ki,v, Tp) ⊂ H1(Ki,v, Tp) be the exact anni-

hilator of E±(Ki,v) ⊗ Qp /Zp in H1(Ki,v, E[p∞]) with respect to the Tate
pairing. We define H±i,v,m to be the image of H1

±(Ki,v, Tp) under the map

H1(Ki,v, Tp) → H1(Ki,v, E[pm]). So H±i,v,m ⊂ H1(Ki,v, E[pm]) is the exact

annihilator of L±i,v,m in H1(Ki,v, E[pm]). We define H1
F±

(Ki, E[pm]) by

H1
F±(Ki, E[pm]) = Ker(H1

Fp(Ki, E[pm]) −→
⊕
v|p

H1(Ki,v, E[pm])/H±i,v,m).

For any squarefree positive integer n which is prime to p, we also define

H1
Fn±(Ki, E[pm]) = Ker(H1

Fnp(Ki, E[pm]) −→
⊕
v|p

H1(Ki,v, E[pm])/H±i,v,m).

Note that for i = 0, we know L±0,v,m = E(Kv)⊗Z /pm, so H1
Fn±

(K,E[pm]) =

SelFn(K,E[pm]).
By global duality theorem (see [18] Theorem 2.3.4) we get

Lemma 4.8. The sequence

0 −→ H1
F±(Ki, E[pm]) −→ H1

Fn±(Ki, E[pm]) −→
⊕
ℓ|n

H2
ℓ (Ki) −→ Sel±(Ki, E[pm])∨

is exact.
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We will define an element g±ℓ ∈ SelFℓ(K,E[pm]).
As in the proof of Theorem 4.3 (see (21)) we putH1

Fp(K∞) = lim
←
H1
Fp(Ki, Tp(E)),

H1(K∞,v) = lim
←
H1(Ki,v, Tp(E)), and H1

±(K∞,v) = lim
←
H1
±(Ki,v, Tp(E)).

Then Kato’s zeta element zK∞ goes to θ±K∞
by the homomorphism

Col± ◦ locp : H1
Fp(K∞) −→

⊕
v|p

H1(K∞,v)/H
1
±(K∞,v)

≃−→ ΛK∞

as we mentioned in the proof of Theorem 4.3. Since θ±K∞
is a non-zero

divisor and H1
Fp(K∞) is Zp-torsion free, the above map H1

Fp(K∞) −→⊕
v|pH

1(K∞,v)/H
1
±(K∞,v) is injective, which implies that lim

←
H1
F±(Ki, Tp(E)) =

0. Also, since Sel±(E/K∞)∨ is a free Zp-module of finite rank by our as-
sumption µ± = 0 as we explained in the proof of Theorem 4.3, we have
lim
←
H1
F±(Ki, E[pm]) = 0. Therefore, we can take i > 0 such that the core-

striction map H1
F±

(Ki, E[pm]) → H1
F±

(K,E[pm]) is the zero map.

For a prime ℓ ∈ P(m)(Ki), we will define g
±
ℓ ∈ SelFℓ(K,E[pm]) using the

method of Lemma 6.9 in [14]. By Lemma 4.8 we have an exact sequence

0 −→ H1
F±(Ki, E[pm]) −→ H1

Fℓ±
(Ki, E[pm])

∂ℓ−→ H2
ℓ (Ki)

λℓ−→ Sel±(Ki, E[pm])∨

where we named the third map and the fourth map ∂ℓ and λℓ.

Lemma 4.9. We take Ki such that H1
F±

(Ki, E[pm]) → H1
F±

(K,E[pm]) is

the zero map. Suppose that two elements g, g′ in H1
Fℓ±

(Ki, E[pm]) satisfy

∂ℓ(g) = ∂ℓ(g
′). Then we have CorKi/K(g) = CorKi/K(g′) where CorKi/K :

H1
Fℓ±

(Ki, E[pm]) → H1
Fℓ±

(K,E[pm]) = SelFℓ(K,E[pm]) is the corestriction
map.

Proof. In fact, g−g′ is in the kernel of ∂ℓ, so in H1
F±

(Ki, E[pm]). Therefore,
CorKi/K(g − g′) = 0, which implies CorKi/K(g) = CorKi/K(g′).

