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Abstract

Our aim in this paper is to give a clear view of what can be proved
on the Fitting ideal of the Pontryagin dual of the minus class group
of a CM-field as a Galois module. The class group we study is the
classical full class group, and not the ray class group mod T (we are
particularly interested in the Teichmüller character component of the
class group). We show that several theorems in the existing literature
hold unconditionally, using recent groundbreaking results by Dasgupta,
Kakde, Silliman, and Wang. In particular, we give a simple proof of
the Equivariant Iwasawa main conjecture including the case p = 2,
using their keystone theorems due to Dasgupta and Kakde in [Annals
of Math.197(2023),289-388] and due to Dasgupta, Kakde, Silliman and
Wang in [arXiv:2310.16399]. We unconditionally compute the Fitting
ideal of the Pontryagin dual of the minus class group of the cyclotomic

Zp-extension of a CM-field, and also the Fitting ideal of S-ramified
Iwasawa modules for totally real number fields. The numbers of mini-
mal generators of these Iwasawa modules are also studied.

1 Introduction

Suppose that K/k is a finite abelian extension of number fields with Galois
group G. We study in this paper the full ideal class group ClK (the quo-
tient of the group of non-zero fractional ideals by the subgroup of non-zero
principal fractional ideals), which we regard as a G-module. Since we can
decompose ClK =

⊕
pClK ⊗Zp into the p-components for each prime p,

in order to understand ClK as a G-module, we may study each G-module
ClK ⊗Zp. In the following, we fix a prime number p and denote ClK ⊗Zp
by AK .

We are interested in the relationship between the class group and zeta
values. Such a relationship can be seen most explicitly when K/k is a CM-
extension, namely K is a CM-field and k is a totally real field, so we assume
it.
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We assume p > 2 in this Introduction, and denote by A−
K the part

on which the complex conjugation acts as −1. We study A−
K as a Zp[G]-

module. It has been gradually recognized that the Pontryagin dual (A−
K)∨

of A−
K is easier to handle than the module A−

K itself (for example, see Gre-
ither [13], the appendix of the author [23], and [14]). Our objective in this
paper is to give a clear view of what can be proved about the Fitting ideal
FittZp[G]((A

−
K)∨) of the Pontryagin dual of the class groups by combining re-

cent results in various papers (for the Fitting ideal FittR(M) of an R-module
M , see [29]).

A recent groundbreaking result by Dasgupta and Kakde [8] completely
determines the Fitting ideal of the dual of the ray class group mod T (which
is also called T -smoothed class group recently). However, our interest in
this paper is in the non T -smoothed class groups, namely the classical full
class groups. We decompose G = ∆×Gp where ∆ is of order prime to p and
Gp is a p-group. We have direct decomposition of A−

K into χ-components
for characters χ of ∆ (see §2.3 (3)). Let ω be the Teichmüller character
giving the action on the p-th roots of unity. If χ is an odd character such
that χ 6= ω, then we know the Fitting ideal of (AχK)∨ as a Gp-module by
the above theorem of Dasgupta and Kakde (see Theorem 2.4). So our main
interest is in the ω-component for which the aspect is very different from
the non-ω component. To get a good understanding of the ω-component,
see the numerical example in §2.4. We determine the Fitting ideal of (AωK)∨,
assuming certain conditions (see Corollary 3.6), but cannot determine it, in
general. We consider the cyclotomic Zp-extension K∞/K, and study the
Fitting ideal of (A−

K∞
)∨ as a Zp[[Gal(K∞/k)]]-module. We determine it

completely, including the ω-component (see Theorems 3.1, 3.4, 3.7).
In §5 we reduce the above problem on the ω-component to the problem

on the Iwasawa modules over totally real number fields. For an abelian p-
extension F/k of totally real number fields and the cyclotomic Zp-extension
F∞, we study in §5 the maximal abelian pro-p extension MF∞,Sp∪S∞/F∞
that is unramified outside p and ∞, and its Galois group XF∞,p. We de-
termine its Fitting ideal as a Gal(F∞/k)-module unconditionally. To do
this, we use the equivariant Iwasawa main conjecture (EIMC for short) for
abelian extensions of totally real number fields. Johnston and Nickel prove
EIMC in their paper [19], using the results of Dasgupta and Kakde in [8].
However, they assume p > 2, so we give in §4 a different and simple proof
of EIMC including the case p = 2, using the keystone theorem of Dasgupta
and Kakde [8] and of Dasgupta, Kakde, Silliman and Wang [10], which was
a part of conjecture by Burns, Sano and the author in [5]. This implication
is natural because the conjecture of Burns, Sano and the author in [5] can
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be regarded as a finite extension version of the Iwasawa main conjecture.
In this paper, we adopt a slightly different definition of the Stickelberger

ideal, which is equivalent to the usual definition but more intuitive and easier
to use.

The author would like to thank heartily M. Atsuta, D. Burns, C. Gre-
ither, T. Kataoka, and T. Sano for helpful discussions with them on the
subject of this paper. He also thanks D. Bullach and D. M. Castillo for
their efforts in editing this volume. Finally, he heartily thanks the referee
for his/her very careful reading.

2 Full ideal class group

2.1 cyclotomic fields

As an introduction to the theory of the Galois action on ideal class groups,
we consider the most classical and famous example, that is k = Q and
K = Q(µp), the cyclotomic field of p-th roots of unity for some odd prime p.
Put G = Gal(Q(µp)/Q). Let Ĝ be the group consisting of p-adic characters
χ : G → Q×

p for G = Gal(Q(µp)/Q). For any Zp[G]-module M and any

χ ∈ Ĝ, we define M(χ) = {x ∈M | σ(x) = χ(σ)x for all σ ∈ G}, then M is
decomposed into M =

⊕
χ∈ĜM(χ) where χ runs over all characters of G.

Thus we have AK =
⊕

χ∈ĜAK(χ). In this article, we concentrate on the
minus class group, so suppose χ is an odd character, namely χ(ρ) = −1 where
ρ is the complex conjugation in G. Let ω ∈ Ĝ be the Teichmüller character
giving the action on the group of p-th roots of unity. Then χ(ρ) = −1 implies
that we can write χ = ωi for odd i. We take i in the range 1 ≤ i ≤ p − 2.
It is not difficult to check that AωK = 0 ([35] Proposition 6.16). For the
rest of the i, the following famous theorem is proved by Mazur and Wiles
([28] Chap.I Theorem 2) as a corollary of the Iwasawa main conjecture by
building on the efforts of many people including Herbrand and Ribet.

Theorem 2.1. (Mazur and Wiles) Suppose that i is odd such that 1 < i ≤
p− 2. Then for K = Q(µp), we have

#Aω
i

K = #Zp /L(0, ω−i) = #Zp /B1,ω−i .

Note that the generalized Bernoulli number B1,ω−i = 1
p

∑p−1
a=1 ω

−i(a)a
is in Zp in this range of i. Also, we know B1,ω−i ≡ Bp−i/(p − i) (mod p)
where Bp−i is the (p − i)-th Bernoulli number. Thus the above theorem is
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a refinement of the famous theorem by Herbrand and Ribet

p | Bp−i ⇐⇒ Aω
i

Q(µp)
6= 0.

Since the Kubota-Leopoldt p-adic L-function for ω1−i has no trivial zero,
the above theorem is an immediate consequence of the Iwasawa main conjec-
ture. In order to treat more general character χ, we encounter the difficulty
coming from “trivial zeros”.

2.2 semi-simple case

We consider a general abelian CM-extension K/k. Namely, we suppose that
k is a totally real field, K is a CM-field, and K/k is a finite abelian extension
with Galois group G. We first assume that G is of order prime to p. We
denote by Ĝ the group of p-adic characters χ : G → Q×

p where Qp is an

algebraic closure of Qp. For χ1, χ2 ∈ Ĝ, we define an equivalence relation

∼ by χ1 ∼ χ2 ⇐⇒ χ1 = σχ2 for some σ ∈ Gal(Qp/Qp). Then since #G is
prime to p, Zp[G] is decomposed into a product of discrete valuation rings;

Zp[G] =
⊕

χ∈Ĝ/∼

Oχ

where Oχ = Zp[Imageχ] on which G acts via χ. Therefore, any Zp[G]-
module M is also decomposed as

M =
⊕

χ∈Ĝ/∼

Mχ

where Mχ = M ⊗Zp[G] Oχ. Thus, in order to know the size of a G-module
M , it suffices to know the orders of all the Mχ. We note that if #G divides
p− 1, the image of χ is in Zp, and Mχ is isomorphic to M(χ) defined in the
previous subsection.

Since we assumed p is prime to #G, p has to be odd. Then AK =
A+
K ⊕A

−
K where A±

K is the ±-eigenspace of the complex conjugation ρ ∈ G.
We can decompose

A−
K '

⊕
χ∈∆̂/∼
χ(ρ)=−1

AχK

where χ runs over all equivalence classes of odd characters.
For an odd character χ of G such that χ 6= ω, we know by Deligne and Ri-

bet [11] and Pierrette Cassou-Noguès [7] that L(0, χ−1) is in Oχ (and is non-
zero) where L(s, χ) is the L-function of χ. For χ = ω, #µp∞(K)L(0, ω−1)
is in Oω = Zp where µp∞(K) is the group of p-power roots of unity in K.

4



Theorem 2.2. (Dasgupta and Kakde) Suppose that χ is an odd character
such that χ 6= ω. Then we have

#AχK = #(Oχ/(L(0, χ
−1))). (1)

For χ = ω, we get

#AωK = #(Oω/(#µp∞(K)L(0, ω−1))). (2)

We will give a proof of this theorem in §2.5.

Remark 2.3. (1) If χ(p) = 1 for some p-adic prime p of k, the p-adic L-
function Lp(s, χ

−1ω) (of Deligne and Ribet) has a trivial zero at s = 0. In
this case, the descent argument does not work well, and one cannot directly
deduce Theorem 2.2 from the Iwasawa main conjecture. When k = Q,
Mazur and Wiles proved Theorem 2.2 by a detailed study of the descent
argument ([28]). Some partial results were known before Dasgupta and
Kakde (for example, if there is at most one p-adic prime such that χ(p) = 1,
then it was proved in [5] Cor. 1.9 that the conclusion of Theorem 2.2 holds),
but a complete proof of Theorem 2.2 was first obtained through the work
of Dasgupta and Kakde (see §2.5). They did not use the Iwasawa main
conjecture in their proof, and studied directly the class group (unramified
extensions) of a number field.
(2) The right hand sides of (1) and (2) are determined by χ and independent
of K. Hence, the left hand sides of (1) and (2) should not depend on K
either. This can be easily checked as follows. Let Kχ be the CM-field
corresponding to Kerχ. Then the norm argument shows that the natural
map (AKχ)

χ ≃−→ (AK)χ is bijective since [K : k] is prime to p.

