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Abstract. Let K be an unramified extension of Q2 and µ2n the group of 2n-th
root of unity for a fixed integer n ⩾ 2. In this paper, we give an explicit formula
for the µ2n -valued Hilbert symbol over Kn := K(µ2n) using the theory of (φ,Γ)-
modules.

1. Introduction

In local class field theory, we have a long tradition of describing the reciprocity
map explicitly. Such a theory is usually called explicit reciprocity law. Especially
for Kummer extensions, we can study the behavior of the reciprocity map using the
Hilbert symbol, which we first recall. Let p be a prime number and F a local field
with finite residue field of characteristic p. Here we assume F contains the group of
pn-th roots of unity µpn for some n ∈ Z>0 in a fixed algebraic closure Qp of Qp. The
Hilbert symbol over F is a pairing defined as follows.

Definition 1.1 (Hilbert symbol). We define the pn-th Hilbert symbol (·, ·)F,pn over
F as

(x, y)F,pn :=
ρF (x)( pn

√
y)

pn
√
y

∈ µpn (x, y ∈ F×),

where ρF : F× → Gal(F ab/F ) denotes the local reciprocity map over F and F ab the
maximal abelian extension of F .

The history of explicit reciprocity law began with Kummer’s work in 1858 where
he essentially treated the case F = Qp(ζp) for an odd prime p, and gave an explicit
formula for the p-th Hilbert symbol (x, y)Qp(ζp),p for principal units x, y. Currently,
so many types of explicit formulas are known for the Hilbert symbol. In [3], Artin
and Hasse gave such a formula of (x, y)Qp(ζpn ),pn for special pairs (x, y) ∈ (F×)2 as
in Theorem 4.2 below. Iwasawa generalized their formula for more general pairs in
[15], and then Coleman further generalized it in [6]. Several generalizations of the
Hilbert symbol are now also known. Wiles gave an explicit formula of the generalized
Hilbert symbol for Lubin-Tate extensions of local fields in [19] and de Shalit gave
its generalization in [7]. The Hilbert symbol can be extended to higher local fields.
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Kurihara [17] and Zinoviev [21] gave generalizations of classical Iwasawa’s formula to
ones for higher local fields. Flórez further generalized them for an arbitrary Lubin-
Tate extension in [8]. Kato treated certain cohomological symbol defined for general
local ring which is a vast generalization of the Hilbert symbol and gave an explicit
formula for it in [16].

Thus, the Hilbert symbol has been studied deeply by many people. However, when
p = 2, we still have a less understanding of the symbol than the case p > 2. In fact,
some formulas to compute the symbol we noted above do not work when p = 2. For
example, Kummer, Iwasawa, Wiles, de Shalit, Zinoviev, Flórez and Kato’s result do
not work in such a case. It is because we can not apply some theory to calculate the
symbol in that case. For instance, the theory of syntomic cohomology Kato used in
[16] does not work when p = 2. Thus we often have some difficulties in the theory of
explicit reciprocity law in the case p = 2, and that is the case we treat in this paper.

In [4], Benois calculated the Hilbert symbol with the theory of (φ,Γ)-modules
when p is odd, and reproved Coleman’s explicit formula. In this paper, extending
this Benois’ work, we give an explicit formula for the Hilbert symbol via (φ,Γ)-
modules when p = 2.

Here we describe some details of our main result. We often omit the suffix pn in
the Hilbert symbol (·, ·)F,pn and write it as (·, ·)F if no confusion occurs. Let K be an
unramified extension of Qp, OK its ring of integers and Kn := K(µpn). Choosing a
primitive pn-th root of unity ζpn ∈ µpn , we define another symbol [·, ·]Kn : K×

n ×K×
n →

Z/pn by (x, y)Kn = ζ
[x,y]Kn
pn . The main result in this paper is the following formula.