We define u± ∈ Zp[Gal(K/Q)] by u+ = σp+σ
−1
p and u− = (p−1). They

are units in Zp[Gal(K/Q)] and we regard them as units in Zp[Gal(Ki/Q)] =

Zp[Gal(K/Q)][Gal(Ki/K)]. Since

λℓ((u±)
−1θ±K∞

tℓ,Ki) = (u±)
−1θ±K∞

λℓ(tℓ,Ki) = 0

in Sel±(Ki, E[pm])∨ by Theorem 4.7 (1), there is g̃±ℓ ∈ H1
Fℓ±

(Ki, E[pm]) such

that ∂ℓ(g̃
±
ℓ ) = (u±)

−1θ±K∞
tℓ,Ki by the above exact sequence. We define

g±ℓ,K = CorKi/K(g̃±ℓ ) ∈ H1
Fℓ±

(K,E[pm]) = SelFℓ(K,E[pm]). (24)
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Then g±ℓ,K does not depend on the choice of g̃±ℓ ∈ H1
Fℓ±

(Ki, E[pm]) by Lemma

4.9. When no confusion arises, we write g±ℓ for g±ℓ,K .
For any finite abelian p-extension K/Q which is unramified at p, we take

minimal i such that H1
F±

(Ki, E[pm]) → H1
F±

(K,E[pm]) is the zero map, and

define the subset P(m)(K)′ of P(m)(K) by P(m)(K)′ = P(m)(Ki).

Proposition 4.10. Suppose that K/Q is a finite abelian p-extension which
is unramified at p, and that ℓ ∈ P(m)(K)′.
(1) For g±ℓ,K ∈ SelFℓ(K,E[pm]) we have

∂ℓ(g
±
ℓ,K) = θKtℓ,K ∈ H2

ℓ (K) = RF tℓ,K

where ∂ℓ is the natural map SelFℓ(K,E[pm]) → H2
ℓ (K).

(2) For any subfield F ⊂ K we can define g±ℓ,F ∈ SelFℓ(F,E[pm]) using Fi
similarly. Then denoting the conductor of Kand F by nK and nF , we have

CorK/F (g
±
ℓ,K) = (

∏
r|(nK/nF )

(ar − σr − σ−1r ))g±ℓ,F

where r runs over primes which are ramified in K and unramified in F , and
σr is the Frobenius automorphism.

Proof. (1) By definition we have

∂ℓ(g
±
ℓ,K) = (u±)

−1θ±K∞
tℓ,K = (u±)

−1πK∞/K(θK∞)tℓ,K .

Therefore, Proposition 4.10 (1) follows from Lemma 4.1.
(2) Suppose that H1

F±
(Ki, E[pm]) → H1

F±
(K,E[pm]) is the zero map. First

of all, since E(Fi)[p] = 0, the restriction mapsH1
F±(Fj , E[pm]) → H1

F±
(Kj , E[pm])

with j = i, 0 are both injective. So the corestriction map H1
F±

(Fi, E[pm]) →
H1
F±

(F,E[pm]) is also the zero map, and we can define g±ℓ,F as CorFi/F (g̃
±
ℓ,Fi

),

using g̃±ℓ,Fi such that ∂ℓ(g̃
±
ℓ,Fi

) = (u±)
−1θ±F∞

tℓ,Fi .

We write g̃±ℓ,Ki for g̃
±
ℓ which was used as CorKi/K(g̃±ℓ ) = gℓ,K when we

defined gℓ,K . Since

πK∞/F∞(θ±K∞
) = (

∏
r|(nK/nF )

(ar − σr − σ−1r ))θ±F∞

by (1.3) (1) in [19], we have

∂ℓ(CorKi/Fi(g̃
±
ℓ,Ki

)) = ∂ℓ((
∏

r|(nK/nF )

(ar − σr − σ−1r ))g̃±ℓ,Fi).
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It follows from Lemma 4.9 applying to Fi/F with two elements CorKi/Fi(g̃
±
ℓ,Ki

)

and (
∏
r|(nK/nF )(ar−σr−σ

−1
r ))g̃±ℓ,Fi that we get the conclusion of Proposition

4.10 (2).

Proposition 4.10 (2) means that (gℓ,F )F⊂K forms an Euler system. We
have to note that this is a finite family unlike usual Euler systems, and
several arguments in [26] cannot be applied.

Remark 4.11. The method to construct Euler systems of Gauss sum type
explained here is the same as in [14]. We recently have a new method to
construct Euler and Kolyvagin systems of Gauss sum type, and can define
gℓ,F for any ℓ ∈ P(m)(F ) (see [17]).

4.5 Kolyvagin derivatives and systems of Gauss sum type in
the supersingular case

In this subsection we construct Kolyvagin derivatives by a standard method.
Let n be an integer inN (m) and consider the abelian p-extension Q(n)/Q

which was defined in the end of §4.2. For Q(n) and ℓ ∈ P(m)(Q(n))′, we
constructed g±ℓ,Q(n) ∈ SelFℓ(K,E[pm]) in Proposition 4.10.