2.3 general case

Suppose now that K/k is a CM-extension, and G = Gal(K/k) is a general
abelian group. From this subsection through §2.5, we assume p > 2. We
write G as G = ∆×Gp where ∆ is of order prime to p and Gp is a p-group.
Since Zp[∆] is decomposed into Zp[∆] =

⊕
χ∈∆̂/∼Oχ, we have

Zp[G] =
⊕

χ∈∆̂/∼

Oχ[Gp].

Therefore, any Zp[G]-module M is also decomposed as

M =
⊕

χ∈∆̂/∼

Mχ
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where Mχ =M ⊗Zp[∆] Oχ, which is an Oχ[Gp]-module.
Recall that we are assuming p > 2. We study

A−
K =

⊕
χ∈∆̂/∼
χ(ρ)=−1

AχK . (3)

Note that this is decomposition with respect to the action of ∆, not of G.
So no information is lost in the above decomposition.

To understand a Zp[G]-module, we study its Fitting ideal (see [29] for
the Fitting ideal FittR(M) of an R-module M) instead of its order. Note
that if R is a discrete valuation ring with finite residue field and M is a
finitely generated torsion R-module, then we have #(R/FittR(M)) = #M .

As we mentioned in §1, the Pontryagin dual (A−
K)∨ of A−

K has better
properties than the module A−

K itself when we compute the Fitting ideals
(see [13], [23], [14]). However, we note here that Atsuta and Kataoka in
their recent paper [1] determine the Fitting ideal of the (T -smoothed) class
group (ATK)− (not the dual), assuming the equivariant Tamagawa number
conjecture for the minus part of K/k and Gm. Since the equivariant Tama-
gawa number conjecture in this case was recently proved by Bullack, Burns,
Daoud, and Seo [2] and also by Dasgupta, Kakde, and Silliman [9], the result
by Atsuta and Kataoka is now unconditional. The shape of the Fitting ideal
of (ATK)− is more complicated than that of ((ATK)−)∨.

We go back to our problem. Our objective is to know FittZp[G]((A
−
K)∨).

To do this, it is enough to determine FittOχ[Gp]((A
χ
K)∨) for all odd χ ∈ ∆̂

by the above decomposition.

We first define the Stickelberger ideals. For a finite abelian extension
M/k and a finite set S of primes of k, we define the Stickelberger element
θM/k,S as follows. We define

θM/k,S(s) =
∏

ψ∈Ĝal(M/k)

LS(s, ψ
−1)ϵψ

where LS(s, ψ
−1) is the S-truncated L-function for ψ−1, and

ϵψ =
1

#Gal(M/k)

∑
σ∈Gal(M/k)

ψ(σ)σ−1.

We define θM/k,S = θM/k,S(0), which is known to be in Q[Gal(M/k)] by
Klingen and Siegel. We denote by Sram(M/k) the set of all places of k
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ramifying in M/k. If S contains Sram(M/k), we also know by Deligne and
Ribet [11] and Pierrette Cassou-Noguès [7] that

AnnZ[Gal(M/k)](µ(M))θM/k,S ⊂ Z[Gal(M/k)] (4)

where AnnZ[Gal(M/k)](µ(M)) is the annihilator ideal of the group µ(M) of
roots of unity in M .

When S = Sram(M/k), we simply write θM/k for θM/k,Sram(M/k).
Going back to our CM-extensionK/k, we denote by S∞ the set of infinite

places of k. For v ∈ Sram(K/k)\S∞, let Iv be the inertia group of v in G, and
NIv = Σσ∈Ivσ the norm element of Iv. For any subset J of Sram(K/k) \S∞,
let KJ be the fixed subfield of the subgroup of G generated by Iv for all
v ∈ J (so KJ/k is the maximal subextension of K/k that is unramified
at all primes in J), and put NJ =

∏
v∈J NIv ∈ Z[G]. If J is empty, we

define KJ = K and NJ = 1. Then the multiplication by NJ defines a
homomorphism

NJ : Q[Gal(KJ/k)] −→ Q[G],

which we also denote by the same letter NJ . This is not a norm homo-
morphism for K/KJ but the multiplication by some constant of the norm
homomorphism. We define Θ(K/k) to be the Z[G]-module in Q[G] gener-
ated by

{NJ(θKJ/k,Sram(K/k)\J) | J ⊂ Sram(K/k) \ S∞}.

An alternative definition of this module Θ(K/k) is as follows. Put Uv =

(NIv , 1 −
NIv
#Iv

Frob−1
v )Z[G] ⊂ Q[G] where Frobv is the Frobenius of v in G,

and w =
∑

ψ∈Ĝ L(0, ψ
−1)ϵψ ∈ Q[G]. The difference between w and θK/k,S is

that the L-functions appearing in the definition of θK/k,S are S-imprimitive.
Then

Θ(K/k) = (
∏

v∈Sram(K/k)\S∞

Uv)w ⊂ Q[G].

The above equality is proved in Proposition 3.1 in [25]. We adopt the first
definition of Θ(K/k) in this article because it is more intuitive, and also
useful below. We define

Θ(K/k)p = (Θ(K/k)⊗ Zp)− ⊂ Qp[G]
−.

Consider the decomposition Qp[G] =
⊕

χ∈∆̂/∼Oχ[1/p][Gp]. For an el-

ement x ∈ Qp[G], we write x = (xχ)χ where xχ is the χ-component in
Oχ[1/p][Gp]. For a Zp[G]-moduleM , we also denote byMχ the χ-component
of M .
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We assume that χ 6= ω, and consider Θ(K/k)χp ⊂ Oχ[1/p][Gp]. Then,
by the above-mentioned property (4) that Deligne and Ribet and Cassou-
Noguès proved, we have

NJ(θKJ/k,Sram(K/k)\J)
χ ∈ Oχ[Gp].

It follows from the definition of Θ(K/k) that Θ(K/k)χp ⊂ Oχ[Gp].
For any group ring R[G] we denote by x 7→ x# the involution R[G] −→

R[G] induced by σ 7→ σ−1 for all σ ∈ G. Greither in [13] proved the
following theorem, assuming the equivariant Tamagawa number conjecture.
We will explain in §2.5 that the main theorem of Dasgupta and Kakde in
[8] unconditionally implies the following theorem.

Theorem 2.4. (Dasgupta and Kakde) Suppose that χ is an odd character
of ∆ with χ 6= ω. Then we have

FittOχ[Gp]((A
χ
K)∨) = (Θ(K/k)χp )

#.

In the simplest setting that Gp = 1, the above equality becomes

FittOχ(A
χ
K) = FittOχ((A

χ
K)∨) = θχK/k,SOχ = L(0, χ−1)Oχ

where S = Sram(K/k). Thus Theorem 2.4 implies Theorem 2.2 (1) in the
previous subsection.

Theorem 2.2 can be generalized to a more general order character.

Corollary 2.5. Suppose that ψ is an odd character of G with ψ|∆ 6= ω. Let
Kψ be the subfield of K such that Gal(Kψ/k) is isomorphic to the image of
ψ by ψ. We put (AKψ)ψ = (AKψ)⊗Zp[Gal(Kψ/k)]Oψ where Oψ = Zp[Imageψ]
on which the Galois group acts via ψ. Then we have

#(AKψ)ψ = #Oψ/(L(0, ψ
−1)).

In the case that p divides the order of ψ, (AK)ψ is different from (AKψ)ψ,
in general, and we have to consider Kψ to get the above formula.

When k = Q, the above corollary was proved by D. Solomon in [33].

Proof. Put M = Kψ. We apply Theorem 2.4 to the extension M/k. We
write Gal(M/k) = ∆M × (GM )p. Put χ = ψ|∆M . Then χ 6= ω by our
assumption. By the definition of Θ(M/k)χp , the image of Θ(M/k)χp in
Oχ[(GM )p] under the homomorphism ψ : Oχ[(GM )p] → Oψ induced by
ψ, is generated by ψ(θM/k,S) where S = Sram(M/k). This shows that

FittOψ((AM )ψ) = FittOψ(((AM )ψ)
∨) = ψ(FittOχ[Gp]((A

χ
M )∨))

= ψ(θM/k,S)Oψ = L(0, ψ−1)Oψ.
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2.4 ω-component

Let ω be the Teichmüller character. By what we explained in the previous
subsection, it suffices to determine FittOω [Gp]((A

ω
K)∨) to know FittZp[G]((A

−
K)∨).

In this subsection, to give a good understanding of the ω-component, we
provide a numerical example. Take

k = Q(
√
1901), K = k(

√
−3, α, β) and p = 3

where α and β satisfy α3 − 84α − 191 = 0 and β3 − 57β − 68 = 0. Then
G = Gal(K/k) = ∆ × Gp = Z /2Z×(Z /3Z)⊕2. A machine computation
shows that

A−
K = AωK = Z /27Z⊕Z /9Z⊕(Z /3Z)⊕6,

and we can compute the action of G on it (see [27] §2 for the Galois action).
Put Sram = Sram(K/k). Since 3 is inert in k/Q and totally ramified in

k(β)/k, 3 is in Sram. Also, k(α)/k is unramified everywhere, and k(β)/k is
unramified outside 3. Therefore, Sram consists of 3 and two infinite places
(#Sram = 3).

For p = 3, we compute the Fitting ideal of the dual of the class group to
get

FittOω [Gp]((A
ω
K)∨) = m2 θ#K/k,Sram

= m2 θ#K/k (5)

where m is the maximal ideal of the local ring Oω[Gp] (see [15] §4 Page 962).
For this numerical example, it is easy to compute Θ(K/k)ωp = θωK/kOω[Gp] ⊂

Qp[Gp]. Also, it is easy to check AnnOω [Gp](µ(K)) = AnnOω [Gp](µ(K)) = m.
These computations show that

FittOω [Gp]((A
ω
K)∨) = m2 θ#K/k 6= (AnnOω [Gp](µ(K))Θ(K/k)p)

ω,# = m θ#K/k.

This example shows that (AnnOω [Gp](µ(K))Θ(K/k)p)
# is not in FittOω [Gp]((A

ω
K)∨),

and that a simple guess FittOω [Gp]((A
ω
K)∨) = (AnnOω [Gp](µ(K))Θ(K/k)p)

ω,#

does not hold, in general.
We will later give a general theorem (see Corollary 3.6), which implies (5)

theoretically. This Corollary 3.6 describes FittOω [Gp]((A
ω
K)∨) under certain

assumptions. However, the author does not know a description in a general
setting.

