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Abstract

Our aim in this paper is to give a clear view of what can be proved
on the Fitting ideal of the Pontryagin dual of the minus class group
of a CM-field as a Galois module. The class group we study is the
classical full class group, and not the ray class group mod T (we are
particularly interested in the Teichmiiller character component of the
class group). We show that several theorems in the existing literature
hold unconditionally, using recent groundbreaking results by Dasgupta,
Kakde, Silliman, and Wang. In particular, we give a simple proof of
the Equivariant Iwasawa main conjecture including the case p = 2,
using their keystone theorems due to Dasgupta and Kakde in [Annals
of Math.197(2023),289-388] and due to Dasgupta, Kakde, Silliman and
Wang in [arXiv:2310.16399]. We unconditionally compute the Fitting
ideal of the Pontryagin dual of the minus class group of the cyclotomic
Zp-extension of a CM-field, and also the Fitting ideal of S-ramified
Iwasawa modules for totally real number fields. The numbers of mini-
mal generators of these Iwasawa modules are also studied.

1 Introduction

Suppose that K/k is a finite abelian extension of number fields with Galois
group G. We study in this paper the full ideal class group Clg (the quo-
tient of the group of non-zero fractional ideals by the subgroup of non-zero
principal fractional ideals), which we regard as a G-module. Since we can
decompose Clig = @p Clg ® Zp into the p-components for each prime p,
in order to understand Clg as a G-module, we may study each G-module
Clg ®Zp. In the following, we fix a prime number p and denote Clg ® Z),
by Ag.

We are interested in the relationship between the class group and zeta
values. Such a relationship can be seen most explicitly when K/k is a CM-
extension, namely K is a CM-field and k is a totally real field, so we assume
it.



We assume p > 2 in this Introduction, and denote by A} the part
on which the complex conjugation acts as —1. We study A, as a Z,[G]-
module. It has been gradually recognized that the Pontryagin dual (A} )Y
of A is easier to handle than the module A itself (for example, see Gre-
ither [13], the appendix of the author [23], and [14]). Our objective in this
paper is to give a clear view of what can be proved about the Fitting ideal
Fitty 1((Ax)") of the Pontryagin dual of the class groups by combining re-
cent results in various papers (for the Fitting ideal Fitt (M) of an R-module
M, see [29]).

A recent groundbreaking result by Dasgupta and Kakde [8] completely
determines the Fitting ideal of the dual of the ray class group mod T" (which
is also called T-smoothed class group recently). However, our interest in
this paper is in the non T-smoothed class groups, namely the classical full
class groups. We decompose G' = A x G}, where A is of order prime to p and
Gp is a p-group. We have direct decomposition of Ay into x-components
for characters y of A (see §2.3 (3)). Let w be the Teichmiiller character
giving the action on the p-th roots of unity. If x is an odd character such
that x # w, then we know the Fitting ideal of (A})" as a Gp-module by
the above theorem of Dasgupta and Kakde (see Theorem 2.4). So our main
interest is in the w-component for which the aspect is very different from
the non-w component. To get a good understanding of the w-component,
see the numerical example in §2.4. We determine the Fitting ideal of (A%)Y,
assuming certain conditions (see Corollary 3.6), but cannot determine it, in
general. We consider the cyclotomic Z,)-extension K /K, and study the
Fitting ideal of (A )Y as a Z,[[Gal(Kw/k)]]-module. We determine it
completely, including the w-component (see Theorems 3.1, 3.4, 3.7).

In §5 we reduce the above problem on the w-component to the problem
on the Iwasawa modules over totally real number fields. For an abelian p-
extension F'/k of totally real number fields and the cyclotomic Z,-extension
F, we study in §5 the maximal abelian pro-p extension M Foo,SpuSoo/ Fy
that is unramified outside p and oo, and its Galois group Xg_ ,. We de-
termine its Fitting ideal as a Gal(Fu/k)-module unconditionally. To do
this, we use the equivariant Iwasawa main conjecture (EIMC for short) for
abelian extensions of totally real number fields. Johnston and Nickel prove
EIMC in their paper [19], using the results of Dasgupta and Kakde in [8].
However, they assume p > 2, so we give in §4 a different and simple proof
of EIMC including the case p = 2, using the keystone theorem of Dasgupta
and Kakde [8] and of Dasgupta, Kakde, Silliman and Wang [10], which was
a part of conjecture by Burns, Sano and the author in [5]. This implication
is natural because the conjecture of Burns, Sano and the author in [5] can



be regarded as a finite extension version of the Iwasawa main conjecture.

In this paper, we adopt a slightly different definition of the Stickelberger
ideal, which is equivalent to the usual definition but more intuitive and easier
to use.

The author would like to thank heartily M. Atsuta, D. Burns, C. Gre-
ither, T. Kataoka, and T. Sano for helpful discussions with them on the
subject of this paper. He also thanks D. Bullach and D. M. Castillo for
their efforts in editing this volume. Finally, he heartily thanks the referee
for his/her very careful reading.

2 Full ideal class group

2.1 cyclotomic fields

As an introduction to the theory of the Galois action on ideal class groups,
we consider the most classical and famous example, that is £ = Q and
K = Q(pp), the cyclotomic field of p-th roots of unity for some odd prime p.
Put G = Gal(Q(u,)/ Q). Let G be the group consisting of p-adic characters
X : G — Qy for G = Gal(Q(uyp)/ Q). For any Z,|G]-module M and any

x € G, we define M(x) = {z € M | o(x) = x(0)x for all ¢ € G}, then M is
decomposed into M = @xeé M (x) where x runs over all characters of G.
Thus we have Ag = @Xeé Ak (x). In this article, we concentrate on the
minus class group, so suppose x is an odd character, namely x(p) = —1 where
p is the complex conjugation in G. Let w € G be the Teichmiiller character
giving the action on the group of p-th roots of unity. Then x(p) = —1 implies
that we can write y = w’ for odd i. We take ¢ in the range 1 < i < p — 2.
It is not difficult to check that A% = 0 ([35] Proposition 6.16). For the
rest of the ¢, the following famous theorem is proved by Mazur and Wiles
([28] Chap.I Theorem 2) as a corollary of the Iwasawa main conjecture by
building on the efforts of many people including Herbrand and Ribet.

Theorem 2.1. (Mazur and Wiles) Suppose that i is odd such that 1 < i <
p—2. Then for K = Q(u,p), we have

#HAG = #7p |LO0,w™") = #7Zp /By .
Note that the generalized Bernoulli number By i = 1 Zg;} w(a)a
is in Z, in this range of i. Also, we know By ,-i = Bp_i/fp — ) (mod p)
where B,,_; is the (p — i)-th Bernoulli number. Thus the above theorem is



a refinement of the famous theorem by Herbrand and Ribet
p| Bp—i <= Aw o) 70

Since the Kubota-Leopoldt p-adic L-function for w!'~% has no trivial zero,
the above theorem is an immediate consequence of the Iwasawa main conjec-
ture. In order to treat more general character y, we encounter the difficulty
coming from “trivial zeros”.

2.2 semi-simple case

We consider a general abelian CM-extension K /k. Namely, we suppose that
k is a totally real field, K is a CM-field, and K /k is a finite abelian extension
with Galois _group G. We first assume that G is of order prime to p. We
denote by G the group of p-adic characters x : G — Qp where Qp is an
algebraic closure of Q,. For x1, x2 € G, we define an equivalence relation
~ by x1 ~ x2 <= x1 = ox2 for some o € Gal(@p/ Q,)- Then since #G is
prime to p, Z,[G] is decomposed into a product of discrete valuation rings;

D o
XEG/~
where O, = Zp[Image x] on which G acts via x. Therefore, any 7,[G]-
module M is also decomposed as

where MX = M ®y, q) Ox. Thus, in order to know the size of a G-module
M, it suffices to know the orders of all the MX. We note that if #G divides
p— 1, the image of x is in Z,, and MX is isomorphic to M () defined in the
previous subsection.

Since we assumed p is prime to #G, p has to be odd. Then Ax =
A}g ® Ay, where Af( is the +-eigenspace of the complex conjugation p € G.
We can decompose

@
K

XEA/~
x(p)=-1
where y runs over all equivalence classes of odd characters.

For an odd character x of G such that y # w, we know by Deligne and Ri-
bet [11] and Pierrette Cassou-Nogues [7] that L(0,x 1) is in O, (and is non-
zero) where L(s, ) is the L-function of x. For x = w, #ppe (K)L(0,w™!)
is in O,, = Z, where pp~(K) is the group of p-power roots of unity in K.



Theorem 2.2. (Dasgupta and Kakde) Suppose that x is an odd character
such that x # w. Then we have

# A% = #(0y/(L(0,x71))) (1)
For x = w, we get
# A% = #(Ou/(F e (K)L(0,071))). (2)
We will give a proof of this theorem in §2.5.

Remark 2.3. (1) If x(p) = 1 for some p-adic prime p of k, the p-adic L-
function Ly, (s, x 'w) (of Deligne and Ribet) has a trivial zero at s = 0. In
this case, the descent argument does not work well, and one cannot directly
deduce Theorem 2.2 from the Iwasawa main conjecture. When k£ = Q,
Mazur and Wiles proved Theorem 2.2 by a detailed study of the descent
argument ([28]). Some partial results were known before Dasgupta and
Kakde (for example, if there is at most one p-adic prime such that x(p) = 1,
then it was proved in [5] Cor. 1.9 that the conclusion of Theorem 2.2 holds),
but a complete proof of Theorem 2.2 was first obtained through the work
of Dasgupta and Kakde (see §2.5). They did not use the Iwasawa main
conjecture in their proof, and studied directly the class group (unramified
extensions) of a number field.