For a prime r ∈ P(m), we put Gr = Gal(Q(r)/Q). We defined nr ∈ Z>0

in the end of §4.2, which can be regarded as pnr = [Q(r) : Q]. For n ∈ N (m),
we define Gn by Gn = Gal(Q(n)/Q). Recall that we fixed a generator gr of

F×r for each prime r ∈ P when we defined logFr in (2). We take a generator
τr of Gr ≃ F×ℓ corresponding to the generator gr of F×r , and define

Nr =
∑pnr−1

i=0 τ ir ∈ Z[Gr], Dr =
∑pnr−1

i=0 iτ ir ∈ Z[Gr],

Nn =
∏
r|nNr ∈ Z[Gn], Dn =

∏
r|nDr ∈ Z[Gn]

as usual.

Lemma 4.12. For n ∈ N (m), we have

Dng
±
ℓ,Q(n) ∈ SelFℓ(Q(n), E[pm])Gn .

Proof. For any r dividing n, since r is a good reduction prime, r is unramified
in Q(E[pm]). The action of the Frobenius automorphism σr on E[pm] is

conjugate to

(
1 ∗
0 1

)
since E(Fr)[pm] ≃ Z /pm and the determinant is r ≡

1 (mod pm). Thus ar ≡ 2 (mod pm). Therefore, σr−1 divides ar−σr−σ−1r
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in Z /pm[Gal(Q(n/r)/Q)]. Using this divisibility and a well-known formula
Dr(τr − 1) = pnr −Nr, we have

Dng
±
ℓ,Q(n) ∈ SelFℓ(Q(n), E[pm])Gn

by the argument of Lemma 2.1 in Rubin [24].

Lemma 4.13. Suppose that p does not divide Tam(E), and nℓ ∈ N (m).
Then the natural homomorphism

SelFnℓ(Q, E[pm])
≃−→ SelFnℓ(Q(n), E[pm])Gn

is bijective.

Proof. This can be proved by the same method as Lemma 2 on page 338 in
our previous paper [15]. This lemma follows from the commutative diagram

0 −→ SelFnℓ(Q, E[pm]) −→ H1
FnℓpN (Q, E[pm]) −→

⊕
ℓ|pN H2

ℓ (Q)y y y
0 −→ SelFnℓ(Q(n), E[pm])Gn −→ H1

FnℓpN (Q(n), E[pm])Gn −→
⊕

ℓ|pN H2
ℓ (Q(n))Gn .

In fact, H0(Q, E[pm]) = 0 implies the bijectivity of the middle vertical ar-
row. For ℓ | N , our assumption p ∤ Tam(E) implies that H2

ℓ (Q) → H2
ℓ (Q(n))

is injective (see Greenberg [3] §3). For ℓ = p, the Pontrjagin dual of
H2
p(Q) → H2

p(Q(n)) is
⊕

v|pE(Q(n)v)/p
m → E(Qp)/p

m. Since ap = 0,

E(Q(n)v)/p
m is Ê(mQ(n)v)/p

m where Ê is the formal group associated to
E and mQ(n)v is the maximal ideal of the ring of integers of Q(n)v. Since

Q(n)v/Qp is unramified, the norm map Ê(mQ(n)v) → Ê(pZp) is surjective.
Thus the right vertical arrow is injective, which implies that the left vertical
arrow is bijective.

Recall that we defined δ
(m)
n ∈ Z /pm in (7). By definition, δ

(m)
n mod p is

δn.

Proposition 4.14. There exists a unique element κ±n,ℓ ∈ SelFnℓ(Q, E[pm])

whose image in SelFnℓ(Q(n), E[pm]) is Dng
±
ℓ,Q(n). We have

∂ℓ(κ
±
n,ℓ) = (−1)ν(n)δ(m)

n tℓ,Q

where ∂ℓ : SelFnℓ(Q, E[pm]) → H2
ℓ (Q) = (Z /pm)tℓ,Q is the natural map.
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Proof. The existence of κ±n,ℓ follows from Lemmas 4.12 and 4.13.
Suppose that n = r1 · ... · rt. Using Dr(τr − 1) = pnr − Nr, (1.3) (1) in

[19], and the fact that σr−1 divides ar−σr−σ−1r , we can show by induction
on ν(n) that θQ(n) can be written as

θQ(n) ≡ c
t∏
i=1

(τri − 1) mod (pm, (τr1 − 1)2, ..., (τrt − 1)2) (25)

for some c ∈ Z /pm (see [12] Lemma 4.4). We regard θQ(n) as a polynomial

in τr1 ,...,τrt , and take
∂

∂τr1
...