Problem 2.6. For a general abelian CM-extension K/k such that µp ⊂ K×,
describe FittOω [Gp]((A

ω
K)∨) using Stickelberger elements.
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Remark 2.7. For k = Q and K = Q(µn), the cyclotomic field of n-th roots
of unity for some n (or more generally, when K satisfies the condition (Ap)
in [22] §3.1), we can show that

FittZp[G]−(A
−
K) = Θ(K/k)p ∩ Zp[G]−

(see [26]). However, even for k = Q and K = Q(µn) with certain n, we have

FittZp[G]−((A
−
K)∨) 6= Θ(K/k)#p ∩ Zp[G]−.

We can see this fact by studying the ω-complonent (AωK)∨ though we do not
give here the details.

2.5 T -smoothing

In this subsection we introduce the main theorem of Dasgupta and Kakde
in [8], and deduce theorems in the subsections §2.2 and 2.3 from it.

Let S, T be finite sets of places of k such that S ⊃ S∞ and S ∩ T = ∅.
For any finite abelian CM-extension K/k, the S-truncated equivariant

zeta function θK/k,S(s) was defined in §2.3. We define

θTM/k,S(s) =
∏

ψ∈Ĝal(M/k)

(
∏
v∈T

(1− ψ(v)−1N(v)1−s))LS(s, ψ
−1)ϵψ

and the (S, T )-Stickelberger element by θTK/k,S = θTK/k,S(0). Therefore, if T
consists of primes which are unramified in K, we have

θTK/k,S = θTK/k,S(0) = (
∏
v∈T

(1− Frob−1
v N(v)))θK/k,S(0). (6)

Thus, if S ⊃ Sram(K/k) and T is non-empty, by the property (4) we have
θTK/k,S ∈ Z[Gal(K/k)]. We simply write θTK/k for θTK/k,Sram(M/k).

Now we define the T -smoothed Stickelberger ideal Θ(K/k)T to be the
ideal of Z[Gal(K/k)] generated by

{NJ(θ
T
KJ/k,Sram(K/k)\J) | J ⊂ Sram(K/k) \ S∞}

where NJ , KJ are as in §2.3. This ideal is called the Sinnott-Kurihara ideal
([8] page 295). We put Θ(K/k)Tp = (Θ(K/k)T ⊗ Zp)−.

We denote by OK,S the ring of S-integers (integral elements outside S)
of K. Let TK be the set of primes of K above T . We define the (S, T )-
unit group by (OTK,S)× = {x ∈ O×

K,S | x ≡ 1 (mod w) for all w ∈ TK}, and
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define ClTK,S to be the ray class group of OK,S modulo Πw∈TKw. We assume

that (OTK,S)× is Z-torsion free. This condition is mild, and is satisfied, for
example, if T contains at least two primes of different residue characteristics.

When S = S∞, we write (OTK)× for (OTK,S∞
)×, and ClTK for ClTK,S∞ .

We fix a prime p and define ATK = ClTK ⊗Zp. As in §2.3, we consider the
Pontryagin dual ((ATK)−)∨. Recall that G = Gal(K/k).

The next theorem was conjectured by the author ([25] Conjecture 3.2)
and proved by Dasgupta and Kakde ([8] Theorem 3.5) as the main theorem
of [8].

Theorem 2.8. (Dasgupta and Kakde [8] Theorem 3.5) Suppose that (OTK)×

is Z-torsion free, and that p is odd. Then we have

FittZp[G]−(((A
T
K)−)∨) = (Θ(K/k)Tp )

#.

We first state the immediate consequences of this groundbreaking theo-
rem.

Corollary 2.9. (1) (Strong Brumer-Stark conjecture, [8] Theorem 1.3)
We have (θTK/k)

# ∈ FittZp[G]((A
T
K)∨).

(2) If Gp is cyclic, we have

AnnZp[G](µ(K))θK/k ⊂ FittZp[G](AK)

and
(AnnZp[G](µ(K))θK/k)

# ⊂ FittZp[G]((AK)∨).

Proof. Since θTK/k is in Θ(K/k)T by definition, Theorem 2.8 implies (1) by

noting that (θTK/k)
+ = 0.

Suppose that Gp is cyclic. Then for any finite Zp[G]-module M , we
have FittZp[G](M)# = FittZp[G](M

∨) (cf. [28] Appendix Proposition 1).

Therefore, we have θTK/k ∈ FittZp[G](A
T
K). Since the natural homomorphism

ATK → AK is surjective, this implies θTK/k ∈ FittZp[G](AK). This holds for

any T , which implies the first inclusion of (2) by Tate [34] Chap. IV Lemme
1.1. We get the second inclusion of (2), using the first inclusion and the
formula FittZp[G](M)# = FittZp[G](M

∨) again.

Remark 2.10. The above strong Brumer-Stark conjecture is stronger than
the Brumer-Stark conjecture, which predicts that θTK/k ∈ AnnZp[G](A

T
K)

because we now have

θTK/k ∈ FittZp[G]((A
T
K)∨)# ⊂ AnnZp[G]((A

T
K)∨)# = AnnZp[G](A

T
K)

and the Fitting ideal is smaller than the annihilator, in general.
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We will show that Theorem 2.8 implies Theorem 2.4. Suppose that
χ ∈ ∆̂ satisfies χ 6= ω. Then we can take T such that N(v) 6≡ χ(Frobv)
(mod p) for all v ∈ T where N(v) is the norm of v. For w ∈ TK , let κ(w) be
the residue field of w. Since (

⊕
w∈TK κ(w)

× ⊗ Zp)χ = 0 by our choice of T ,

we have (ATK)χ = AχK . Also, since (θTFJ/k,Sram(K/k)\J/θFJ/k,Sram(K/k)\J)
χ is a

unit of Oχ, we have (Θ(K/k)Tp )
χ = Θ(K/k)χp . Thus we get Theorem 2.4.

As we explained after Theorem 2.4, Theorem 2.4 implies Theorem 2.2
(1). Next, we consider Theorem 2.2 (2). We may assume K = Kω = k(µp).
For simplicity, using the Chebotarev density theorem, we take non-empty
T such that every v ∈ T splits completely in K and ordp(#µp∞(K)) =
ordp(N(v)− 1). From the exact sequence

0→ µp∞(K)→ (
⊕
w∈TK

κ(w)× ⊗ Zp)ω → ((ATK)−)ω → AωK → 0,

we know that

ordp(#A
ω
K) = ordp(#((ATK)−)ω)− (#T − 1) ordp(#µp∞(K)).

Since ω(Frobv) = 1 for v in T , Theorem 2.8 implies

ordp(#((ATK)−)ω) = ordp((θ
T
K/k)

ω) = #T ordp(N(v)− 1) + ordp(θ
ω
K/k).

It follows that

ordp(#A
ω
K) = ordp(θ

ω
K/k) + ordp(#µp∞(K)) = ordp(L(0, ω

−1)#µp∞(K)),

which completes the proof of Theorem 2.2 (2).

2.6 Selmer modules

In this subsection, following [5] by Burns, Sano, and the author, we introduce
two Selmer modules, which we will use in §4. Let K/k be a finite extension
of number fields, S, T be finite disjoint sets of places of k such that S ⊃ S∞.
We write SK , TK the set of places of K above S, T , respectively. We define
(see [5] Definition 2.1)

(KT )× = {x ∈ K×| ordw(x− 1) > 0 for all w ∈ TK}

and
SelTS (K) = Coker(

∏
w ̸∈SK∪TK

Z→ HomZ((K
T )×,Z))

12



where the above map is defined by (xw)w 7→ (a 7→
∑

w ordw(a)xw).
Let (OTK,S)× be the (S, T )-unit group, and ClTK,S the ray class group

of OK,S modulo
∏
w∈TK w as in the previous subsection. Then we have an

exact sequence

0→ ClTS (K)∨ → SelTS (K)→ HomZ((OTK,S)×,Z)→ 0

(Proposition 2.2 in [5]) where ClTS (K)∨ is the Pontryagin dual of ClTS (K).
If T = ∅ is the empty set, we write SelS(K) for Sel∅S(K). The following

proposition which we use in §4 shows a relationship between SelS(K) and
the usual discrete Selmer group in H1(K,Q /Z(1)).

Proposition 2.11. We have an isomorphism

Hom(SelS(K),Q /Z) ' {x ∈ K×⊗Q /Z |ιv(x) ∈ Uv⊗Q /Z for all v 6∈ SK}

where ιv : K× ⊗ Q /Z → K×
v ⊗ Q /Z is the map induced by the natural

inclusion K → Kv, and Uv is the unit group of Kv.

Proof. Taking Hom( ∗ ,Q /Z) of the exact sequence∏
v ̸∈SK

Z→ Hom(K×,Z)→ SelS(K)→ 0,

we have an exact sequence

0→ Hom(SelS(K),Q /Z)→ K× ⊗Q /Z→
⊕
v ̸∈SK

(K×
v /Uv)⊗Q /Z,

which completes the proof.

Another Selmer module is the Ritter-Weiss module ∇TS (K), whose defi-
nition we do not describe here. One can define this module, using the global
and local fundamental classes (see [30], [25] §2 and [8] Appendix A), and can
also define it as the cohomology of the “Weil-étale cohomology complex” as
in [5] Definition 2.6. This module sits in an exact sequence

0→ ClTS (K)→ ∇TS (K)→ xK,S → 0

where xK,S = Ker(
⊕

w∈SK Z→ Z) (see Remark 2.7 in [5]).
Suppose that K/k is a finite abelian CM-extension with Galois group

G. We assume that (OTK,S)× is Z-torsion free. If S contains Sram(K/k),

both SelTS (K) and ∇TS (K) have a quadratic presentation as Z[G]-modules,
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namely there is an exact sequence M1 → M2 → SelTS (K) → 0 of finitely
generated Z[G]-modules where M1, M2 are free Z[G]-modules of the same
rank, and the same for ∇TS (K) (see [5] Proposition 2.4 (iv)). Therefore, their
Fitting ideals as Z[G]-modules are principal. A main conjecture in [5] is [5]
Conjecture 7.3. For a CM-extension K/k we consider here, it says that the
Fitting ideals of these two modules are generated by (θTK/k,S)

# and θTK/k,S ,

respectively, though Conjecture 7.3 in [5] treats general abelian extensions
of number fields.

Let p be an arbitrary prime number (p may be 2). We put SelTS (K)p =
SelTS ⊗Zp and ∇TS (K)p = ∇TS (K) ⊗ Zp. For a Zp[G]-module M , we define
M− by M/(1 + ρ)M where ρ is the complex conjugation in G. Then M−
is a Zp[G]− = Zp[G]/(1 + ρ)-module. If p > 2, M− coincides with the
(−1)-eigenspace M− of ρ, which we used in §§2.2, 2.3.