(2) The right hand sides of (1) and (2) are determined by x and independent
of K. Hence, the left hand sides of (1) and (2) should not depend on K
either. This can be easily checked as follows. Let K, be the CM-field
corresponding to Ker y. Then the norm argument shows that the natural
map (Ax, )X — (Ag)X is bijective since [K : k] is prime to p.

2.3 general case

Suppose now that K/k is a CM-extension, and G = Gal(K/k) is a general
abelian group. From this subsection through §2.5, we assume p > 2. We
write G as G = A x G, where A is of order prime to p and G, is a p-group.
Since Zp[A] is decomposed into Zp[A] =P, A /. Ox, we have

ZP[G}: EB OX[GP]‘
XEA/~

Therefore, any 7,[G]-module M is also decomposed as

M:@MX

XEA/~

b}



where MX = M ®g (a] O, which is an Oy[Gp|-module.
Recall that we are assuming p > 2. We study

Ap= P A% (3)
XEA/~
x(p)=—1
Note that this is decomposition with respect to the action of A, not of G.
So no information is lost in the above decomposition.

To understand a Z,[G]-module, we study its Fitting ideal (see [29] for
the Fitting ideal Fittz(M) of an R-module M) instead of its order. Note
that if R is a discrete valuation ring with finite residue field and M is a
finitely generated torsion R-module, then we have #(R/Fittr(M)) = #M.

As we mentioned in §1, the Pontryagin dual (Ay)Y of A} has better
properties than the module A} itself when we compute the Fitting ideals
(see [13], [23], [14]). However, we note here that Atsuta and Kataoka in
their recent paper [1] determine the Fitting ideal of the (T-smoothed) class
group (AL)~ (not the dual), assuming the equivariant Tamagawa number
conjecture for the minus part of K/k and G,,. Since the equivariant Tama-
gawa number conjecture in this case was recently proved by Bullack, Burns,
Daoud, and Seo [2] and also by Dasgupta, Kakde, and Silliman [9], the result
by Atsuta and Kataoka is now unconditional. The shape of the Fitting ideal
of (AL)~ is more complicated than that of ((A%)7)Y.

We go back to our problem. Our objective is to know Fittz ((Ax)").

To do this, it is enough to determine FittOX[Gp]((A}(()V) for all odd x € A
by the above decomposition.

We first define the Stickelberger ideals. For a finite abelian extension
M /k and a finite set S of primes of k, we define the Stickelberger element
Oni/k,s as follows. We define

Ori/n,s(s) = H Ls(s,9™ ey
YeGal(M/k)
where Lg(s,~!) is the S-truncated L-function for ¢~!, and
1 ~1
€p = s Z Y(o)o .
# Gal(M/k) | otam

We define 0p//r.5 = Onr/k,5(0), which is known to be in Q[Gal(M/k)] by
Klingen and Siegel. We denote by Syam(M/k) the set of all places of k



ramifying in M/k. If S contains Syam(M/k), we also know by Deligne and
Ribet [11] and Pierrette Cassou-Nogues [7] that

Anngqa vk (WM )0 /1,s C Z[Gal(M/k)] (4)

where Anngqaar/k) (#(M)) is the annihilator ideal of the group pu(M) of
roots of unity in M.

When S = Syam(M/k), we simply write 0y for On/x 5, (2/k)-

Going back to our CM-extension K /k, we denote by S the set of infinite
places of k. For v € Spam(K/k)\Seo, let I, be the inertia group of v in G, and
Ni, = Yser,0 the norm element of I,,. For any subset J of Syam(K/k) \ Seo,
let Kj be the fixed subfield of the subgroup of G generated by I, for all
v € J (so Kj/k is the maximal subextension of K/k that is unramified
at all primes in J), and put Ny = [[,c; N7, € Z[G]. If J is empty, we
define K; = K and Nj = 1. Then the multiplication by N; defines a
homomorphism

Ny : QGal(K/k)] — QIG],

which we also denote by the same letter N;. This is not a norm homo-
morphism for K/K; but the multiplication by some constant of the norm
homomorphism. We define O(K/k) to be the Z[G]-module in Q[G] gener-
ated by

NI Ok, /i Seam (K /0NT) | T C Sram (K/E) \ Seo}-

An alternative definition of this module ©(K/k) is as follows. Put U, =

(Np,,1— gﬁ Frob, ') Z[G] C Q[G] where Frob, is the Frobenius of v in G,

andw =3, ~L(0, ¥~ Yey € Q[G]. The difference between w and Oy, 5 is
that the L-functions appearing in the definition of 6k ;, ¢ are S-imprimitive.
Then

o/ =( 1 Uy)w C Q[G].
VESram (K/k)\Soo
The above equality is proved in Proposition 3.1 in [25]. We adopt the first

definition of ©(K/k) in this article because it is more intuitive, and also
useful below. We define

O(K/k)p = (O(K/k) ® Zp)~ C Q,[G].

Consider the decomposition Q,[G] = €, A~ Ox[1/pl[Gp]. For an el-
ement v € Q,[G], we write x = (2X), where X is the y-component in
Oy [1/p][Gyp). For a Z,[G]-module M, we also denote by MX the x-component
of M.



We assume that x # w, and consider ©(K/k)y C Oy[1/p]|G,]. Then,
by the above-mentioned property (4) that Deligne and Ribet and Cassou-
Nogues proved, we have

Ny(Ok, 1k, Seam (K J)\I) € Ox[Gpl.

It follows from the definition of ©(K/k) that O(K/k)xy C Oy[Gy].

For any group ring R[G] we denote by x — 27 the involution R[G] —
R[G] induced by o +— o~! for all 0 € G. Greither in [13] proved the
following theorem, assuming the equivariant Tamagawa number conjecture.
We will explain in §2.5 that the main theorem of Dasgupta and Kakde in
[8] unconditionally implies the following theorem.

Theorem 2.4. (Dasgupta and Kakde) Suppose that x is an odd character
of A with x # w. Then we have

Fitto, a,] (A%)") = (O(K/k)})7.
In the simplest setting that G, = 1, the above equality becomes

Fitto, (A)) = Fitto, (A%)") = 05 5 sOx = L(0,x™1)Oy

where S = Spam(K/k). Thus Theorem 2.4 implies Theorem 2.2 (1) in the
previous subsection.
Theorem 2.2 can be generalized to a more general order character.

Corollary 2.5. Suppose that 1 is an odd character of G with |a # w. Let
Ky, be the subfield of K such that Gal(Ky/k) is isomorphic to the image of
Y by . We put (A, )y = (AKw)@’Zp[Gal(Kw/k)] Oy where Oy, = Zp[Image )]
on which the Galois group acts via . Then we have

#(Ak, )y = #0y/(L(0,471)).

In the case that p divides the order of ¢, (Ak ), is different from (Ag,, )y,
in general, and we have to consider K, to get the above formula.
When k = Q, the above corollary was proved by D. Solomon in [33].

Proof. Put M = K. We apply Theorem 2.4 to the extension M/k. We
write Gal(M/k) = Ay x (Gum)p.- Put x = 9¥ja,,- Then x # w by our
assumption. By the definition of ©(M/k)y, the image of O(M/k)y in
Oy [(Gar)p] under the homomorphism ¢ : Oy [(Ga)p] — Oy induced by
1, is generated by 1(0ps/k,5) where S = Spam(M/k). This shows that

Fitto, ((Aam)y) = Fitto, (Am)s)") = »(Fitto,(q,) ((A3)"))
= Y(Owm/,5)0p = L(0,47)O0y.



2.4 w-component

Let w be the Teichmiiller character. By what we explained in the previous
subsection, it suffices to determine Fitto, (c,)((A%)") to know Fitty 5((Ax)").
In this subsection, to give a good understanding of the w-component, we

provide a numerical example. Take

k=Q(v1901), K =k(v/-3,a,8) andp=3

where v and 3 satisfy o® — 84a — 191 = 0 and 8% — 578 — 68 = 0. Then
G = Gal(K/k) = A x G, = Z/2Z x(Z/3Z)®*. A machine computation
shows that

Ap =A% =7/21207/920(Z /37)%,

and we can compute the action of G on it (see [27] §2 for the Galois action).
Put Sram = Sram(K/k). Since 3 is inert in k/Q and totally ramified in
k(B)/k, 3 is in Sram. Also, k(a)/k is unramified everywhere, and k(3)/k is
unramified outside 3. Therefore, Syam consists of 3 and two infinite places
(#Sram = 3)'
For p = 3, we compute the Fitting ideal of the dual of the class group to
get

=m0y, (5)

where m is the maximal ideal of the local ring O,,[G))] (see [15] §4 Page 962).

For this numerical example, it is easy to compute ©(K/k)y = 0% /1Ou (Gp] C
QplGy]. Also, it is easy to check Anng_(q,)(1(K)) = Anng, (g, (1(K)) = m.
These computations show that

Fitto, o) (A%)Y) = m? 07, # (Anng, g, ((K))O(K/k),)*# = mf .