Theorem (Main result). Suppose n ⩾ 2 and p = 2. Let U1
Kn

be the principal unit
group of Kn. For x, y ∈ U1

Kn
, we have

[x, y]Kn

= −(1 + 2n−1)TrK/Q2

(
Resπn (D log fL(g)− L(f)φ(D log(g))

dπn

π(1 + πn)

)
−2nTrK/Q2

(
Resπn (L(f)φ(Yy)− YxL(g))

dπn

π(1 + πn)

)
.

Here πn is an indeterminate defined in Section 2, f = f(πn), g = g(πn) are power
series of πn in 1+πnOK [[πn]] which satisfy f(ζpn−1) = x, g(ζpn−1) = y, and Resπn

denotes the residue of power series with respect to πn. Power series Yx(πn), Yy(πn) ∈
1
2
OK [[πn]] and operators D,L are defined in Proposition 3.2.

The first term in our formula is similar to Benois’ result in [4, Proposition 2.3.1.],
but our formula has an extra term. It is interesting for the author to see the ap-
pearance of such an extra term since he expected that the result would be a similar
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one to Benois’ result. We explain from where this extra term comes, describing some
difficulties to extend Benois’ work to the case p = 2 and how we overcome them.

To calculate the Hilbert symbol, Benois interpreted the Kummer map κ : K×
n →

H1(Kn,Zp(1)) in terms of (φ,Γ)-modules in [4, Proposition 2.1.5.]. We have an iso-
morphism h1 : H1(Kn,Zp(1))

∼−→ H1
ΦΓ(AKn(1)) where H1

ΦΓ(AKn(1)) denotes certain
cohomology group defined by (φ,Γ)-modules (see Theorem 2.8). For x ∈ U1

Kn
, Benois

determined a representative of the cohomology class h1 ◦ κ(x) explicitly. This is the
most essential part in his work. However, this Benois’ calculation of h1 ◦ κ has 2
in its denominator. Hence this result is no longer valid when p = 2 since we treat
cohomology groups with integral coefficients. Thus we need to calculate h1 ◦ κ with
a different manner. This is the main difficulty in our case p = 2.

One of the main ideas to overcome this difficulty is to compute h1 ◦ κ permitting
the denominators once. In other words, we use the following commutative diagram

U1
Kn

κ // H1(Kn,Z2(1))

ι

��

h1

∼
// H1

ΦΓ(AKn(1))

ιΦΓ

��
H1(Kn,Q2(1))

h1
Q2

∼
// H1

ΦΓ(AKn(1)⊗
Z2

Q2),

and compute the composite homomorphism h1
Q2
◦ ι ◦ κ(x) for x ∈ U1

Kn
. Here, the

isomorphism h1
Q2

: H1(Kn,Q2(1)) → H1
ΦΓ(AKn(1) ⊗ Q2) is a scalar extension of h1

to the field of fractions. The vertical arrows ι, ιΦΓ which are almost injective denote
the morphisms induced by the inclusions between coefficients. We get an explicit
representative of the cohomology class h1

Q2
◦ ι ◦ κ(x) with denominators here. We do

this calculation in Lemma 3.3, and this is the most technical part in this paper. Next,
we determine a suitable new representative of the cohomology class h1

Q2
◦ ι ◦ κ(x)

explicitly within integral coefficients in the proof of Proposition 3.2. Then the new
representative gives a cohomology class in H1

ΦΓ(AKn(1)), the cohomology group with
integral coefficients. The image of this cohomology class under ιΦΓ is h1

Q2
◦ ι ◦ κ(x).

Thus, this new representative is exactly the one which represents h1 ◦κ(x) due to the
commutativity of the above diagram and almost injectivity of ιΦΓ (See Proposition
3.2 for more details).