We will use in §4 the following theorem, which was proved by Dasgupta
and Kakde in [8] for p > 2, and by Dasgupta, Kakde, Silliman, and Wang
in [10] for p = 2 (we also need an argument in the proof of Lemma 6 in [9]).

Theorem 2.12. (Dasgupta, Kakde, Silliman, Wang) Suppose that S con-
tains Sram(K/k) and (OTK,S)× is Z-torsion free. Then we have

FittZp[G]−(∇
T
S (K)p,−) = θTK/k,S Zp[G]−, and

FittZp[G]−(Sel
T
S (K)p,−) = (θTK/k,S)

# Zp[G]− .

We first note that the two equations are equivalent. In fact, if A = (aij)

is a relation matrix of ∇TS (K)p as a Zp[G]-module, (tA)# = (a#ji) becomes a

relation matrix of SelTS (K)p (see the proof of Lemma 2.8 in [5]). Therefore,
we have only to prove the first equation.

We note that Dasgupta, Kakde, Silliman, and Wang proved a more del-
icate theorem as a keystone theorem in their proof of the (strong) Brumer-
Stark conjecture. Let Sp be the set of all p-adic places. We put Σ =
(Sram(K/k) ∩ Sp) ∪ S∞ and Σ′

0 = Sram(K/k) \ Σ, and Σ′ = T ∪ Σ′
0. The

theorem which was proved by Dasgupta and Kakde in [8] Theorem 3.3 for
p > 2, and by Dasgupta, Kakde, Silliman, and Wang in [10] Theorem 1.2
for p = 2, is

FittZp[G]−(∇
Σ′
Σ (K)p,−) = θΣ

′

K/k,Σ Zp[G]− , (7)

which they called the keystone theorem. By the argument in the proof of
Lemma 6 in [9], we can change (Σ,Σ′) to (S, T ) to get the first equation in
Theorem 2.12.
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We also note that the minus part of the equivariant Tamagawa number
conjecture for K/k, which is proved in [2] (p > 2) and [9], implies Theorem
2.12 by Theorem 7.5 in [5].

We remark that in [10] they compute FittZp[G]−(∇Σ′
Σ (K)p,−) without

assuming S ⊃ S∞.

3 Iwasawa modules for CM-fields

We assume that p is odd in this section. Let K/k be a finite abelian CM-
extension with Galois group G. What we saw in §2 was that it suffices to
compute FittOω [Gp]((A

ω
K)∨) in order to compute FittZp[G]−((A

−
K)∨).

This is difficult in general, so we study a relatively easier problem, namely
consider the class group of the cyclotomic Zp-extension of K rather than the
class group ofK of finite degree. Let K∞/K be the cyclotomic Zp-extension,
and Kn the n-th layer. Put ΛK∞ = Zp[[Gal(K∞/k)]]. We consider

AK∞ = lim−→AKn

which is a discrete ΛK∞-module. Recall that ∆ is the maximal subgroup of
G with order prime to p. We write Gal(K∞/k) = ∆× Γ where Γ is a pro-p
abelian group. By the action of the complex conjugation ρ, we decompose
AK∞ = A+

K∞
⊕A−

K∞
. The module we want to know is the Pontryagin dual

(A−
K∞

)∨, which is a finitely generated torsion ΛK∞-module. As we saw for

A−
K , using the action of ∆, we have

A−
K∞
'

⊕
χ∈∆̂/∼
χ(ρ)=−1

AχK∞
.

We study (AχK∞
)∨, which is a compact ΛχK∞

' Oχ[[Γ]]-module.

3.1 The case χ 6= ω

We first consider the case χ 6= ω. The Stickelberger elements θχKn/k,S ∈
Oχ[Gal(Kn/k)p] for n� 1 form a projective system, and define an element
θχK∞/k,S ∈ Oχ[[Γ]] for S such that S ⊃ Sram(K∞/k). This is essentially

the p-adic L-function of Deligne and Ribet (for the relation between Stick-
elberger elements and the p-adic L-functions, see §4.1, especially (11)). If
S = Sram(K∞/k), we simply write θχK∞/k for θχK∞/k,S .
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Let Sp be the set of all p-adic places of k. We have the following simple
description of the Fitting ideal of (AχK∞

)∨.

Theorem 3.1. (cf. [25] Theorem 4.4) Suppose that χ is an odd character
of ∆ and χ 6= ω. Then we have

FittOχ[[Γ]]((A
χ
K∞

)∨) = ((
∏

v∈Sram(K∞/k)\(Sp∪S∞)

(1,
NIv

1− Frob−1
v

))θχK∞/k)
#.

Remark 3.2. (1) In the above product, v is not a p-adic prime, so Iv is a
finite group. Also, 1−Frob−1

v is a non-zero divisor in Oχ[[Γ]], and for any sub-

set J ⊂ Sram(K∞/k)\(Sp∪S∞), we can show that (
∏
v∈J(

NIv
1−Frob−1

v
))θχK∞/k is

in Oχ[[Γ]]. This is an advantage of working over the cyclotomic Zp-extension
because we cannot get this expression when we work over K since 1−Frob−1

v

may be a zero divisor in Zp[G].
(2) This theorem was proved in [23] Appendix under the assumption of the
Leopoldt conjecture for k and µ = 0 for K, and was (essentially) proved in
[25] Theorem 4.4 under the assumption of µ = 0 for K. But this assumption
can be removed because Theorem 2.8 implies the above theorem, which we
will explain below.

We will state and prove the T -smoothed version of Theorem 3.1.
Let T be a set of primes satisfying the conditions in Theorem 2.8. The

Stickelberger elements θTK∞/k,S , θ
T
K∞/k(= θTK∞/k,Sram(K∞/k)) in Zp[[Gal(K∞/k)]]

are defined similarly.

Theorem 3.3. ([25] Theorem 4.4) We have

FittZp[[Gal(K∞/k)]]−(((A
T
K∞)−)∨) = ((

∏
v∈Sram(K∞/k)\(Sp∪S∞)

(1,
NIv

1− Frob−1
v

))θTK∞/k)
−,#.

Proof. The proof given in [25] is Iwasawa theoretic, but in order to explain
that the vanishing of the µ-invariant is not needed, we give a proof of this
theorem, which uses Theorem 2.8. Put S = Sram(K∞/k). Using Theorem
2.8 and

FittZp[[Gal(K∞/k)]]−(((A
T
K∞)−)∨) = lim←−FittZp[Gal(Kn/k)]−(((A

T
Kn)

−)∨)

by Theorem 2.1 in Greither and the author [14], we have only to prove

lim←−Θ(Kn/k)
T
p = ((

∏
v∈S\(Sp∪S∞)

(1,
NIv

1− Frob−1
v

))θTK∞/k).
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For v ∈ S\(Sp∪S∞), the inertia subgroup Iv in Gal(K∞/k) is isomorphic
to the inertia subgroup of v in Gal(Kn/k) for all n because v is unramified
in K∞/K. Let J be a subset of S \ (Sp ∪ S∞), and let K∞,J be the fixed
subfield in K∞ of the subgroup generated by Iv for all v ∈ J . If J is empty,
we define K∞,J = K∞. Since all the primes of Kn above p are totally
ramified in K∞/Kn for sufficiently large n, lim←−Θ(Kn/k)

T
p is generated by

{NJ(θ
T
K∞,J/k,S\J) | J ⊂ S \ (Sp ∪ S∞)}.

The image of θTK∞/k in Zp[[Gal(K∞,J/k)]] is (
∏
v∈J(1−Frob−1

v ))θTK∞,J/k,S\J .

Therefore, noting that 1−Frob−1
v is a non-zero divisor in Zp[[Gal(K∞/k)]],

we have

NJ(θ
T
K∞,J/k,S\J) = (

∏
v∈J

NIv

1− Frob−1
v

)θTK∞/k.

Thus we obtain the desired equality we first mentioned.

We can show that Theorem 3.3 implies Theorem 3.1 by the same method
as the proof of Theorem 2.4 in §2.5.

We put ΛK∞ = Zp[[Gal(K∞/k)]], and define Q(ΛK∞) to be the total
quotient ring of ΛK∞ . Let γ be a topological generator of Gal(K∞/K), and
κ : Gal(K∞/k) → Z×

p the cyclotomic character giving the action on µp∞ .
Since γ − κ(γ) is in Ann(µp∞), (γ − κ(γ))θK∞/k ∈ ΛK∞ can be defined as a
projective system by using (4). Thus, we can define θK∞/k ∈ Q(ΛK∞) since
γ − κ(γ) is a non-zero divisor. As in the proof of Theorem 3.3, we put S =
Sram(K∞/k) and define a subfield K∞,J of K∞ as in the proof of Theorem
3.3 for any subset J of S \ (Sp ∪ S∞). Also, NJ : Q(ΛK∞,J

) → Q(ΛK∞) is
defined by the multiplication by

∏
v∈J NIv . Motivated by the above proof,

we define Θ(K∞/k) to be the ΛK∞-submodule of Q(ΛK∞) generated by

{NJ(θK∞,J/k,S\J) | J ⊂ S \ (Sp ∪ S∞)}.

By the integral property (4), we have

AnnΛK∞ (µp∞(K∞))Θ(K∞/k) ⊂ ΛK∞ .

Let χ be a character of ∆ such that χ 6= ω, and Θ(K∞/k)
χ its χ-component

in Q(ΛK∞)χ. Then the above integral propery implies that Θ(K∞/k)
χ ⊂

ΛχK∞
= Oχ[[Γ]]. Also, as we have seen, it coincides with # of the right hand

side of Theorem 3.1. Therefore, Theorem 3.1 can be also stated as

FittOχ[[Γ]]((A
χ
K∞

)∨) = (Θ(K∞/k)
χ)#. (8)
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3.2 The case that K/k is unramified outside p and χ = ω

Now we consider the case that χ = ω, in which our main interest is.
In general, let L/k be a Galois extension and H an abelian subgroup of

order prime to p in Gal(L/k). For a character χ of H, we denote by Lχ the
subfield of L corresponding to Kerχ. Then the natural map AχLχ → AχL is
bijective by norm argument. Therefore, we may assume that µp ⊂ K and
K/k(µp) is a p-extension. Namely, we may assume that ∆ = Gal(k(µp)/k).
So Gal(K∞/k) = ∆ × Γ, and Γ = Gal(K∞/k(µp)) is a pro-p group. We
consider ΛωK∞

' Oω[[Γ]] (note that Oω ' Zp, so ΛωK∞
' Zp[[Γ]]). We are

interested in AωK∞
which is a ΛωK∞

-module.
We denote by F∞ the ∆-fixed subfield of K∞. Then F∞ is a totally real

field, and Gal(F∞/k) = Γ.
We may assume that K ∩ k∞ = k where k∞/k is the cyclotomic Zp-

extension. In fact, since our interest is in AK∞ and we can always take K ′

such that K∞ = K ′
∞ and K ′ ∩ k∞ = k, we do not lose any generality by

the assumption K ∩ k∞ = k. Recall that G = Gal(K/k) = ∆ × Gp where
∆ = Gal(k(µp)/k) and Gp is a finite abelian p-group. By our assumption,
we have

Γ = Gal(K∞/k(µp)) ' Gp × Zp,

and ΛωK∞
= Oω[Gp][[Gal(K∞/K)]].