Flttow [Gp] ((A‘A[J()v) = m2 Gﬁ/k,sram

This example shows that (Anng,_q,) (1(K))O(K/k),)* is not in Fittg, 1, ((A%)Y),
and that a simple guess Fitto, (g,]((A%)") = (Anng, ) ((K))O(K /k),)«
does not hold, in general.

We will later give a general theorem (see Corollary 3.6), which implies (5)
theoretically. This Corollary 3.6 describes Fitto, (q,((A%)") under certain
assumptions. However, the author does not know a description in a general
setting.

Problem 2.6. For a general abelian CM-extension K /k such that p, C K*,
describe Fitto,q,1((A%)") using Stickelberger elements.



Remark 2.7. For k = Q and K = Q(u,,), the cyclotomic field of n-th roots
of unity for some n (or more generally, when K satisfies the condition (A,)
in [22] §3.1), we can show that

FittZP[G]* (AI_{) = @(K/k)p N Zp[Gr
(see [26]). However, even for k = Q and K = Q(u,,) with certain n, we have
Fittz, (- (Ag)") # O(K/k)} NZ,[G]".

We can see this fact by studying the w-complonent (A%.)" though we do not
give here the details.

2.5 T-smoothing

In this subsection we introduce the main theorem of Dasgupta and Kakde
in [8], and deduce theorems in the subsections §2.2 and 2.3 from it.
Let S, T be finite sets of places of k such that S D Sy and SNT = (.
For any finite abelian CM-extension K/k, the S-truncated equivariant
zeta function Oy g(s) was defined in §2.3. We define

Oumss) = I (IO —v@) " N@)'))Ls(s, 0™ ey

peGal(M/k) vET

and the (S, T)-Stickelberger element by H%F{/k’s = Hims(O). Therefore, if T
consists of primes which are unramified in K, we have

ei/k,s = 9%/19,5(0) = (H(l — Frob, ' N (v)))0x 1.5(0). (6)
veT

Thus, if S O Sram(K/k) and T is non-empty, by the property (4) we have
GIT(/,C,S € 7[Gal(K/k)]. We simply write GIT(/]C for GIT(/k,Sram(M/k)'

Now we define the T-smoothed Stickelberger ideal ©(K/k)T to be the
ideal of 7Z[Gal(K/k)] generated by

N3Ok, i pin ) | I € Sram(K/R)\ S}

where Ny, K are as in §2.3. This ideal is called the Sinnott-Kurihara ideal
(8] page 295). We put O(K/k)I' = (O(K/k)" @ 7,)".

We denote by Ok g the ring of S-integers (integral elements outside S)
of K. Let Tx be the set of primes of K above T'. We define the (5,7)-
unit group by ((’)%S)X ={z ¢ OIX{,S | x =1 (mod w) for all w € Tk}, and

10



define Cl}; g to be the ray class group of O s modulo Il e, w. We assume
that (O% ¢)* is Z-torsion free. This condition is mild, and is satisfied, for
example, if T contains at least two primes of different residue characteristics.

When S = Se, we write (0%)* for (O}QSOO)X, and Cl% for CIZI;SOO.
We fix a prime p and define AL = Cl1k ® Zp. As in §2.3, we consider the
Pontryagin dual ((A%)7)Y. Recall that G = Gal(K/k).

The next theorem was conjectured by the author ([25] Conjecture 3.2)
and proved by Dasgupta and Kakde ([8] Theorem 3.5) as the main theorem
of [8].

Theorem 2.8. (Dasgupta and Kakde [8] Theorem 3.5) Suppose that (O%)*
18 Z,-torsion free, and that p is odd. Then we have

Fittz, (- (A%)7)Y) = (O(K/k), )7
We first state the immediate consequences of this groundbreaking theo-
rem.

Corollary 2.9. (1) (Strong Brumer-Stark conjecture, [8] Theorem 1.3)
We have (92/19)# € Fitth[G]((A%)v).

(2) If Gp is cyclic, we have

Anny, o (0(K))0k ik C Fitty (q)(Ak)
and
(Anng, ) ((K))0x /)" C Fitty, c)((Ak)Y).
Proof. Since 6% s is In O(K/k)" by definition, Theorem 2.8 implies (1) by
noting that (Gﬁ/kﬁ =0.

Suppose that G, is cyclic. Then for any finite Z,[G]-module M, we
have Fitth[G](M)# = Fitty (M) (cf. [28] Appendix Proposition 1).
Therefore, we have 6% s € Fittg, ) (AL). Since the natural homomorphism
AL — Ak is surjective, this implies 9}2 i € Fitty (6)(Ak). This holds for
any T, which implies the first inclusion of (2) by Tate [34] Chap. IV Lemme
1.1. We get the second inclusion of (2), using the first inclusion and the
formula FittZP[G](M)# = Fitty (¢)(M") again. O

Remark 2.10. The above strong Brumer-Stark conjecture is stronger than
the Brumer-Stark conjecture, which predicts that 9%@ /e € Anng (g (A};)
because we now have

0% i € Fitty, ¢ ((A%)V)¥ C Anny 1oy ((A%)Y)" = Anny g (A%)

and the Fitting ideal is smaller than the annihilator, in general.

11



We will show that Theorem 2.8 implies Theorem 2.4. Suppose that
X € A satisfies Y # w. Then we can take T such that N(v) % x(Frob,)
(mod p) for all v € T where N (v) is the norm of v. For w € Tk, let x(w) be
the residue field of w. Since (B, cr, #(w)* ® Zp)X = 0 by our choice of 7,
we have (A%)X = A%.. Also, since (HgJ/k,Sram(K/k)\J/eFJ/k’ysram(K/k)\J)X is a
unit of Oy, we have (O(K/k)I)X = ©(K/k)y. Thus we get Theorem 2.4.

As we explained after Theorem 2.4, Theorem 2.4 implies Theorem 2.2
(1). Next, we consider Theorem 2.2 (2). We may assume K = K,, = k(up).
For simplicity, using the Chebotarev density theorem, we take non-empty
T such that every v € T splits completely in K and ord,(#pp=(K)) =
ordy(N(v) —1). From the exact sequence

0 = pp (K) = (P w(w)* ©2,)° = (AR)7)* = AR =0,

weTx
we know that
ordy(#A%) = ordy(#((A%))*) — #T — 1) ordy (#p (K)).-
Since w(Frob,) = 1 for v in T, Theorem 2.8 implies
ordy (#((A%) 7)) = ordy((0f1,)) = #T ordy(N(v) — 1) + ord, (05 1)
It follows that
ordy (#A%) = ordy(6% 1) + ordp(#pee (K)) = ordy (L(0, 0™ ) Fpupee (K)),

which completes the proof of Theorem 2.2 (2).

2.6 Selmer modules

In this subsection, following [5] by Burns, Sano, and the author, we introduce
two Selmer modules, which we will use in §4. Let K/k be a finite extension
of number fields, S, T" be finite disjoint sets of places of k£ such that S O S..
We write Sk, Tk the set of places of K above S, T', respectively. We define
(see [5] Definition 2.1)

(KTY* = {z € K*|ordy,(z — 1) > 0 for all w € T}
and

Sel§(K) = Coker( [] 2z — Homg((K")*,7))
wgSKUTK

12



where the above map is defined by (zy)w — (a — >, ordy(a)zy).

Let (OL ¢)* be the (S,T)-unit group, and CIJI;S the ray class group
of Ok,s modulo HwGTK w as in the previous subsection. Then we have an
exact sequence

0 — CI§(K)" — Sel§(K) — Homy (O ¢)*,Z) — 0

(Proposition 2.2 in [5]) where C1%(K)Y is the Pontryagin dual of C1L(K).

If T = () is the empty set, we write Selg(K) for Sel%(K). The following
proposition which we use in §4 shows a relationship between Selg(K) and
the usual discrete Selmer group in H'(K,Q /7(1)).

Proposition 2.11. We have an isomorphism
Hom(Selg(K),Q/Z) ~{zr € K*®Q/Z|t,(x) e Uy®Q /7 for all v & Sk}

where 1, : K*®Q /7 — K ®Q/Z is the map induced by the natural
inclusion K — K, and U, is the unit group of K,.

Proof. Taking Hom( % ,Q/7Z) of the exact sequence
I z - Hom(K*,z) — Sels(K) — 0,
v€SK
we have an exact sequence
0 — Hom(Sels(K),Q/z) » K*®Q/z — P (K} /U,) ®Q/z,
v€SK
which completes the proof. O

Another Selmer module is the Ritter-Weiss module V% (K), whose defi-
nition we do not describe here. One can define this module, using the global
and local fundamental classes (see [30], [25] §2 and [8] Appendix A), and can
also define it as the cohomology of the “Weil-étale cohomology complex” as
in [5] Definition 2.6. This module sits in an exact sequence

0— CIL(K) = VE(K) = 25 — 0

where 25 = Ker( ¢, Z — Z) (see Remark 2.7 in [5]).
Suppose that K/k is a finite abelian CM-extension with Galois group
G. We assume that ((’)};S)X is Z-torsion free. If S contains Siam(K/k),

both Sell (K) and V% (K) have a quadratic presentation as 7[G]-modules,

13



namely there is an exact sequence My — My — Selk(K) — 0 of finitely
generated Z|G]-modules where M, My are free Z[G]-modules of the same
rank, and the same for V% (K) (see [5] Proposition 2.4 (iv)). Therefore, their
Fitting ideals as Z[G]-modules are principal. A main conjecture in [5] is [5]
Conjecture 7.3. For a CM-extension K /k we consider here, it says that the
Fitting ideals of these two modules are generated by (Qf( Ik, S)# and 0£ 5,87
respectively, though Conjecture 7.3 in [5] treats general abelian extensions
of number fields.