To determine a new integral representative of the cohomology class h1
Q2
◦ ι ◦ κ(x),

we subtract a suitable 1-coboundary from the old representative of h1
Q2
◦ ι◦κ(x) with

denominators, and make it integral. We construct such a suitable 1-coboundary for
each x ∈ U1

Kn
in Lemma 3.8, solving certain equation of power series. Then we show

the result of the subtraction has no denominators in Lemma 3.9 using the cocycle
condition of H1

ΦΓ(AKn(1)⊗Q2) and explicit calculations of power series.
The extra term in our formula in the main result comes from the modification of

the representative of h1
Q2
◦ ι ◦ κ(x) by subtracting the suitable 1-coboundary. We
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note that our argument can yield Benois’ result when p > 2. In this case, we need
no modifications of the representative of h1

Qp
◦ ι ◦ κ(x) since 2 is invertible, and we

have no extra terms as a result.
Note also that Benois showed his result is the same as Coleman’s formula in [6].

However, because of the extra term in our formula, we do not understand precise
relations between our formula and Coleman’s formula for p = 2.

From a viewpoint of the theory of (φ,Γ)-modules, the author thinks Proposition
3.2 which is a calculation of h1 ◦κ is important. This is the first result which gives an
interpretation of Kummer map with integral coefficients in terms of (φ,Γ)-modules
when p = 2. The author hopes Proposition 3.2 would have some contribution to the
integral theory of (φ,Γ)-modules and its application of the theory of general explicit
reciprocity law of integral p-adic representations.

At the end of this section, we write the outline of this paper. In section 2, we
introduce some basic tools such as (φ,Γ)-modules and describe how to use them for
calculating the Hilbert symbol. In section 3, we give an explicit interpretation of
the Kummer map in terms of (φ,Γ)-modules. Using this interpretation, we finally
calculate the Hilbert symbol and show the main theorem in section 4.

Acknowledgement. The author would like to thank his supervisor Professor Masato
Kurihara heartily for his continued support and helpful discussions. Thanks are also
due to Professor Ivan Fesenko who gave an intensive course on class field theory in
Kyoto in 2018. The course greatly led the author to this topic. The author also
grateful to Professor Victor Abrashkin and Denis Benois. They kindly replied to
author’s questions on their paper [1], [4] respectively. This research was supported
by JSPS KAKENHI Grant Number 21J13502.

2. Preliminaries

This section is devoted to describe some fundamental tools we mainly use to com-
pute the Hilbert symbol.

2.1. (φ,Γ)-modules. We first recall Fontaine’s theory of (φ,Γ)-modules.

Definition 2.1. Let Cp be the p-adic completion of Qp and OCp its ring of integers.
We define

Ẽ+ := lim←−OCp , Ẽ := lim←−Cp.

Here the transition maps of projective limits are the p-th power homomorphisms.

It is a well-known fact that Ẽ+ and Ẽ are perfect rings of characteristic p under
some addition defined properly and componentwise multiplication. We define a val-
uation vẼ on Ẽ as vẼ((x0, x1, . . .)) := vp(x0) where vp is the p-adic valuation on Cp
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normalized as vp(p) = 1. Then Ẽ+ is the valuation ring of vẼ and Ẽ is a complete
discrete valuation ring with respect to vẼ. Fixing a compatible system of roots of
unity {ζpn}n such that ζppn+1 = ζpn (n ⩾ 0), we set ε := (1, ζp, ζp2 , · · · ) ∈ Ẽ+. In the
following, we write W (R) as the Witt ring of R for a perfect ring R of characteristic
p.

Definition 2.2. We define

Ã+ := W (Ẽ+), Ã := W (Ẽ).

Putting π := [ε]−1, we consider the (p, π)-adic topology on Ã+ and Ã. There is an
injective map Fp → Ẽ+ (a 7→ ([a], [a]

1
p , [a]

1
p2 , · · · )) where [·] denotes the Teichmüller

representative and we can identify Fp as a subring of Ẽ+. Hence we can identify OK

as a subring of Ã+. For every integer n ⩾ 1, we set πn := [ε
1
pn ] − 1 and introduce

the following ring AKn of power series in Ã.

Definition 2.3.

AKn := OK{{πn}} :=

{∑
m∈Z

amπ
m
n | am ∈ OK , am −−−−→

m→−∞
0

}
.