We first assume in this subsection that K/k is unramified outside p.
Then Sram(K∞/k) \ (Sp∪S∞) is the empty set, so it can be easily seen that
the fractional ideal Θ(K∞/k)

ω defined at the end of the previous subsection
is generated by θK∞/k, namely

Θ(K∞/k)
ω = θωK∞/kOω[[Γ]]. (9)

Suppose that
Gp ' Z /pn1 Z× . . .× Z /pns Z

with 0 < n1 ≤ . . . ≤ ns for some s ∈ Z>0. We first define integers m0,
m1,...,ms(s−1)/2 as in [17] §1.2. Put

φ(α) =
1

2
α(2s− α− 1).

We define m0 = 0 and if v satisfies φ(α) < v ≤ φ(α + 1) for some integer
α ∈ Z with 0 ≤ α ≤ s− 2, then mv is defined by

mv = (s− 1)n1 + . . .+ (s− α)nα + (v − φ(α))nα+1 .
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In particular, mv = vn1 for 0 ≤ v ≤ s− 1, and

m s(s−1)
2

= (s− 1)n1 + (s− 2)n2 + . . .+ ns−1 .

Let AK∞ = AnnΛωK∞
(µp∞) be the annihilator ideal of the group of p-

power roots of unity. Note that µp∞ ⊂ K×
∞. We define an ideal aGp(AK∞)

of ΛωK∞
by

aGp(AK∞) =

s(s−1)
2∑

v=0

pmv A
s(s−1)

2
−v

K∞
,

which is determined only by AK∞ and the structure of Gp as an abelian
group.

We note the following properties on this ideal aGp(AK∞).

(i) aGp(AK∞) ⊂ m
s(s−1)

2
ΛωK∞

where mΛωK∞
is the maximal ideal of ΛωK∞

.

(ii) If n1 = ... = ns = m, then aGp(AK∞) = (pm,AK∞)
s(s−1)

2 .

(iii) In particular, if Gp ' (Z /pZ)⊕s, then aGp(AK∞) = m
s(s−1)

2
ΛωK∞

.

Theorem 3.4. (see [15] Theorem 3.3 (b) and [17] Theorem 1.2) Assume
that K/k is unramified outside p and that K ∩ k∞ = k. Then we have

Fitt
Λω

−1
K∞

((AωK∞)∨) = (aGp(AK∞)AK∞ θωK∞/k)
#

= (aGp(AK∞)AK∞ Θ(K∞/k)
ω)#.

We prove this theorem in §5.1.

Remark 3.5. (1) By the property (4) in §2.3, we know AK∞ θωK∞/k ⊂ ΛωK∞
.

So the right hand side of the equation in Theorem 3.4 is in Λω
−1

K∞
.

(2) If s ≤ 1, Gp is cyclic and aGp(AK∞) = ΛωK∞
. Theorem 3.4 says that

Fitt
Λω

−1
K∞

((AωK∞
)∨) = (AK∞ θωK∞/k)

# in this case. On the other had, if

s ≥ 2, we have aGp(AK∞) ⊂ mΛωK∞
. Therefore, Theorem 3.4 implies that

(AK∞ θωK∞/k)
# is not in Fitt

Λω
−1
K∞

((AωK∞
)∨) whenever s ≥ 2. Compare these

results with Corollary 2.9 (2).
(3) PutX = (AωK∞

)∨. For a character ψ ofGp, consider the ψ-quotientXψ =
X⊗Zp[Gp]Oψ. Then its characteristic ideal char(Xψ) as anOψ[[Gal(K∞/K)]]-
module does not contain information on aGp(AK∞) because aGp(AK∞) is an
ideal of finite index. Thus the above theorem gives finer information, which
is not obtained by the usual main conjecture.
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We define AK ⊂ Oω[Gp] to be the annihilator ideal of µp∞(K). We
define an ideal aGp(AK) of Oω[Gp] by

aGp(AK) =

s(s−1)
2∑

v=0

pmv A
s(s−1)

2
−v

K . (10)

Corollary 3.6. Assume that K/k is unramified outside p, K∩k∞ = k, and
ω(p) 6= 1 for any p ∈ Sp. Then we have

FittOω−1 [Gp]((A
ω
K)∨) = (aGp(AK)AK θωK/k)

#.

Proof. Let c : ΛωK∞
= Oω[[Γ]] → Oω[Gp] be the natural restriction map.

Then we have c(AK∞) = AK and c(aGp(AK∞)) = aGp(AK). By our as-
sumption of the non-existence of trivial zeros (ω(p) 6= 1 for all p ∈ Sp),
the natural map AωK → (AωK∞

)Gal(K∞/K) is bijective. Therefore, taking the
images under the map c of both sides of the equation in Theorem 3.4, we
get this corollary.

Let us go back to the numerical example in §2.4 that k = Q(
√
1901),

K = k(
√
−3, α, β), and p = 3. This example satisfies all the assumptions

of Corollary 3.6. In this example, s = 2, AK is the maximal ideal m of

Oω[Gp], and aGp(AK) = m
s(s−1)

2 = m. Therefore, we theoretically recover
the equality (5) in §2.4 from Corollary 3.6.

3.3 The case that K/k is not unramified outside p and χ = ω

In the previous subsection, we treated the case that K/k is unramified out-
side p. In this subsection, we treat the remaining case, namely we assume
that there is a non p-adic prime which ramifies in K/k.

In this case, we need an important integral element

ϑK∞/k ∈ ΛK∞ ,

whose definition we start with. We put S = Sram(K∞/k) and S
′ = S \ (Sp∪

S∞). Then, by our assumption in this subsection, S′ is not empty. For a
subset J of S′, let NJ , K∞,J ,...be as in §3.1. We define

ϑK∞/k =
∑
J⊂S′

NJ((
∏
v∈J

N(v)−1 − 1

#Iv
Frobv)θK∞,J/k,S\J)

where J runs over all subsets of S′. Here, N(v) is the norm of v and Frobv
is the Frobenius of v. Since N(v) ≡ 1 (mod #Iv) by local class field theory,
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we know that ϑK∞/k is in Θ(K∞/k) where Θ(K∞/k) is the fractional ideal
defined in the end of §3.1. An important property of ϑK∞/k is that it is
in ΛK∞ (it is a holomorphic p-adic L-function). In fact, in order to show
this integrality, the problem lies only in showing the integrality of the ω-
component ϑωK∞/k. We will prove ϑωK∞/k ∈ ΛωK∞

in §5.2 (18). (This reduces
to the property hF∞/k ∈ ΛF∞ for a certain element hF∞/k, which we will
define in §5.2.)

This element
ϑK∞/k ∈ Θ(K∞/k) ∩ ΛK∞

plays the central role in describing the Fitting ideal instead of θK∞/k. This
element ϑK∞/k was introduced by Greither on page 753 in [12] (the notation
ΨS was used in [12]).

Note that this element is defined only in the case S′ 6= ∅ (so we cannot
use this element in the previous subsection). Also, this element is totally
different from the T -modification of Stickelberger elements.

We next introduce Kataoka’s shifted Fitting ideals. Let R be a commu-
tative noetherian local ring, and M a finitely generated torsion R-module.
Suppose that

0→ N → P1 → ...→ Pr →M → 0

is an exact sequence of finitely generated torsion R-modules such that Pi is of

projective dimension ≤ 1 for all i. We define the fractional ideal Fitt
[r]
R (M)

of R, called r-th shifted Fitting ideal of M , by

Fitt
[r]
R (M) =

r∏
i=1

FittR(Pi)
(−1)i FittR(N).

Then the right hand side is independent of the choice of the exact sequence,
and this is well-defined (Kataoka [20] Theorem 2.6).

Let Dv(K∞/k) be the decomposition group of Gal(K∞/k) for v ∈ S′.
This is a subgroup of finite index. We define Z0

K∞
by

Z0
K∞ = Ker(

⊕
v∈S′

Zp[Gal(K∞/k)/Dv(K∞/k)]→ Zp)

where the above map is induced by the augmentation homomorphisms of
Gal(K∞/k)/Dv(K∞/k).

We consider Z0
K∞

(−1) where (−1) is the Tate twist, and its ω−1-component

(Z0
K∞

(−1))ω−1
which is a Λω

−1

K∞
-module. We consider Fitt

[1]

Λω
−1
K∞

((Z0
K∞

(−1))ω−1
).

Then we have
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Theorem 3.7. (see [16] Theorem 0.1) Assume that there is a non p-adic
prime which ramifies in K/k. Then we have

Fitt
Λω

−1
K∞

((AωK∞)∨) = Fitt
[1]

Λω
−1
K∞

((Z0
K∞(−1))ω−1

)ϑω,#K∞/k.

We prove this theorem in §5.2.

Remark 3.8. (1) For more explicit descriptions of Fitt
[1]

Λω
−1
K∞

((Z0
K∞

(−1))ω−1
),

see [16] §§4 and 5. When #Gp = p (i.e. [K : k(µp)] = p), an explicit de-
scription is given in [24] Theorem 0.1.
(2) If ω(p) 6= 1 for all p ∈ Sp, then from Theorem 3.7 we can get the
description of FittOω−1 [Gp]((A

ω
K)∨) as in Corollary 3.6.

4 Equivariant Iwasawa Main Conjecture and its
proof

In this section, we formulate and prove the Equivariant Iwasawa Main Con-
jecture for abelian extensions of totally real fields, including the case p = 2.
Most papers including Ritter and Weiss [31] and Johnston and Nickel [19]
assume p > 2, so we give here a clear view on how we can deduce the Equiv-
ariant Iwasawa Main Conjecture from Theorem 2.12 by Dasgupta, Kakde,
Silliman and Wang, which we stated in §2.6, including the case p = 2. We
also recommend the readers to see Johnston and Nickel [19].

We will use in §5 the Equivariant Iwasawa Main Conjecture for totally
real fields to prove Theorems 3.4, 3.7. The relation between Iwasawa mod-
ules over totally real fields and minus class groups is given in §4.3.