Let p be an arbitrary prime number (p may be 2). We put Selg(K)p =
Sely ® 7, and VE(K), = VL(K) ® z,. For a 7,[G]-module M, we define
M_ by M/(1+ p)M where p is the complex conjugation in G. Then M_
is a Zp|G)- = Zp|G]/(1 + p)-module. If p > 2, M_ coincides with the
(—1)-eigenspace M~ of p, which we used in §§2.2, 2.3.

We will use in §4 the following theorem, which was proved by Dasgupta
and Kakde in [8] for p > 2, and by Dasgupta, Kakde, Silliman, and Wang
in [10] for p = 2 (we also need an argument in the proof of Lemma 6 in [9]).

Theorem 2.12. (Dasgupta, Kakde, Silliman, Wang) Suppose that S con-
tains Syam (K /k) and (O%S)X is Z-torsion free. Then we have

Fitty 1) (VE(K)p,-) = 91T</k,s ZplG]-, and

Fitty, ) (Sel§(K)p,-) = (0 n,s)" ZplG)- -

We first note that the two equations are equivalent. In fact, if A = (a;;)
is a relation matrix of VL(K), as a Z,[G]-module, (*A)# = (aﬁ) becomes a
relation matrix of Sel%(K), (see the proof of Lemma 2.8 in [5]). Therefore,
we have only to prove the first equation.

We note that Dasgupta, Kakde, Silliman, and Wang proved a more del-
icate theorem as a keystone theorem in their proof of the (strong) Brumer-
Stark conjecture. Let S, be the set of all p-adic places. We put ¥ =
(Sram (K /k) N Sp) U Soo and () = Sram(K/k) \ X, and ¥’ = T U Xj. The
theorem which was proved by Dasgupta and Kakde in [8] Theorem 3.3 for
p > 2, and by Dasgupta, Kakde, Silliman, and Wang in [10] Theorem 1.2
for p =2, is

Fittz, o) (VE (K)p-) = 05 .z Z[G)- (7)

which they called the keystone theorem. By the argument in the proof of
Lemma 6 in [9], we can change (X,%') to (S,7T) to get the first equation in
Theorem 2.12.
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We also note that the minus part of the equivariant Tamagawa number
conjecture for K /k, which is proved in [2] (p > 2) and [9], implies Theorem
2.12 by Theorem 7.5 in [5].

We remark that in [10] they compute Fittzp[G]i(Vg(K )p,—) without
assuming S O Seo.

3 Iwasawa modules for CM-fields

We assume that p is odd in this section. Let K/k be a finite abelian CM-
extension with Galois group G. What we saw in §2 was that it suffices to
compute Fitto,c,)((A%)") in order to compute Fitt; 15— ((Ax)"Y).

This is difficult in general, so we study a relatively easier problem, namely
consider the class group of the cyclotomic Z,-extension of K rather than the
class group of K of finite degree. Let K, /K be the cyclotomic Z,-extension,
and K, the n-th layer. Put Ax_ = 7,[[Gal(K«/k)]]. We consider

Ax., =lim A,

which is a discrete Ag__-module. Recall that A is the maximal subgroup of
G with order prime to p. We write Gal(Ks/k) = A x I where I is a pro-p
abelian group. By the action of the complex conjugation p, we decompose
Ak, = A}'{w ® Af . The module we want to know is the Pontryagin dual
(Ag_ )Y, which is a finitely generated torsion Ag_-module. As we saw for
A, using the action of A, we have

Ap ~ P A%_.
X€A/~
x(p)=—1

We study (Aj_ )Y, which is a compact Aj_ =~ O,[[T']]-module.

3.1 The case y #w

We first consider the case x # w. The Stickelberger elements Q}C{n s €
Oy [Gal(K,/k)p] for n > 1 form a projective system, and define an element
eﬁw/k,s € O,[[I']] for S such that S O Sram(Ks/k). This is essentially
the p-adic L-function of Deligne and Ribet (for the relation between Stick-
elberger elements and the p-adic L-functions, see §4.1, especially (11)). If
S = Sram (Ko /k), we simply write Hﬁw/k for Bﬁm/k’s.
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Let S, be the set of all p-adic places of k. We have the following simple
description of the Fitting ideal of (Aj ).

Theorem 3.1. (cf. [25] Theorem 4.4) Suppose that x is an odd character
of A and x # w. Then we have
Ny

Fitto, 1y ((A%_)") = (( 11 (1, m))%w/k)
UESram(Koo/k)\(SPUSOO) v

#.

Remark 3.2. (1) In the above product, v is not a p-adic prime, so I, is a
finite group. Also, 1—Frob, ! is a non-zero divisor in O, [[T']], and for any sub-

set J C Sram(Koo/k)\(SpUSs0), we can show that ([,e,(al—1))0% i

in O, [[I']]. This is an advantage of working over the cyclotomic Z,-extension
because we cannot get this expression when we work over K since 1—Frob; !
may be a zero divisor in Z,[G].

(2) This theorem was proved in [23] Appendix under the assumption of the
Leopoldt conjecture for k and p = 0 for K, and was (essentially) proved in
[25] Theorem 4.4 under the assumption of y = 0 for K. But this assumption
can be removed because Theorem 2.8 implies the above theorem, which we
will explain below.

We will state and prove the T-smoothed version of Theorem 3.1.

Let T be a set of primes satisfying the conditions in Theorem 2.8. The
Stickelberger elements 9f<m/k,s’ Qﬂm/k(: Qﬁm/k,smm(Koo/k)) in Z,[[Gal(K/k)]]
are defined similarly.

Theorem 3.3. ([25] Theorem 4.4) We have

Fitty, (cai./m)- (A )7)Y) = (( 11 (1
vESram (Koo /E)\(SpUSec)

’ﬁn;tfl))e}gm/k)_,#'

Proof. The proof given in [25] is Iwasawa theoretic, but in order to explain
that the vanishing of the u-invariant is not needed, we give a proof of this
theorem, which uses Theorem 2.8. Put S = Syam(Koo/k). Using Theorem
2.8 and

Fitty, [(Gal(ia /0]~ (Ak ) 7)) = Im Fitty cai, /m)- (Ak,)7)Y)

by Theorem 2.1 in Greither and the author [14], we have only to prove

im0, = ([ (L )iE ).

vES\(SpUSos)
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For v € S\ (S,USx), the inertia subgroup I, in Gal(K/k) is isomorphic
to the inertia subgroup of v in Gal(K,/k) for all n because v is unramified
in Koo/K. Let J be a subset of S\ (S, U S), and let K ; be the fixed
subfield in K, of the subgroup generated by I, for all v € J. If J is empty,
we define Ko j = K. Since all the primes of K, above p are totally
ramified in K /K, for sufficiently large n, @@(Kn k)L is generated by

{Ns Ok, yksvs) | T C S\ (SpUSx)}.

The image of 9};00/,6 in Zp[[Gal(Koo,s/k)]] is (HUGJ(l —Frobv_1))0£oo Lk S\
Therefore, noting that 1 — Frob, ! is a non-zero divisor in 7, [[Gal(K/k)]],
we have

N,
T I T
NJ(QKOO,J/k,S\J) = (H 41 _ Frob ! )HKoo/k'
veJ v
Thus we obtain the desired equality we first mentioned. O

We can show that Theorem 3.3 implies Theorem 3.1 by the same method
as the proof of Theorem 2.4 in §2.5.

We put Ak, = Zp[[Gal(K«/k)]], and define Q(Ak_ ) to be the total
quotient ring of Ax_ . Let v be a topological generator of Gal(Ko/K), and
K Gal(Kew/k) — Z, the cyclotomic character giving the action on pype.
Since v — k() is in Ann(ppe<), (v — £(7))0k. /& € Ak, can be defined as a
projective system by using (4). Thus, we can define 0x__ /,, € Q(Ak,,) since
v — K(7) is a non-zero divisor. As in the proof of Theorem 3.3, we put S =
Sram(Koo/k) and define a subfield K, j of K as in the proof of Theorem
3.3 for any subset J of S\ (S, U S ). Also, Nj: Q(Ak.. ;) = Q(Ak,,) is
defined by the multiplication by [],.; Nr,. Motivated by the above proof,
we define O(K/k) to be the Ax_-submodule of Q(Ak_ ) generated by

{Ns Ok s ks\0) | T C S\ (SpUSs)}
By the integral property (4), we have
ADDAKOO (ILLpoo (Koo))@(Koo/k) C AKoo'

Let x be a character of A such that x # w, and O(K/k)X its x-component
in Q(Ax_ )X. Then the above integral propery implies that ©(K/k)X C
A% = Oy][T']]. Also, as we have seen, it coincides with # of the right hand
side of Theorem 3.1. Therefore, Theorem 3.1 can be also stated as

Fitto, () (A}..)") = (O(Koe /F))*. ®)

17



3.2 The case that K/k is unramified outside p and x = w

Now we consider the case that y = w, in which our main interest is.