This ring AKn is the p-adic completion of OK((πn)). Since OK((πn)) ⊂ Ã and Ã

is p-adically complete, AKn is a subring of Ã. We put An as the p-adic completion
of the maximal unramified extension of AKn in Ã. Let Kcyc := K(ζp∞) and Γn :=
Gal(Kcyc/Kn). We assume Γn is a procyclic group. When p = 2, this holds if
n ⩾ 2 while this holds automatically when p is odd. We fix a topological generator
γn of Γn. Here we see actions of Γn and Frobenius φ on AKn . Since there is a
componentwise action of GKn on Ẽ, we have an action of GKn on its Witt ring Ã.
This action is stable on the subring An and it is well-known that A

GKcyc
n = AKn .

Thus the quotient group Γn = GKn/GKcyc acts on AKn . We can see that γn acts on
πn as γn(πn) = (1+πn)

χcyc(γn)−1 and on the coefficient ring OK trivially, where χcyc

denotes the p-adic cyclotomic character. On the other hand, we have the Frobenius
homomorphism φ on Ã = W (Ẽ) as the lift of p-th power homomorphism on Ẽ. This
induces an action of φ on the subring AKn ⊂ Ã. We can see that φ acts on πn as
φ(πn) = (1 + πn)

p − 1 and on the coefficient ring OK as the Frobenius element in
Gal(K/Qp).

Definition 2.4. A (φ,Γn)-module over AKn is a finitely generated AKn-module
equipped with continuous semilinear actions of φ and Γn which commute with each
other.
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Let B̃+ := Ã+⊗
Zp

Qp, B̃ := Ã⊗
Zp

Qp, BKn := AKn ⊗
Zp

Qp and Bn := An⊗
Zp

Qp. We can

also define the notion of (φ,Γn)-modules over BKn in the same way as Definition 2.4.

2.2. p-adic representations and (φ,Γ)-modules. In [9], Fontaine proved the fol-
lowing striking theorem.

Theorem 2.5 (Fontaine). Let RepZp
GKn be the category of p-adic representations

of GKn over Zp and ΦΓét
AKn

the category of étale (φ,Γn)-modules over AKn. Then
there is a category equivalence

D : RepZp
GKn

∼−→ ΦΓét
AKn

,

where for an object T in RepZp
GKn, the functor D is defined as

D(T ) = (T ⊗
Zp

An)
GKcyc .

Here, we consider a diagonal action of Γn and an action of φ only on the right
component An on D(T ).

We do not define the notion of étale (φ,Γn)-module. Here is an example of Theo-
rem 2.5. Let T := Zp(1) := lim←−µpn , then

D(Zp(1)) = (Zp(1) ⊗
Zp

An)
GKcyc = (An(1))

GKcyc = AKn(1).

In the above computation, we define AKn(1) := Zp(1) ⊗
Zp

AKn .

The similar category equivalence exists between the category RepQp
GKn of p-adic

representations over Qp and the category ΦΓét
BKn

of étale (φ,Γn)-modules over BKn .

Theorem 2.6 (Fontaine). There is a category equivalence

D : RepQp
GKn

∼−→ ΦΓet
BKn

where D(V ) := (V ⊗
Qp

Bn)
GKcyc for an object V in RepZp

GKn.

We can compute the Galois cohomology group of T ∈ RepZp
GKn using the corre-

sponding (φ,Γn)-module D(T ).

Definition 2.7 (Fontaine-Herr). Let T be an object in RepZp
GKn. For the corre-

sponding (φ,Γn)-module D(T ), we define a complex

C•(D(T )) : 0→ D(T ) −→
α

D(T )⊕2 −→
β

D(T )→ 0,
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where the maps α, β defined as

α(z) := [((φ− 1)(x), (γn − 1)(x))] (x ∈ D(T )),

β(y, z) := [(γn − 1)(y) + (1− φ)(z)] (y, z ∈ D(T )).