∂

∂τrt
of both sides of the above formula. Then

we get

c =

n∑
a=1

(a,n)=1

[
a

n
](
∏
ℓ|n

logFℓ(a)) = δ(m)
n ∈ Z /pm

since θQ(n) is the image of θQ(µn) in (12) under the natural restriction map.
We take Dn of (25) to get

DnθQ(n) = (−1)ν(n)Nnδ
(m)
n ∈ Z /pm[Gn]

using Dr(τr − 1) = pnr −Nr. Therefore, the above equation together with
the commutative diagram

SelFnℓ(Q, E[pm])
∂ℓ−→ H2

ℓ (Q) ≃ Z /pmy yNn
SelFnℓ(Q(n), E[pm])

∂ℓ−→ H2
ℓ (Q(n)) ≃ Z /pm[Gn]

shows that the image of κ±n,ℓ in H2
ℓ (Q(n)) is (−1)ν(n)Nnδ

(m)
n tℓ,Q(n). Since

the right vertical arrow which is the multiplication by Nn is injective, this
implies the conclusion.

Remark 4.15. These κn,ℓ satisfy interesting 4 properties (see Proposition
2 on page 341 in [15] and Proposition 7.16 in [14]), but we do not expalin
them in this paper because we do not use them here.

We also note here that we have a different construction of Kolyvagin
systems in [28] and [17].
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4.6 Proof of the injectivity theorem

We first prove Theorem 2.1. If E has ordinary reduction at p, this was
proved in Corollary 2 on page 342 in [15]. So we consider the case ap = 0.

We use Proposition 5.16 in our previous paper [14], which holds in our
setting without changing the proof in [14]. Let P(m)(Q(n))′ = P(m)(Q(n)i)
be the set of primes defined before Proposition 4.10 for K = Q(n). Let x be
any element in Sel(Q, E[pm])∨. We take y ∈ H1

FnpN (Q, E[pm])∨ whose image
under the natural map is x. Then by Proposition 5.16 in [14] we can take ℓ ∈
P(m)(Q(n))′ such that λ′ℓ(tℓ,Q) = y where λ′ℓ : H2

ℓ (Q) → H1
FnpN (Q, E[pm])∨

is the dual of the natural mapH1
FnpN (Q, E[pm]) → H1(Fℓ, E[pm]) = E(Fℓ)/pm

of étale cohomology groups. Let

λℓ : H2
ℓ (Q) −→ SelFn(Q, E[pm])∨

denote the dual of the natural map rSelℓ : Sel(Q, E[pm]) → E(Fℓ)/pm. Then
λℓ(tℓ,Q) = x. By Lemma 4.8 we have an exact sequence

SelFnℓ(Q, E[pm])
∂nℓ=(∂r)−→

⊕
r|nℓ

H2
r(Q)

λnℓ=(λr)−→ Sel(Q, E[pm])∨ (26)

where we named the maps ∂nℓ and λnℓ which consist of the natural maps
∂r : SelFnℓ(Q, E[pm]) → H2

r(Q) and λr : H2
r(Q) → Sel(Q, E[pm])∨ for r | n,

respectively. Since κ±n,ℓ satisfies ∂ℓ(κ
±
n,ℓ) = (−1)ν(n)δ

(m)
n tℓ,Q by Proposition

4.14, the above exact sequence gives

(−1)ν(n)δ(m)
n λℓ(tℓ,Q) +

∑
r|n

λr(∂ℓ(κ
±
n,ℓ)) = 0.

Suppose that δ
(m)
n ≡ δn ̸≡ 0 (mod p). Then δ

(m)
n is a unit. The above

equation and λℓ(tℓ,Q) = x imply

x = (−1)ν(n)+1(δ(m)
n )−1

∑
r|n

λr(∂ℓ(κ
±
n,ℓ)).

This shows that

λn = (λr) :
⊕
r|n

H2
r(Q) −→ Sel(Q, E[pm])∨

is surjective. Taking the dual, we obtain that rSeln : Sel(Q, E[pm]) →⊕
r|nE(Fr)/pm is injective.
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Remark 4.16. We can show that κn,ℓ is in SelF(n)ℓ(Q, E[pm]). Using this
fact, we can prove the injectivity of the map

SelFn(Q, E[pm]) −→
⊕
r|n

E(Fr)/pm =
⊕
r|n

H1(Qℓ, E[pm])/H1
tr(Qℓ, E[pm]),

which is slightly more general than Theorem 2.1.
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