In general, let L/k be a Galois extension and H an abelian subgroup of
order prime to p in Gal(L/k). For a character x of H, we denote by L, the
subfield of L corresponding to Ker y. Then the natural map A’ix — A} is
bijective by norm argument. Therefore, we may assume that p, C K and
K/k(up) is a p-extension. Namely, we may assume that A = Gal(k(u,)/k).
So Gal(Koo/k) = A x T, and I' = Gal(Ko/k(1p)) is a pro-p group. We
consider A% =~ O[[I']] (note that O, =~ 7Z,, so A% =~ Z,[[I']). We are
interested in A% which is a A%_-module.

We denote by Fi the A-fixed subfield of K. Then F is a totally real
field, and Gal(F/k) =T.

We may assume that K N ko = k where ko /k is the cyclotomic Zp-
extension. In fact, since our interest is in Ax__ and we can always take K’
such that Koo = K. and K' N ks = k, we do not lose any generality by
the assumption K N ks = k. Recall that G = Gal(K/k) = A x G}, where
A = Gal(k(up)/k) and G, is a finite abelian p-group. By our assumption,
we have

I' = Gal(Koo /k(pp)) = Gp X Zp,

and A% = Ou[Gyl[[Gal(Ko /K)]].

We first assume in this subsection that K/k is unramified outside p.
Then Sram(Koso/k) \ (SpUSx) is the empty set, so it can be easily seen that
the fractional ideal ©(K/k)“ defined at the end of the previous subsection
is generated by 0 __ /i, namely

@(Koo/k)w = Htlu(oo/kow[[r‘“- 9)

Suppose that
Gp=Z/[p"Zx...x7Z/p"Z

with 0 < ny < ... < ng for some s € Z~o. We first define integers my,
M1, Mg(s—1)/2 as in [17] §1.2. Put

ola) = %a(2s —a—1).

We define my = 0 and if v satisfies p(a) < v < (a4 1) for some integer
a € 7 with 0 < a < s — 2, then m,, is defined by

my=(s—1ny+...+ (s —a)ng + (v — p(a))nat+1 -
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In particular, m, = vn; for 0 <v <s—1, and
Msis—n =(s—D)n1+(s—2)na+ ... +ns_1 .
2

Let Ax,, = Annpy (ppe) be the annihilator ideal of the group of p-

power roots of unity. Note that pye C KZ. We define an ideal ag,(Ax..)
of A% _ by
s(s—1)

s(s—1) v

s(e=1)
ac,(Ar) = Y P™ARE
v=0

which is determined only by Ag. and the structure of G, as an abelian

group.
We note the following properties on this ideal ag,(Ax..)-
s(s—1)
(i) ag,(AKx,) Cm A“ffoo where mpe _is the maximal ideal of A% .

s s(s=1)
(ii) If ny = ... = ns = m, then ag,(Ax.) = (", Ak.) 2
s(s—1)

(iii) In particular, if G, ~ (Z /pZ)®*, then ag,(Ak..) = My

Theorem 3.4. (see [15] Theorem 3.3 (b) and [17] Theorem 1.2) Assume
that K/k is unramified outside p and that K N ks = k. Then we have

Fitt -1 (A%)Y) = (ag,(Ar.) Arw 0%00/]?)#
We prove this theorem in §5.1.

Remark 3.5. (1) By the property (4) in §2.3, we know Ax_ 0% i C N
So the right hand side of the equation in Theorem 3.4 is in A}”(:

(2) If s < 1, Gy is cyclic and ag,(Ak,,) = A%_. Theorem 3.4 says that
FittA?{;((A“f(m)v) = (Ax., 0‘1"(00/,6)# in this case. On the other had, if
s > 2, we have ag,(Ak.) C mpe . Therefore, Theorem 3.4 implies that
(Axk.. 9}0@0/1@)# is not in FittA?,{—l ((A%_.)") whenever s > 2. Compare these
results with Corollary 2.9 (2).

(3) Put X = (A“I’{OO)V. For a character v of G, consider the ¢-quotient X, =
X®z, (G, Oy Then its characteristic ideal char(Xy) as an Oy [[Gal(K/K)]]-
module does not contain information on ag,(Ax.,) because ag, (Axk,, ) is an

ideal of finite index. Thus the above theorem gives finer information, which
is not obtained by the usual main conjecture.
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We define Ax C O,[G)p] to be the annihilator ideal of iy (K). We
define an ideal ag,(Ax) of O,[Gy] by

s(s—1)
s(s—1)

ag,(Ax) = Z P Ay
v=0

v

(10)

Corollary 3.6. Assume that K/k is unramified outside p, K Nko = k, and
w(p) # 1 for any p € Sp. Then we have

Fitto__, (e, (4%)") = (ac, (AKx) Ak 6% )"

Proof. Let ¢ : A% = Ou[[l']] = Ou[Gy] be the natural restriction map.
Then we have c(Ak,) = Ax and c(ag,(Ar.)) = ac,(Ax). By our as-
sumption of the non-existence of trivial zeros (w(p) # 1 for all p € §,),
the natural map A% — (A“IJ(OO)Gal(KOO/K) is bijective. Therefore, taking the
images under the map c¢ of both sides of the equation in Theorem 3.4, we
get this corollary. O

Let us go back to the numerical example in §2.4 that £k = Q(1/1901),
K = k(v/=3,a, ), and p = 3. This example satisfies all the assumptions
of Corollary 3.6. In this example, s = 2, Ag is the maximal ideal m of
O, |Gy, and ag,(Ax) = m 7 = m. Therefore, we theoretically recover

the equality (5) in §2.4 from Corollary 3.6.

3.3 The case that K/k is not unramified outside p and y = w

In the previous subsection, we treated the case that K/k is unramified out-
side p. In this subsection, we treat the remaining case, namely we assume
that there is a non p-adic prime which ramifies in K/k.

In this case, we need an important integral element

19Ko<>/k' € AKOO,

whose definition we start with. We put S = Siam(Koo/k) and S' = S\ (SpU
Sso). Then, by our assumption in this subsection, S’ is not empty. For a
subset J of S/, let Ny, Ko, 7,...be as in §3.1. We define

N@w) 1 -1
Irom= Y. Ni((]] (72#1 Froby )0k ;/k,5\7)
Jcs' veld v

where J runs over all subsets of S’. Here, N(v) is the norm of v and Frob,
is the Frobenius of v. Since N(v) =1 (mod #1I,) by local class field theory,
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we know that 9/ is in ©(Ko/k) where ©(K oo /k) is the fractional ideal
defined in the end of §3.1. An important property of ¥/, is that it is
in Ak, (it is a holomorphic p-adic L-function). In fact, in order to show
this integrality, the problem lies only in showing the integrality of the w-
component 93 . We will prove 93, € Af_in §5.2 (18). (This reduces
to the property hp,_ /. € Ap, for a certain element hp_ /i, which we will
define in §5.2.)
This element
'ngoo/k € @(Koo/k') N AKoo

plays the central role in describing the Fitting ideal instead of 6 __ /. This
element V__ /1, was introduced by Greither on page 753 in [12] (the notation
Vg was used in [12]).

Note that this element is defined only in the case S’ # ) (so we cannot
use this element in the previous subsection). Also, this element is totally
different from the T-modification of Stickelberger elements.

We next introduce Kataoka’s shifted Fitting ideals. Let R be a commu-
tative noetherian local ring, and M a finitely generated torsion R-module.
Suppose that

O=->N—-P—>..>P.—-M—=0

is an exact sequence of finitely generated torsion R-modules such that P; is of
projective dimension < 1 for all . We define the fractional ideal Fittg;](M )
of R, called r-th shifted Fitting ideal of M, by

Fitty (M) = [ Fittr(P) "Y' Fittg(N).
=1

Then the right hand side is independent of the choice of the exact sequence,
and this is well-defined (Kataoka [20] Theorem 2.6).

Let D,(K~/k) be the decomposition group of Gal(K/k) for v € S’
This is a subgroup of finite index. We define Z?(oo by

Zi., = Ker(EP 7,[Gal(Koo/k)/ Do( Koo/ k)] = Zp)
veS’

where the above map is induced by the augmentation homomorphisms of
Gal( Koo /k)/ Do (Koo /).

We consider Z%oo (—1) where (—1) is the Tate twist, and its w~!-component
1

(Z% (—1))“"" whichisa A‘I"(:—module. We consider Fitti;{_l (Z% _(=1))< ).
Then we have h
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Theorem 3.7. (see [16] Theorem 0.1) Assume that there is a non p-adic
prime which ramifies in K/k. Then we have

. w . w™ T qw,
Fiit 1 (A%..)") = F1tt£i}}d<_1 (Z5 (1) )05E .

We prove this theorem in §5.2.
Remark 3.8. (1) For more explicit descriptions of Fittil,l ((Z%oo (1)),
Koo
see [16] §84 and 5. When #G, = p (i.e. [K : k(up)] = p), an explicit de-
scription is given in [24] Theorem 0.1.

(2) If w(p) # 1 for all p € Sp, then from Theorem 3.7 we can get the
description of Fittow_l[gp]((A“f()V) as in Corollary 3.6.