From this section, p is any prime number (p = 2 is allowed). We consider
a finite abelian extension F/k of totally real number fields and the cyclotomic

Zp-extension F∞/F . We put ΛF∞ = Zp[[Gal(F∞/k)]].
Let S∞, Sp be the sets of infinite places and of p-adic places of k, respec-

tively. We also denote by Sram(F/k) the set of places ramifying in F/k. In
this section, we assume that S is a finite set of places of k such that

S ⊃ S∞ ∪ Sp ∪ Sram(F/k).

4.1 formulation

First of all, for a number field L and a finite set S such that S ⊃ S∞ ∪
Sram(L/k), we use a perfect complex RΓc(OL,S ,Zp(1)) by Burns and Flach in
[3] Proposition 1.20, which works well even for p = 2. We write RΓc(OF∞,S ,Zp(1))
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for the projective limit of RΓc(OFn,S ,Zp(1)) where Fn is the n-th layer of
the cyclotomic Zp-extension F∞/F .

We denote by MF∞,S/F∞ the maximal abelian pro-p extension that is
unramified outside S, and put XF∞,S = Gal(MF∞,S/F∞), which is a torsion
ΛF∞-module. Since the weak Leopoldt conjecture

H2
et(OK∞,S ,Qp /Zp) = H2(Gal(LS/K∞),Qp /Zp) = 0

holds where LS/K∞ is the maximal unramified extension outside S, H i of
C• = RΓc(OF∞,S ,Zp(1)) is zero except for i = 2, 3. Using the isomorphism
on Page 86 line 6 in [3], we get H2(C•) = XF∞,S and H3(C•) = Zp. Thus,

we regard C• as an object of Dperf
tors (ΛF∞) which is the derived category of

perfect complexes of ΛF∞-modules, whose cohomology groups are torsion
ΛF∞-modules.

Put K∞ = F∞(µ2p) and ΛK∞ = Zp[[Gal(K∞/k)]]. We write Λ∼
K∞

for
the module of pseudo-measures of Gal(K∞/k) in the sense of Serre [32],
namely the submodule of the total quotient ring Q(ΛK∞) consisting of ele-
ments x ∈ Q(ΛK∞) that satisfy xIGal(K∞/k) ⊂ ΛK∞ where IGal(K∞/k) is the
augmentation ideal of ΛK∞ .

Let κ : Gal(K∞/k)→ Z×
p be the cyclotomic character. For any charater

ψ of finite order, we denote by LS(s, ψ) the S-truncated L-function for ψ.
Then the p-adic L-function gK∞/k,S of Deligne and Ribet is the element in
Λ∼
K∞

(see [32]) satisfying

κnψ(gK∞/k,S) = LS(1− n, ψ)

for any character ψ of Gal(K∞/k) of finite order and for any positive integer

n ∈ Z>0, where we extend a character κnψ : Gal(K∞/k) → Q×
p to a ring

homomorphism ΛK∞ → Qp, and also to Λ∼
K∞
→ Qp.

We define gF∞/k,S ∈ Λ∼
F∞

to be the image of gK∞/k,S under the natural
restriction map Λ∼

K∞
→ Λ∼

F∞
.

The relation between gF∞/k,S and Stickelberger elements in §3 is given
as follows. Consider the Stickelberger element θK∞/k,S ∈ Q(ΛK∞) defined
in §3.1 where Q(ΛK∞) is the total quotient ring of ΛK∞ = Zp[[Gal(K∞/k)]].
We denote by

τ : Q(ΛK∞)→ Q(ΛK∞)

the twist automorphism induced by τ(σ) = κ(σ)−1σ for all σ ∈ Gal(K∞/k).
Then we have

τ(θ#K∞/k,S) = gK∞/k,S , (11)
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so gF∞/k,S is the image of τ(θ#K∞/k,S) under the restriction map Q(ΛK∞)→
Q(ΛF∞).

We denote the determinant functor Dperf
tors (ΛF∞)→ Q(ΛF∞) by Det. Our

formulation of the Equivariant Iwasawa Main Conjecture is as follows.

Theorem 4.1. (Equivariant Iwasawa Main Conjecture) We have

Det(RΓc(OF∞,S ,Zp(1)))−1 = gF∞/k,SΛF∞ .

We can formulate this equality by using K-groups as in [31], [19].

4.2 a proof

We give a proof of Theorem 4.1, using Theorem 2.12. Put K = F (µ2p),
K∞ = F∞(µ2p) = F (µp∞), and ∆ = Gal(K∞/F∞).

Since Gal(F∞/k) is a direct product of a finite abelian group of order
prime to p and a finitely generated Zp-module of rank 1, it is a direct product
of a finite abelian group and Zp. Therefore, we can take a subfield F ′ ⊂ F∞
such that F∞ = F ′k∞ and F ′ ∩ k∞ = k where k∞/k is the cyclotomic Zp-
extension. Taking F = F ′ from the first, we may assume that Gal(F∞/k) '
Gal(F/k) × Gal(k∞/k). This also implies that Gal(K∞/k) ' Gal(K/k) ×
Gal(k∞/k).

If we prove the equality in Theorem 4.1 for F∞/k, then for any interme-
diate field M of F/k and its cyclotomic Zp-extension M∞, we can get the
equality in Theorem 4.1 for M∞/k since gM∞/k,S is the image of gF∞/k,S

under the natural restriction map. Therefore, in order to prove Theorem
4.1, we may assume that F = K+, the maximal totally real subfield of K.
Then K/F is a quadratic extension.

We take T as in Theorem 2.12, and consider SelTS (Kn)p for the n-th layer
Kn of K∞/K. One can define naturally the norm map from SelTS (Km)p to
SelTS (Kn)p for m > n, and SelTS (K∞)p is defined as the projective limit of
SelS(Kn)p. We also define SelS(K∞)p, similarly. Proposition 2.4 (i) in [5]
tells us that there is a distinguished triangle

RΓc(OK∞,S ,Zp)→ RΓc,T (OK∞,S ,Zp)→ (
⊕

w∈TK∞

Qp /Zp(1))∨[−2]→ .

The second cohomology of the first two complexes are SelS(K∞)p, Sel
T
S (K∞)p,

respectively (see Proposition 2.4 (iii) in [5]), and the third cohomology of
them are (Qp /Zp(1))∨, 0, respectively. It follows that we have an exact
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sequence

0→ SelS(K∞)p → SelTS (K∞)p →
⊕

w∈TK∞

Zp(−1)→ Zp(−1)→ 0. (12)

Recall that K/F is a quadratic extension. The Galois group ∆′ =
Gal(K/F ) is generated by the complex conjugation ρ. For any ∆′-module
M , we define M− to be M/(1 + ρ) as in §2.6.

The relationship between Det(RΓc(OF∞,S ,Zp(1))) and Selmer modules
in §2.6 is given by the following lemma.

Lemma 4.2. (1) We have an isomorphism

(SelS(K∞)p)−(1) ' XF∞,S

of ΛF∞-modules for p > 2 where (1) is the Tate twist. For p = 2, there is a
natural injective homomorphism (SelS(K∞)p)−(1)→ XF∞,S whose cokernel
is of order 2.
(2) We have

FittΛF∞ ((SelTS (K∞)p)−(1)) = (
∏
v∈T

(1− Frobv))gF∞/k,SΛF∞ .

Proof. (1) By Proposition 2.11, the Pontryagin dual of SelS(K∞)p is iso-
morphic to H1

et(OK∞,S ,Qp /Zp(1)) = H1(Gal(LS/K∞),Qp /Zp(1)) where
LS/K∞ is the maximal unramified extension outside S. Therefore, for p > 2
the Pontryagin dual of (SelS(K∞)p)− is

H1(Gal(LS/K∞),Qp /Zp(1))ρ=−1 = H1(Gal(LS/K∞),Qp /Zp)∆
′
(1)

= H1(Gal(LS/F∞),Qp /Zp)(1)
= Hom(XF∞,S ,Qp /Zp)(1)

since H i(∆′,Qp /Zp) = 0 for i ≥ 1. Taking the Pontryagin dual again, we
obtain (SelS(K∞)p)− ' XF∞,S(−1).

For p = 2, we know H1(∆′,Qp /Zp) ' Z /2Z, and H2(∆′,Qp /Zp) = 0.
Therefore, the natural map from Hom(XF∞,S ,Qp /Zp) = H1(Gal(LS/F∞),Qp /Zp)
toH1(Gal(LS/K∞),Qp /Zp)∆

′
= ((SelS(K∞)p)

∨)ρ=−1(−1) is surjective and
has kernel ' Z /2Z. Taking the Pontryagin dual, we get the conclusion.

(2) For the complex conjugation ρ, ρ 7→ ±1 induces a ring homomorphism
ΛK∞ → ΛF∞ , which we denote by x 7→ x±, respectively. By Theorem 2.12
we have

FittΛF∞ (SelTS (K∞)p)− = ((θTK∞/k,S)
#)−ΛF∞ .
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We defined τ : ΛK∞ → ΛK∞ in §4.1. We define τF∞ : ΛF∞ → ΛF∞ to be
the map induced by σ 7→ κ(σ)−1σ for any σ ∈ Gal(F∞/k). Then it follows
from Theorem 2.12 and (11) that we have

FittΛF∞ (SelTS (K∞)p)−(1)) = τF∞((θTK∞/k,S)
#)−ΛF∞

= (τ((θTK∞/k,S)
#))+ΛF∞

= τ((
∏
v∈T

(1− FrobvN(v)))θ#K∞/k,S)+ΛF∞

= (
∏
v∈T

(1− Frobv))(gK∞/k,S)+ΛF∞

= (
∏
v∈T

(1− Frobv))gF∞/k,SΛF∞ .

Now we prove Theorem 4.1. Since Theorem 4.1 is an equality of two
invertible ΛF∞-modules, by [4] Lemma 6.1 we have only to prove

Det(RΓc(OF∞,S ,Zp(1)))−1
p = gF∞/k,SΛF∞,p (13)

for every height-one prime p of ΛF∞ .
We take a height-one prime p of ΛF∞ . Then we have Mp = 0 for any

finite ΛF∞-module M . Therefore, the exact sequence (12) and Lemma 4.2
(1) yield an exact sequence

0→ (XF∞,S)p → (SelTS (K∞)p)−(1)p → (
⊕

w∈TK∞

Zp)p → (Zp)p → 0 (14)

of ΛF∞,p-modules. Using Lemma 4.2 (2), we have

Det(RΓc(OF∞,S ,Zp(1)))−1
p = DetΛF∞,p

((XF∞,S)p)
−1DetΛF∞,p

((Zp)p)

= DetΛF∞,p
((SelTS (K∞)p)−(1)p)

−1DetΛF∞,p
((

⊕
w∈TK∞

Zp)p)

= FittΛF∞,p
((SelTS (K∞)p)−(1)p) FittΛF∞,p

((
⊕

w∈TK∞

Zp)p)−1

= gF∞/k,SΛF∞,p .