4 Equivariant Iwasawa Main Conjecture and its
proof

In this section, we formulate and prove the Equivariant Iwasawa Main Con-
jecture for abelian extensions of totally real fields, including the case p = 2.
Most papers including Ritter and Weiss [31] and Johnston and Nickel [19]
assume p > 2, so we give here a clear view on how we can deduce the Equiv-
ariant Iwasawa Main Conjecture from Theorem 2.12 by Dasgupta, Kakde,
Silliman and Wang, which we stated in §2.6, including the case p = 2. We
also recommend the readers to see Johnston and Nickel [19].

We will use in §5 the Equivariant Iwasawa Main Conjecture for totally
real fields to prove Theorems 3.4, 3.7. The relation between Iwasawa mod-
ules over totally real fields and minus class groups is given in §4.3.

From this section, p is any prime number (p = 2 is allowed). We consider
a finite abelian extension F'/k of totally real number fields and the cyclotomic
Zp-extension Foo /F. We put Ap, = Zp|[Gal(Fu /k)]].

Let S, S, be the sets of infinite places and of p-adic places of k, respec-
tively. We also denote by Spam(F'/k) the set of places ramifying in F/k. In
this section, we assume that S is a finite set of places of k£ such that

S5 Sse U Sy U Sram(F/).

4.1 formulation

First of all, for a number field L and a finite set S such that S O S, U
Sram(L/k), we use a perfect complex RI'.(Or,s, Zp(1)) by Burns and Flach in
[3] Proposition 1.20, which works well even for p = 2. We write RT'.(OF,, s, Zp(1))
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for the projective limit of RI'.(OF, s, Zp(1)) where F), is the n-th layer of
the cyclotomic 7,-extension Fu,/F.

We denote by M, s/Fs the maximal abelian pro-p extension that is
unramified outside S, and put Xp_ ¢ = Gal(Mp_ s/Fw), which is a torsion
A g, _-module. Since the weak Leopoldt conjecture

HE(OKw,5,Qy [ Zp) = H*(Gal(Ls/Koo),Q, [ Zp) = 0

holds where Lg/Ky, is the maximal unramified extension outside S, H* of
C*®* = RI'.(OF...s,Zp(1)) is zero except for i = 2, 3. Using the isomorphism
on Page 86 line 6 in [3], we get H*(C*®) = Xp_ g and H?>(C*) = Z,. Thus,
we regard C'* as an object of Df(frrsf (Ar, ) which is the derived category of
perfect complexes of Ap_-modules, whose cohomology groups are torsion
Ap,_-modules.

Put Koo = Foo(p2p) and Ay, = Z,[[Gal(K/k)]]. We write Ay for
the module of pseudo-measures of Gal(K /k) in the sense of Serre [32],
namely the submodule of the total quotient ring Q(Ax_ ) consisting of ele-
ments x € Q(Ak,,) that satisfy x/qak.. /) C Ak, Where Igak.. k) is the
augmentation ideal of Ag__ .

Let & : Gal(Koo/k) — Z, be the cyclotomic character. For any charater
Y of finite order, we denote by Lg(s,%) the S-truncated L-function for .
Then the p-adic L-function g/ s of Deligne and Ribet is the element in
A% (see [32]) satisfying

K"K o sk,s) = Ls(1 —n, 1))

for any character ¢ of Gal(K /k) of finite order and for any positive integer
n € Zso, where we extend a character x"¢ : Gal(K/k) — @; to a ring
homomorphism Ag_ — @p, and also to Ay — @p.

We define gp, /x5 € AT to be the image of gk /r s under the natural
restriction map A% — A% .

The relation between gr_ /. 5 and Stickelberger elements in §3 is given
as follows. Consider the Stickelberger element 0x__ /r ¢ € Q(Ak,,) defined
in §3.1 where Q(Ax_. ) is the total quotient ring of A = Z,[[Gal(K /k)]].
We denote by

7 Q(Ak,) = Q(Ak.)

the twist automorphism induced by 7(c) = k(c) 1o for all o € Gal(K . /k).
Then we have

T(eﬁw/m) = JKo /k,S> (11)
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8O gF. /k,s is the image of T(Hféoo/k ¢) under the restriction map Q(Ak,,) —

We denote the determinant functor D** (Ag_) — Q(Af..) by Det. Our

tors
formulation of the Equivariant Iwasawa Main Conjecture is as follows.

Theorem 4.1. (Equivariant Iwasawa Main Conjecture) We have

Det(RTe(OFy,.5, Zp(1)) ™" = gpo ks Fs -

We can formulate this equality by using K-groups as in [31], [19].

4.2 a proof

We give a proof of Theorem 4.1, using Theorem 2.12. Put K = F(uap),
Koo = Foo(p2p) = F(pp), and A = Gal(K/Fx).

Since Gal(F/k) is a direct product of a finite abelian group of order
prime to p and a finitely generated 7Z,-module of rank 1, it is a direct product
of a finite abelian group and Z,. Therefore, we can take a subfield F' C Fi,
such that Foo = F'koo and F' N ks = k where koo /k is the cyclotomic Z,-
extension. Taking F' = F’ from the first, we may assume that Gal(Fu/k) ~
Gal(F/k) x Gal(kso/k). This also implies that Gal(K/k) ~ Gal(K/k) x
Gal(koo /E).

If we prove the equality in Theorem 4.1 for Fy,/k, then for any interme-
diate field M of F/k and its cyclotomic Z,-extension My, we can get the
equality in Theorem 4.1 for M /k since g ks is the image of gp_ /i g
under the natural restriction map. Therefore, in order to prove Theorem
4.1, we may assume that ' = KT, the maximal totally real subfield of K.
Then K/F is a quadratic extension.

We take T' as in Theorem 2.12, and consider Sel% (K},), for the n-th layer
K, of Koo/K. One can define naturally the norm map from Sel’(K,,), to
Sell(K,,), for m > n, and Sel}(K), is defined as the projective limit of
Sels(Ky)p. We also define Selg(K)p, similarly. Proposition 2.4 (i) in [5]
tells us that there is a distinguished triangle

RFC((’)KOO,S,Z;;) — RPC,T(OKOO,Sazp) — ( @ Qp/Zp(l))v[_Q] - .

wETKOO

The second cohomology of the first two complexes are Sels(Kwo)p, Sels (Koo )p,
respectively (see Proposition 2.4 (iii) in [5]), and the third cohomology of
them are (Q,/7Zy(1))", 0, respectively. It follows that we have an exact
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sequence

0 = Sels(Koo)p = Sel(Koo)p = @D Zp(—1) = Zp(—1) = 0. (12)

’LUETKOO

Recall that K/F is a quadratic extension. The Galois group A’ =
Gal(K/F) is generated by the complex conjugation p. For any A’-module
M, we define M_ to be M/(1+ p) as in §2.6.

The relationship between Det(RI'.(OF, ,s,7Zp(1))) and Selmer modules
in §2.6 is given by the following lemma.

Lemma 4.2. (1) We have an isomorphism

(Sels(Koo)p),(l) ~ XFOO,S

of Ar,_-modules for p > 2 where (1) is the Tate twist. For p =2, there is a
natural injective homomorphism (Sels(Ks)p)—(1) = Xp._ 5 whose cokernel
is of order 2.
(2) We have

Fitt,,_ (el (Koo)p)—(1)) = ([T (1 — Frobu))gr jxshr -
veT
Proof. (1) By Proposition 2.11, the Pontryagin dual of Selg(K«), is iso-
morphic to HY(Ok.,s,Q,/Zy(1)) = H(Gal(Ls/Kx),Q, / Zp(1)) where
Ls/ K is the maximal unramified extension outside S. Therefore, for p > 2
the Pontryagin dual of (Selg(K)p)— is

H'(Gal(Ls/Ko),Q, / Zp(1)"~"" = H'(Gal(Ls/Kx),Q,/2Zy)™ (1)
= Hl(Gal(ES/FOO)va/ZP)(l)
= HOm(XFOQ,San/ZP)(]')
since Hz( A, Qp / Zp) = 0 for 4 > 1. Taking the Pontryagin dual again, we

obtain (Sels(Ko)p)— =~ Xr. s(—1).
For p = 2, we know H'(A',Q, / Zp) ~ 7 /27, and H*(N',Q, / Z,) = 0.

—

Therefore, the natural map from Hom(Xp, s, Q, / Zp) = H' (Gal(Ls/Fx), Q, / Zp)

to H'(Gal(Ls/K),Q, / Zp)~ = ((Sels(Koo)p)Y)P="1(—1) is surjective and
has kernel ~ 7, /2 7. Taking the Pontryagin dual, we get the conclusion.

(2) For the complex conjugation p, p — =+1 induces a ring homomorphism
Mg, — Ap_, which we denote by x — x4, respectively. By Theorem 2.12
we have

Fitta,,_ (Sel§(Koo)p)— = ((Gﬁw/k,s)#)—AFoo :
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We defined 7 : Ag, — Ak, in §4.1. We define 77 : A, — Ap,_ to be
the map induced by o + k(c)~lo for any o € Gal(Fy/k). Then it follows
from Theorem 2.12 and (11) that we have

Fitta,._ (Self (Kx)p)-(1) = 7o (0 js))-Ar.

= (T((e?(oo/k:,S)#))JrAFoo
= 7((JJ @ - Frob, N(v)))eﬁw/k,SMAFm
veT
= (JJ( = Frob,))(9xo. /is)+ Are
veT
= (H(1 — Froby))gr.. ks AP -
veT

O]

Now we prove Theorem 4.1. Since Theorem 4.1 is an equality of two
invertible Ar,_-modules, by [4] Lemma 6.1 we have only to prove

Det(RI(OF,,s, Zp(l)))p_l = 9F /k,5 NP p (13)

for every height-one prime p of Ap,_.

We take a height-one prime p of Ap_. Then we have M, = 0 for any
finite Ap_-module M. Therefore, the exact sequence (12) and Lemma 4.2
(1) yield an exact sequence

0= (Xpos)p = (Sel§(Koc)p)-(Lp = ( D Zo)p = (Zp)y =0 (14)

’wETKOO

of Ap, p-modules. Using Lemma 4.2 (2), we have

Det(RTe(OF...5,Zp(1)); ' = Detay,(Xro.s)p) ™ Detay,, ((Zp)p)
= Detay_, ((Sel§(Koo)p)-(1)p) ' Deta,_,(( D Zp)p)

= 9F/k,SNFup -

In the above computation we used Detg(M)~! = Fittg(M) for a finitely
generated torsion R-module M of projective dimension < 1. This completes
the proof of Theorem 4.1.
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We give three remarks here. At first, let Iqa)(r., /x) be the augmentation
ideal Ker(Ap,, = Zp[[Gal(Fo/k)]] = Zp). I p # Igai(r. /k)» then (Zp), = 0,
and FittAFoo,p (XFomS)P = gFoo/k,SAFoo,P' Ifp= IGal(Foo/k)v then (Zp)p = Qp?
and we get Fitta,  (Xr s)p = (Y—1)9r. /k,sAF.. »p Where 7 is a topological
generator of Gal(keo/k).

Secondly, using the same method, we can easily obtain the usual Iwasawa
main conjecture, proved by Wiles [36]. For a character ¢ of Gal(F/k), we
write Oy = Zp[Image 1] on which Gal(F/k) acts via 1, and consider the -
quotient (Xr., )y = XF,,5 @z, [Gal(F/k)] Op- Then, by the same method as
the above proof, we can easily see that the characteristic ideal char(Xr. g)y
is generated by the image of gr_/i g in Oy[[Gal(kw/k)]] if ¥ is not the
trivial character, and by (v —1) times the image of g /i, g if ¥ is the trivial
character.

Thirdly, if p does not belong to p, then Ar_ , is a discrete valuation ring,
and it is easy to work over Ap_, (cf. [6] §3C1, for example). If p belongs
to p, then we have M, = 0 for any Ar_-module M that is finitely generated
over Z,. Therefore, (Xp, s)p — ((Sel§(Koo)p)—)p(1) is an isomorphism,
and (13) is also obtained immediately from this isomorphism and Lemma
42 (2).

Corollary 4.3. There exists an exact sequence of finitely generated torsion
Ag_-modules
0= Xpos—P1—P—7,—0

such that the projective dimensions of Py, Py are <1, and
Fitta, (P1) Fitta, (P)~ ! = 9F /k,SA o

Proof. This seems standard (see [21] Theorem 4.1), but we give here a sketch
of the proof for the convenience of the readers. We can take a complex

1 2
ol L o2 C3, which is concentrated on degrees 1, 2, 3, and which is
quasi-isomorphic to RI':(OF. s, 7Zp(1)) such that C* are finitely generated
and projective. We have an exact sequence

0= Xp s — C2/d" () 5 3 - 7, — 0.

Put M = Ker(C? — Zp). Take, for example, t = v—1 where 7 is a generator
of Gal(F,,/F), and consider the multiplication by ¢ on C3, which is injective.
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Then tC? is in M because «y acts on 7, trivially. Since d2 : C%/d'(C') — M
is surjective and C® is projective, there is a Ap_-homomorphism f : C3 —
C?/d'(C") such that d2 o f is the multiplication by ¢ on C3. Then we can
construct an exact sequence

0— Xp,_ s — Coker f — C3/tC® — 7, — 0

where both Coker f and C3/tC? are finitely generated torsion A _-modules,
whose projective dimensions are < 1. We can take P; = Coker f and P, =
C3/tC3. Now, Theorem 4.1 implies the equation in Corollary 4.3. O

We remark that we can also construct an exact sequence in Corollary
4.3 concretely, using a variant of the method to construct the sequence (12).

4.3 Relation with minus class groups

We go back to the setting in §§3.2, 3.3, namely p is odd, and K/k is a
CM-extension such that K = F(yu,) and F/k is a finite abelian p-extension
of totally real number fields. We studied the class group Ax__ in §3. In
this subsection we give a relationship between such minus class groups and
XF, s which we studied in the previous subsection.

Proposition 4.4. Suppose that p is odd. Then we have an isomorphism
XFOO7SpUSoo = ( Lf(oo)v(l)

Proof. We consider Sels us., (Koo)p- By Proposition 2.11 we know that the

Pontryagin dual of Sels, us.. (K )p is isomorphic to H(Gal(Ls,us.. /Ko), Qp / Zp(1)).
Let Ek, be the unit group of K, and Ex_. = |J Fk,. By Kummer du-

ality (see Iwasawa [18] the last line on Page 275), we have an exact sequence

0— Eg., ®Q,/Z, — H' (Gal(Ls,us. /Kx), Q, / Zp(1)) = Ag.. — 0.

Since p is odd, A = Gal(K/F) is of order prime to p. Thus taking the
A-invariant parts is an exact functor. We have (Ex,, @ Q, / Zp(—1)A =0
and

HY(Gal(Ls, 080/ Koo), Q, / Zp)™ ~ HY(Gal(Ls,us. /Foo)s Qp / Zp) ~ (Xp 5,082) "

Therefore, taking (—1)-twist and A-invarint parts of the above exact se-
quence, we have an isomorphism

(XFwyspUSoo)V = Awoo(_l)

This completes the proof. O
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5 S-ramified Iwasawa modules over totally real num-
ber fields

In §4.3 we saw that we have only to know Xp_ s,us, to understand the
w-component of Ag_ . In this section, p is any prime number, and we
assume that F'/k is a finite abelian p-extension of totally real number fields
and denote its cyclotomic Z,-extension by Fu, (the field Fi, defined in §3.2
satisfies the above conditions). Without loss of generality, we may assume
that F' N koo = k where ko/k is the cyclotomic Z,-extension. We put
Gp = Gal(F/k) and I = Gal(Fix /k), so

I' = Gal(F /k) = G x Gal(koo /k) >~ G, X Z), .

5.1 S-ramified Iwasawa modules

In this subsection, we still assume that S is a finite set of places of k such
that S D Se U Sp U Sram (F/k).

What we study in this subsection is the maximal abelian pro-p extension
Mp,_ s/Fx that is unramified outside S, and its Galois group Xp_ g on
which I' = Gal(Fx/k) acts. Put Ap_ = Zp[[I']]. We study Xp_gs as a
Af,_-module.

Let gr. ks € A% be Deligne-Ribet’s p-adic L-function defined in §4.1.

We define integers (my,),—o.1 s(s—1)/2 as in §3.2. For the augmentation

by

ideal It of Af,, we define an ideal ag, (Ir) of Ag, by

s(s—1)
s(s—1)

2
aGp(IF> = Z pm'uIF 2
v=0

v

(15)

which is an ideal of Ap_ (cf. (10)).

Greither and the author proved the following theorem in Theorem 3.3
(a) in [15], and Greither, Tokio and the author gave the explicit description
(15) of aGP(Ip) in [17] §1.2.

Theorem 5.1. ([17] Theorem 1.2) Assume that F/k is a finite abelian p-
extension such that F'N ks = k with Galois group G,. Then we have

Fitta, (Xry..s) = ag,(Ir)Irgr. ks -

Proof. We explain here a simple proof of this theorem, using the idea of
Kataoka [20]. Applying the definition of Kataoka’s second shifted Fitting
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ideal which we explained in §3.3 to the exact sequence in Corollary 4.3, we
have

Fitta,_(Xp, o) = Fitta,_ (P) Fitta,_(Py)~! Fittﬂw (Zy).

By Corollary 4.3, we get Fitty, (Pr)Fitta, (P)~! = 9F/k,sAF, . We

computed Fitt%m (Zp) in [17] Theorem 1.1 (see [17] Proposition 3.1) to

get Fitt%] (Zp) = ag,(Ir)Ir. These computations yield the equation in

Feo

Theorem 5.1. O

Remark 5.2. (1) In [17] Theorem 1.2, the vanishing of the p-invariant of
koo/k and p > 2 are assumed. However, neither assumption is necessary as
we explained in the above proof.

(2) In the above theorem, we consider the case S O S, but if we consider
the Iwasawa module Xp_ o such that S 3 S, we may have to replace
9F.o kS DY Q*dgpoo/kvg with some d when p = 2.

(3) There was a guess that Fitty, (Xr, ) = Irgr. /k,s at some stage. Now
we know by the above theorem that this guess is true only when s < 1.

Proof of Theorem 3.4. Now we prove Theorem 3.4. Recall that pisodd, K =
F(pp) and A = Gal(K/F). We decompose Q(Ak, ) = @XEA Q(Ak, )X by
the action of A = Gal(F(u,)/F). The x-component Q(Ax, )X is Q(A%_) =
Q(Oy[[Gal(Fx/k)]]). For x € Q(Ak.. ), the x-component of x is denoted by
X € Q(Ak.)X.