In the above computation we used DetR(M)−1 = FittR(M) for a finitely
generated torsion R-moduleM of projective dimension ≤ 1. This completes
the proof of Theorem 4.1.
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We give three remarks here. At first, let IGal(F∞/k) be the augmentation
ideal Ker(ΛF∞ = Zp[[Gal(F∞/k)]]→ Zp). If p 6= IGal(F∞/k), then (Zp)p = 0,
and FittΛF∞,p

(XF∞,S)p = gF∞/k,SΛF∞,p. If p = IGal(F∞/k), then (Zp)p = Qp,
and we get FittΛF∞,p

(XF∞,S)p = (γ−1)gF∞/k,SΛF∞,p where γ is a topological
generator of Gal(k∞/k).

Secondly, using the same method, we can easily obtain the usual Iwasawa
main conjecture, proved by Wiles [36]. For a character ψ of Gal(F/k), we
write Oψ = Zp[Image ψ] on which Gal(F/k) acts via ψ, and consider the ψ-
quotient (XF∞,S)ψ = XF∞,S ⊗Zp[Gal(F/k)]Oψ. Then, by the same method as
the above proof, we can easily see that the characteristic ideal char(XF∞,S)ψ
is generated by the image of gF∞/k,S in Oψ[[Gal(k∞/k)]] if ψ is not the
trivial character, and by (γ−1) times the image of gF∞/k,S if ψ is the trivial
character.

Thirdly, if p does not belong to p, then ΛF∞,p is a discrete valuation ring,
and it is easy to work over ΛF∞,p (cf. [6] §3C1, for example). If p belongs
to p, then we have Mp = 0 for any ΛF∞-module M that is finitely generated
over Zp. Therefore, (XF∞,S)p

∼→ ((SelTS (K∞)p)−)p(1) is an isomorphism,
and (13) is also obtained immediately from this isomorphism and Lemma
4.2 (2).

Corollary 4.3. There exists an exact sequence of finitely generated torsion
ΛF∞-modules

0→ XF∞,S → P1 → P2 → Zp → 0

such that the projective dimensions of P1, P2 are ≤ 1, and

FittΛF∞ (P1) FittΛF∞ (P2)
−1 = gF∞/k,SΛF∞

in Q(ΛF∞).

Proof. This seems standard (see [21] Theorem 4.1), but we give here a sketch
of the proof for the convenience of the readers. We can take a complex

C1 d1→ C2 d2→ C3, which is concentrated on degrees 1, 2, 3, and which is
quasi-isomorphic to RΓc(OF∞,S ,Zp(1)) such that Ci are finitely generated
and projective. We have an exact sequence

0→ XF∞,S → C2/d1(C1)
d2→ C3 → Zp → 0.

PutM = Ker(C3 → Zp). Take, for example, t = γ−1 where γ is a generator
of Gal(F∞/F ), and consider the multiplication by t on C3, which is injective.
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Then tC3 is in M because γ acts on Zp trivially. Since d2 : C2/d1(C1)→M
is surjective and C3 is projective, there is a ΛF∞-homomorphism f : C3 →
C2/d1(C1) such that d2 ◦ f is the multiplication by t on C3. Then we can
construct an exact sequence

0→ XF∞,S → Coker f → C3/tC3 → Zp → 0

where both Coker f and C3/tC3 are finitely generated torsion ΛF∞-modules,
whose projective dimensions are ≤ 1. We can take P1 = Coker f and P2 =
C3/tC3. Now, Theorem 4.1 implies the equation in Corollary 4.3.

We remark that we can also construct an exact sequence in Corollary
4.3 concretely, using a variant of the method to construct the sequence (12).

4.3 Relation with minus class groups

We go back to the setting in §§3.2, 3.3, namely p is odd, and K/k is a
CM-extension such that K = F (µp) and F/k is a finite abelian p-extension
of totally real number fields. We studied the class group AK∞ in §3. In
this subsection we give a relationship between such minus class groups and
XF∞,S which we studied in the previous subsection.

Proposition 4.4. Suppose that p is odd. Then we have an isomorphism

XF∞,Sp∪S∞ ' (AωK∞)∨(1).

Proof. We consider SelSp∪S∞(K∞)p. By Proposition 2.11 we know that the
Pontryagin dual of SelSp∪S∞(K∞)p is isomorphic toH1(Gal(LSp∪S∞/K∞),Qp /Zp(1)).

Let EKn be the unit group of Kn and EK∞ =
∪
EKn . By Kummer du-

ality (see Iwasawa [18] the last line on Page 275), we have an exact sequence

0→ EK∞ ⊗Qp /Zp → H1(Gal(LSp∪S∞/K∞),Qp /Zp(1))→ AK∞ → 0.

Since p is odd, ∆ = Gal(K/F ) is of order prime to p. Thus taking the
∆-invariant parts is an exact functor. We have (EK∞ ⊗Qp /Zp(−1))∆ = 0
and

H1(Gal(LSp∪S∞/K∞),Qp /Zp)∆ ' H1(Gal(LSp∪S∞/F∞),Qp /Zp) ' (XF∞,Sp∪S∞)∨.

Therefore, taking (−1)-twist and ∆-invarint parts of the above exact se-
quence, we have an isomorphism

(XF∞,Sp∪S∞)∨ ' AωK∞(−1).

This completes the proof.
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5 S-ramified Iwasawa modules over totally real num-
ber fields

In §4.3 we saw that we have only to know XF∞,Sp∪S∞ to understand the
ω-component of AK∞ . In this section, p is any prime number, and we
assume that F/k is a finite abelian p-extension of totally real number fields
and denote its cyclotomic Zp-extension by F∞ (the field F∞ defined in §3.2
satisfies the above conditions). Without loss of generality, we may assume
that F ∩ k∞ = k where k∞/k is the cyclotomic Zp-extension. We put
Gp = Gal(F/k) and Γ = Gal(F∞/k), so

Γ = Gal(F∞/k) = Gp ×Gal(k∞/k) ' Gp × Zp .

5.1 S-ramified Iwasawa modules

In this subsection, we still assume that S is a finite set of places of k such
that S ⊃ S∞ ∪ Sp ∪ Sram(F/k).

What we study in this subsection is the maximal abelian pro-p extension
MF∞,S/F∞ that is unramified outside S, and its Galois group XF∞,S on
which Γ = Gal(F∞/k) acts. Put ΛF∞ = Zp[[Γ]]. We study XF∞,S as a
ΛF∞-module.

Let gF∞/k,S ∈ Λ∼
F∞

be Deligne-Ribet’s p-adic L-function defined in §4.1.
We define integers (mv)v=0,1,...,s(s−1)/2 as in §3.2. For the augmentation

ideal IΓ of ΛF∞ , we define an ideal aGp(IΓ) of ΛF∞ by

aGp(IΓ) =

s(s−1)
2∑

v=0

pmvI
s(s−1)

2
−v

Γ (15)

which is an ideal of ΛF∞ (cf. (10)).
Greither and the author proved the following theorem in Theorem 3.3

(a) in [15], and Greither, Tokio and the author gave the explicit description
(15) of aGp(IΓ) in [17] §1.2.

Theorem 5.1. ([17] Theorem 1.2) Assume that F/k is a finite abelian p-
extension such that F ∩ k∞ = k with Galois group Gp. Then we have

FittΛF∞ (XF∞,S) = aGp(IΓ)IΓgF∞/k,S .

Proof. We explain here a simple proof of this theorem, using the idea of
Kataoka [20]. Applying the definition of Kataoka’s second shifted Fitting
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ideal which we explained in §3.3 to the exact sequence in Corollary 4.3, we
have

FittΛF∞ (XF∞,S
) = FittΛF∞ (P1) FittΛF∞ (P2)

−1 Fitt
[2]
ΛF∞

(Zp).

By Corollary 4.3, we get FittΛF∞ (P1) FittΛF∞ (P2)
−1 = gF∞/k,SΛF∞ . We

computed Fitt
[2]
ΛF∞

(Zp) in [17] Theorem 1.1 (see [17] Proposition 3.1) to

get Fitt
[2]
ΛF∞

(Zp) = aGp(IΓ)IΓ. These computations yield the equation in
Theorem 5.1.

Remark 5.2. (1) In [17] Theorem 1.2, the vanishing of the µ-invariant of
k∞/k and p > 2 are assumed. However, neither assumption is necessary as
we explained in the above proof.
(2) In the above theorem, we consider the case S ⊃ S∞, but if we consider
the Iwasawa module XF∞,S

such that S 6⊃ S∞, we may have to replace

gF∞/k,S by 2−dgF∞/k,S with some d when p = 2.
(3) There was a guess that FittΛF∞ (XF∞,S

) = IΓgF∞/k,S at some stage. Now
we know by the above theorem that this guess is true only when s ≤ 1.

Proof of Theorem 3.4. Now we prove Theorem 3.4. Recall that p is odd, K =
F (µp) and ∆ = Gal(K/F ). We decompose Q(ΛK∞) =

⊕
χ∈∆̂Q(ΛK∞)χ by

the action of ∆ = Gal(F (µp)/F ). The χ-component Q(ΛK∞)χ is Q(ΛχK∞
) =

Q(Oχ[[Gal(F∞/k)]]). For x ∈ Q(ΛK∞), the χ-component of x is denoted by
xχ ∈ Q(ΛK∞)χ.

We use the automorphism τ ofQ(ΛK∞) defined in §4.1. It is easy to check
that τ gives a bijective from the ω−1-component Q(ΛK∞)ω

−1
to the trivial

character component Q(ΛK∞)1. We also note that the trivial character
component Q(ΛK∞)1 coincides with Q(ΛK∞)∆ = Q(ΛF∞). Also, # gives a
bijective from Q(ΛK∞)ω to Q(ΛK∞)ω

−1
. Consider the Stickelberger element

θK∞/k,S ∈ Q(ΛK∞) and θ#K∞/k,S ∈ Q(ΛK∞). We have

τ(θω,#K∞/k,S)
1 = gF∞/k,S . (16)

from the equation (11).
For any finitely generated torsion Λω

−1

K∞
-module M , we regard M(1) as a

Q(ΛK∞)1 = Q(ΛF∞)-module. Then we have

FittΛF∞ (M(1)) = τ(Fitt
Λω

−1
K∞

(M))1.

Therefore, Proposition 4.4 implies that

FittΛF∞ (XF∞,p) = τ(Fitt
Λω

−1
K∞

((AωK∞)∨))1.
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On the other hand, Theorem 5.1, the equality (16), τ(A#
K∞

)1 = IΓ and

τ(aGp(AK∞)#)1 = aGp(IΓ) imply that

FittΛF∞ (XF∞,p) = τ((aGp(AK∞)AK∞ θωK∞/k)
#)1.