We use the automorphism 7 of Q(Ag,_ ) defined in §4.1. It is easy to check
that 7 gives a bijective from the w™!-component Q(Ax_)“ " to the trivial
character component Q(Ak, ). We also note that the trivial character
component Q(Ax._)! coincides with Q(Ax_)> = Q(Afr,). Also, # gives a
bijective from Q(Ag..)* to Q(Ag.. ) . Consider the Stickelberger element

Ok /ks € Q(Ak, ) and Oﬁw/kﬂ € Q(Ak. ). We have

TW??’f/k,s)l = 9P /k,S (16)

from the equation (11).
For any finitely generated torsion A“I’(:—module M, we regard M (1) as a
Q(Ak.)' = Q(Ag,)-module. Then we have

Fitta, (M (1)) = 7(Fitt -1 (M))".
Koo
Therefore, Proposition 4.4 implies that

Fitta,_(Xp.,) = 7(Fitt, 1 (A% )")
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On the other hand, Theorem 5.1, the equality (16), T(Af{w)l = It and
7(ag, (A )t = ag,(Ir) imply that

Fitta, (Xr.,) = 7((ag, (AK.) AKxo HUIJ(OO/k)#)l-

Since 7 is bijective, the above two equations give the desired result.

5.2 p-ramified Iwasawa modules

Next, we consider p-ramified Iwasawa modules. Namely, we consider the
maximal abelian pro-p extension Mg 5,Us. /F that is unramified outside
p, and its Galois group Xr_, 5,us..- We simply write Xr,_ , for Xz s, us..-

If Sram (F/k) C Sp, then the Fitting ideal of Xf_ 5, is known by Theorem
5.1. So we assume that Siam(F/k) ¢ S, in this subsection. We put S =
Sram(Fso/k) and S = S\ S,. By our assumption, S’ # (.

We denote by x : I' — Z7 the restriction of the cyclotomic character to
I'. Then Greither, Kataoka and the author proved in [16] Theorem 1.5 the
existence of an element hp,_ /. € Ap,, satisfying

K (hp i) = Ls(1—n,bw™) [ 11—_;?3%;1,

ves’

for any n € Z~o and any character ¢ of I' of finite order. In Lemma 2.1 in
[16] we proved

N@w) -1
hp /e = Z NJ((H (;HFrobu)gFm,J/k,S\J)
Jcs’ veJ v

where Nj, Frob,,...are as in §3.3. By (16), the above formula, and the
definition of Vg __ /1, we have

T O = he gk - (17)

Since 7 gives a bijective from A“IJ(: to A}QX, = Ap_, the above equality
together with hp_ /. € Ap,, implies that 19‘})(’?: /K € A‘I"(: and

“j(oo/k €Ak (18)

We defined Z%Dc in §3.3. Similarly, we define

Zp. . = Ker(EP 7,[Gal(Fuo /k)/ Dy(Foo [K)] — 7).
ves’
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Clearly, this is the A = Gal(K/F)-invariant part of Zj_, namely (Z%Oo)A =
Z%OO. Using the notion of Kataoka’s shifted Fitting ideals explained in §3.3,
we consider Fitt%L (Z%OO), which is a fractional ideal determined only by
decomposition groups of v for v € §" in I = Gal(Fo /k).

Then Greither, Kataoka, and the author proved the following in [16].

Theorem 5.3. ([16] Theorem 0.1) Assume that there is a non p-adic prime
which ramifies in K/k. Then we have

Fitta,_ (Xp. ) = Fittk]poo (Z% Ve i -

Remark 5.4. In [16], p > 2 is assumed. But this assumption was used only
when we applied the equivariant Iwasawa main conjecture in [16] Theorem
3.11, so we can remove this assumption.

Proof of Theorem 3.7. We can prove Theorem 3.7 by the same method
as the proof of Theorem 3.4 in the previous subsection. In fact, since
% (1) = (Zk )P (=1) = Z%,_(—1), we have Z%, = Z§ (~1)* (1)

and . » )
r(Fittl) (2% (-1)*7) = Fite, (20,).

Koo

Therefore, using Proposition 4.4 and (17), we get
7(Fitt 1 (A% )"))" = Fitta,_ (Xr.p),

and

T(Fitti};{_l (2o (1 et 0t = Fied] (28

It follows from Theorem 5.3 and the bijectivity of 7 that
: L -1
Fiit 1 (A%.)") = F1tt£\;;1 (Z8 (1) )05,

This completes the proof of Theorem 3.7.

6 Generators and relations of S-ramified Iwasawa
modules

This section is an exposition of the paper [21]. We consider a slightly more
general setting than that in §5.1. Suppose that F/k is a finite p-extension
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of totally real number fields with Galois group G, which is not necessar-
ily abelian. Our interest is in Iwasawa modules over the cyclotomic Z,-
extension Fy, of F.

We assume that F'N ko = k, and put I' = Gal(F/k). Our assumption
implies that I' ~ G, x Z,. Let S be a finite set of places of k, satisfying
S D Soo USp U Sram (F/k). Let Mp_ s/Fs be the maximal abelian pro-p
extension that is unramified outside S, and put Xp,_ g = Gal(Mp,_ s/Fu).

When G, is abelian, the complicated shape of the Fitting ideal of Xr _
(Theorem 5.1) suggests that Xp_ g is a complicated Ap,_-module. In or-
der to understand such complicatedness, we are interested in the minimal
numbers of generators and of relations of Xr _ ¢ as a Ap_-module.

For any R-module M, we denote by gengp(M) the minimal number of
generators of M as an R-module. Also, we define rr(M) to be the minimal
number of relations of M as an R-module.

Let My, s/k be the maximal abelian pro-p extension that is unramified
outside S. We put

t = dimy, Gal(Mg,s/My,s N Koo) ®7 Fp = geny Gal(Mg,s/Mys N Koo),
and
sy = dimp, Ha(Gp,Fp) and s3 = dimp, H3(G)p, Fp).

Using the existence of the exact sequence in Corollary 4.3, Kataoka and the
author proved in [21] the following.

Theorem 6.1. ([21] Theorem 3.3)
(1) max{sy,t} < geny, (Xr.s)<s2+t

(2) TAFOO (XFOO7S) = genAFOO (XFOO7S) + 53

Suppose that G, is abelian and s = gen, (G)) as in Theorem 5.1 where
we assume G, = Z /p™ Z X ... x Z /p"™ Z. Then we have Hy(Gp,7Z) =
N> G)p and H(Gp,Z) = G,. These computations together with the universal
coefficient theorem imply that

. s(s—1 s(s+1
S9 = dlmﬂ:p HQ(Gp,IFp) = (2) + s = (2)
Also, we know that s3 = s(s+ 1)(s 4+ 2)/6. In this case, K is in My g.
Therefore, we get
t =geny Gal(My,s/Fx).

From Theorem 6.1 we obtain
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Corollary 6.2. ([21] Theorem 1.1) Under the assumption of Theorem 5.1,

namely the assumption that Gy is abelian, put t = geny Gal(My,s/Fx)-
Then we have

1 1

WEED (s +1)

t
7 +

A} <geny, (Xp,.s) <

e (s + 1)(s +2)
s(s+1)(s+

Pan (Xps) = geny,_(Xp9) + 5002
This corollary says that geny , (XF.,s) has quadratic growth in s. In
this way, Xr._ g is surely a more complicated module than we first expected.
For numerical examples, see [21] §7. For example, take k = Q, F =
Q(V73,v/89,V97), p = 2, and S = {00, 73,89,97}. In this case, we know
s = 3 and t = 4. Therefore, Corollary 6.2 says that 6 < gen, , (Xr,s) <

10. By numerical computation, we could check that gen, (XF,.s) = 10.

Finally, we go back to the setting of Corollary 3.6.

Corollary 6.3. Assume that K/k is a finite abelian CM-extension satisfying
all the assumptions of Corollary 3.6. We put F = K», G, = Gal(F/k),
s = geny, (Gp), and t = geny Gal(My,5,0s../Foo). Then we have

(s+1)

8(3 + 1)775} < genow[cp}((A‘f()v) < S

max{ +1,

and
w w s(s+1)(s+2
ro.ic,) (A%)Y) < gengq,](A%)Y) + (é()

Proof. This follows from the isomorphisms

(A%)Y < (A% )V cal(r /) ~ (XFa,5,0800) (—1) Gal(Ko /) -
O]

We revisit the example in §2.4 that & = Q(+/1901), K = k(v/-3,a, 3),
and p = 3. Suppose that ¢ is a generator of Gal(K/F(v/—=3,3)), v is a
generator of Gal(K/F(y/=3,a)), and put X =¢—1,Y =v — 1.

Then by the numerical computation in [27] §2, we know that (A%.)Y has 3
generators ey, eg, e3 and 7 relations; 9e;+(XY2—X2Y ez = 0, Xe;—Y?2e3 =
0, Ye; — X263 = 0, 3e2 +X2Y63 =0, Xeo —|—Y2€3 =0, Yey — X263 =0
and 3e3 = 0. (In [27] §2, one more relation X2Y?e3 = 0 is written, but
this relation is a consequence of the 4-th, 6-th, and 7-th relations.) In this
example, we have geng_;,1((A%)Y) = 3 and roq,)((A%)Y) = 7. Thus,
since s = 2, we could check numerically that Corollary 6.3 holds for this
example.
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