Since τ is bijective, the above two equations give the desired result.

5.2 p-ramified Iwasawa modules

Next, we consider p-ramified Iwasawa modules. Namely, we consider the
maximal abelian pro-p extension MF∞,Sp∪S∞/F that is unramified outside
p, and its Galois group XF∞,Sp∪S∞ . We simply write XF∞,p for XF∞,Sp∪S∞ .

If Sram(F/k) ⊂ Sp, then the Fitting ideal of XF∞,p is known by Theorem
5.1. So we assume that Sram(F/k) 6⊂ Sp in this subsection. We put S =
Sram(F∞/k) and S

′ = S \ Sp. By our assumption, S′ 6= ∅.
We denote by κ : Γ→ Z×

p the restriction of the cyclotomic character to
Γ. Then Greither, Kataoka and the author proved in [16] Theorem 1.5 the
existence of an element hF∞/k ∈ ΛF∞ satisfying

κnψ(hF∞/k) = LS(1− n, ψω−n)
∏
v∈S′

1− ψ(v)N(v)n

1− ψ(v)N(v)n−1
,

for any n ∈ Z>0 and any character ψ of Γ of finite order. In Lemma 2.1 in
[16] we proved

hF∞/k =
∑
J⊂S′

NJ((
∏
v∈J

N(v)−1 − 1

#Iv
Frobv)gF∞,J/k,S\J)

where NJ , Frobv,...are as in §3.3. By (16), the above formula, and the
definition of ϑK∞/k, we have

τ(ϑω,#K∞/k)
1 = hF∞/k . (17)

Since τ gives a bijective from Λω
−1

K∞
to Λ1

K∞
= ΛF∞ , the above equality

together with hF∞/k ∈ ΛF∞ implies that ϑω,#K∞/k ∈ Λω
−1

K∞
and

ϑωK∞/k ∈ ΛωK∞ . (18)

We defined Z0
K∞

in §3.3. Similarly, we define

Z0
F∞ = Ker(

⊕
v∈S′

Zp[Gal(F∞/k)/Dv(F∞/k)]→ Zp).

31



Clearly, this is the ∆ = Gal(K/F )-invariant part of Z0
K∞

, namely (Z0
K∞

)∆ =
Z0
F∞

. Using the notion of Kataoka’s shifted Fitting ideals explained in §3.3,
we consider Fitt

[1]
ΛF∞

(Z0
F∞

), which is a fractional ideal determined only by

decomposition groups of v for v ∈ S′ in Γ = Gal(F∞/k).
Then Greither, Kataoka, and the author proved the following in [16].

Theorem 5.3. ([16] Theorem 0.1) Assume that there is a non p-adic prime
which ramifies in K/k. Then we have

FittΛF∞ (XF∞,p) = Fitt
[1]
ΛF∞

(Z0
F∞)hF∞/k .

Remark 5.4. In [16], p > 2 is assumed. But this assumption was used only
when we applied the equivariant Iwasawa main conjecture in [16] Theorem
3.11, so we can remove this assumption.

Proof of Theorem 3.7. We can prove Theorem 3.7 by the same method
as the proof of Theorem 3.4 in the previous subsection. In fact, since
Z0
K∞

(−1)ω−1
= (Z0

K∞
)∆(−1) = Z0

F∞
(−1), we have Z0

F∞
= Z0

K∞
(−1)ω−1

(1)
and

τ(Fitt
[1]

Λω
−1
K∞

(Z0
K∞(−1)ω−1

)) = Fitt
[1]
ΛF∞

(Z0
F∞).

Therefore, using Proposition 4.4 and (17), we get

τ(Fitt
Λω

−1
K∞

((AωK∞)∨))1 = FittΛF∞ (XF∞,p),

and
τ(Fitt

[1]

Λω
−1
K∞

(Z0
K∞(−1)ω−1

)ϑω,#K∞/k)
1 = Fitt

[1]
ΛF∞

(Z0
F∞)hF∞/k .

It follows from Theorem 5.3 and the bijectivity of τ that

Fitt
Λω

−1
K∞

((AωK∞)∨) = Fitt
[1]

Λω
−1
K∞

(Z0
K∞(−1)ω−1

)ϑω,#K∞/k .

This completes the proof of Theorem 3.7.

6 Generators and relations of S-ramified Iwasawa
modules

This section is an exposition of the paper [21]. We consider a slightly more
general setting than that in §5.1. Suppose that F/k is a finite p-extension
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of totally real number fields with Galois group Gp, which is not necessar-
ily abelian. Our interest is in Iwasawa modules over the cyclotomic Zp-
extension F∞ of F .

We assume that F ∩ k∞ = k, and put Γ = Gal(F∞/k). Our assumption
implies that Γ ' Gp × Zp. Let S be a finite set of places of k, satisfying
S ⊃ S∞ ∪ Sp ∪ Sram(F/k). Let MF∞,S/F∞ be the maximal abelian pro-p
extension that is unramified outside S, and put XF∞,S = Gal(MF∞,S/F∞).

When Gp is abelian, the complicated shape of the Fitting ideal of XF∞,S

(Theorem 5.1) suggests that XF∞,S is a complicated ΛF∞-module. In or-
der to understand such complicatedness, we are interested in the minimal
numbers of generators and of relations of XF∞,S as a ΛF∞-module.

For any R-module M , we denote by genR(M) the minimal number of
generators of M as an R-module. Also, we define rR(M) to be the minimal
number of relations of M as an R-module.

Let Mk,S/k be the maximal abelian pro-p extension that is unramified
outside S. We put

t = dimFp Gal(Mk,S/Mk,S ∩K∞)⊗Z Fp = genZp Gal(Mk,S/Mk,S ∩K∞),

and
s2 = dimFp H2(Gp,Fp) and s3 = dimFp H3(Gp,Fp).

Using the existence of the exact sequence in Corollary 4.3, Kataoka and the
author proved in [21] the following.

Theorem 6.1. ([21] Theorem 3.3)

(1) max{s2, t} ≤ genΛF∞ (XF∞,S) ≤ s2 + t

(2) rΛF∞ (XF∞,S) = genΛF∞ (XF∞,S) + s3

Suppose that Gp is abelian and s = genZ(Gp) as in Theorem 5.1 where
we assume Gp = Z /pn1 Z× . . . × Z /pns Z. Then we have H2(Gp,Z) =∧2Gp andH1(Gp,Z) = Gp. These computations together with the universal
coefficient theorem imply that

s2 = dimFp H2(Gp,Fp) =
s(s− 1)

2
+ s =

s(s+ 1)

2
.

Also, we know that s3 = s(s + 1)(s + 2)/6. In this case, K∞ is in Mk,S .
Therefore, we get

t = genZp Gal(Mk,S/F∞).

From Theorem 6.1 we obtain
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Corollary 6.2. ([21] Theorem 1.1) Under the assumption of Theorem 5.1,
namely the assumption that Gp is abelian, put t = genZp Gal(Mk,S/F∞).
Then we have

max{s(s+ 1)

2
, t} ≤ genΛF∞ (XF∞,S) ≤

s(s+ 1)

2
+ t

and

rΛF∞ (XF∞,S) = genΛF∞ (XF∞,S) +
s(s+ 1)(s+ 2)

6
.

This corollary says that genΛF∞ (XF∞,S) has quadratic growth in s. In
this way, XF∞,S is surely a more complicated module than we first expected.

For numerical examples, see [21] §7. For example, take k = Q, F =

Q(
√
73,
√
89,
√
97), p = 2, and S = {∞, 73, 89, 97}. In this case, we know

s = 3 and t = 4. Therefore, Corollary 6.2 says that 6 ≤ genΛF∞ (XF∞,S) ≤
10. By numerical computation, we could check that genΛF∞ (XF∞,S) = 10.

Finally, we go back to the setting of Corollary 3.6.

Corollary 6.3. Assume that K/k is a finite abelian CM-extension satisfying
all the assumptions of Corollary 3.6. We put F = K∆, Gp = Gal(F/k),
s = genZp(Gp), and t = genZp Gal(Mk,Sp∪S∞/F∞). Then we have

max{s(s+ 1)

2
, t} ≤ genOω [Gp]((A

ω
K)∨) ≤ s(s+ 1)

2
+ t,

and

rOω [Gp]((A
ω
K)∨) ≤ genOω [Gp]((A

ω
K)∨) +

s(s+ 1)(s+ 2)

6
Proof. This follows from the isomorphisms

(AωK)∨
≃←− ((AωK∞)∨)Gal(K∞/K) ' (XF∞,Sp∪S∞)(−1)Gal(K∞/K) .

We revisit the example in §2.4 that k = Q(
√
1901), K = k(

√
−3, α, β),

and p = 3. Suppose that ξ is a generator of Gal(K/F (
√
−3, β)), ν is a

generator of Gal(K/F (
√
−3, α)), and put X = ξ − 1, Y = ν − 1.

Then by the numerical computation in [27] §2, we know that (AωK)∨ has 3
generators e1, e2, e3 and 7 relations; 9e1+(XY 2−X2Y )e3 = 0, Xe1−Y 2e3 =
0, Y e1 − X2e3 = 0, 3e2 + X2Y e3 = 0, Xe2 + Y 2e3 = 0, Y e2 − X2e3 = 0
and 3e3 = 0. (In [27] §2, one more relation X2Y 2e3 = 0 is written, but
this relation is a consequence of the 4-th, 6-th, and 7-th relations.) In this
example, we have genOω [Gp]((A

ω
K)∨) = 3 and rOω [Gp]((A

ω
K)∨) = 7. Thus,

since s = 2, we could check numerically that Corollary 6.3 holds for this
example.
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Journal de Théorie des Nombres de Bordeaux 33 (2021), 971-996.

[26] M. Kurihara and T. Miura, Stickelberger ideals and Fitting ideals of
class groups for abelian number fields, Math. Annalen 350 (2011), 549-
575, Correction 374 (2019), 2083-2088.

36



[27] M. Kurihara and T. Miura, Ideal class groups of CM-fields with non-
cyclic Galois action, Tokyo Journal of Math. 35 (2012), 411-439.

[28] B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Invent
math. 76 (1984), 179-330.

[29] D. G. Northcott, Finite free resolutions, Cambridge Univ. Press, Cam-
bridge New York 1976.

[30] J. Ritter and A. Weiss, A Tate sequence for global units, Compos.
Math. 102 (1996), 147-178.

[31] J. Ritter and A. Weiss, On the “main conjecture” of equivariant Iwa-
sawa theory, J. Amer. Math. Soc. 24 (2011), 1015-1050.

[32] J.-P. Serre, Sur le résidu de la fonction zêta p-adique d’un corps de
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