In the following, we write the cohomology group H i(C•(D(T ))) as H i
ΦΓ(D(T )).

Theorem 2.8 (Fontaine-Herr). Let T be an object in RepZp
GKn. For each i ⩾ 0,

we have an isomorphism

hi : H i(Kn, T )
∼−→ H i

ΦΓ(D(T )).

Thanks to Theorem 2.8, for example, an element in H1(Kn,Zp(1)) correspond to
a cohomology class in H1

ΦΓ(AKn(1)) represented by a pair of power series in AKn(1)
via h1. In the succeeding sections, we use this explicit interpretation of Galois coho-
mology classes to compute the Hilbert symbol.

We note that exactly the same statement as Theorem 2.8 holds for p-adic repre-
sentation V over Qp.

Theorem 2.9 (Fontaine-Herr). Let V be an object in RepQp
GKn. For each i ⩾ 0,

we have an isomorphism

hi
Qp

: H i(Kn, V )
∼−→ H i

ΦΓ(D(V )) := H i(C•(D(V ))).

Here, the complex C•(D(V )) of (φ,Γn)-modules over BKn defined the same way as
in Definition 2.7.

We can compute a cup product of Galois cohomology groups using that of (φ,Γn)-
modules and isomorphism hi.

Proposition 2.10 (Fontaine-Herr). Let T1, T2 be objects in RepQp
GKn. We define a

bilinear pairing ∪ΦΓ : H1
ΦΓ(D(T1))×H1

ΦΓ(D(T2))→ H2
ΦΓ(D(T1 ⊗ T2)) as

[(m1, n1)] ∪ΦΓ [(m2, n2)] := [n1 ⊗ γn(m2)−m1 ⊗ φ(n2)],

where m1, n1 ∈ D(T1) and m2, n2 ∈ D(T2). Then the following diagram is commu-
tative.

H1(Kn, T1)×H1(Kn, T2)
∪ //

h1×h1

��

H2(Kn, T1 ⊗ T2)

h2

��
H1

ΦΓ(D(T1))×H1
ΦΓ(D(T2))

∪ΦΓ // H2
ΦΓ(D(T1 ⊗ T2))

Note that Fontaine and Herr gave cup products of cohomology groups of (φ,Γn)-
modules for other degrees than H1. See [12] or [13] for details.

Finally, we introduce an isomorphism TRKn : H2
ΦΓ(AKn(1)) → Zp corresponding

the invariant map invKn : H1(Kn,Zp(1)) → Zp in local class field theory. In the
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following, we consider ε as a basis of the Tate twist Zp(1) and write a⊗ε for a ∈ AKn

when we consider a as an element in AKn(1). In [4], Benois proved the following
result.

Proposition 2.11 (Benois). Define TRKn : H2
ΦΓ(AKn(1))→ Zp as

TRKn([a⊗ ε]) := − pn

log(χcyc(γn))
TrK/QpResπn

(
adπn

1 + πn

)
(a ∈ AKn),

where for an element f(πn)dπn =
(∑

i∈Z aiπ
i
n

)
dπn of an OK-module of differential

1-forms Ω1
AKn/OK

, we define Res(f(πn)) := a−1. Then the following diagram is
commutative:

H2(Kn,Zp(1))

h2

��

invKn // Zp

H2
ΦΓ(AKn(1))

TRKn

88rrrrrrrrrrr

Remark 2.12. Although Benois proved the above result for an odd prime p, we can
check the result is also valid for p = 2 by the similar way in [4].

2.3. Fontaine’s crystalline period ring. In our calculation of the Hilbert symbol,
we use Fontaine’s crystalline period ring Acrys which we recall below.

Definition 2.13. We define a ring homomorphism θ as

θ : Ã+ → OCp ,
∞∑
i=0

[xi]p
i 7→

∞∑
i=0

(xi)0p
i

where xi ∈ Ẽ+ and (xi)0 ∈ OCp denotes its 0-th component.

This is a homomorphism of OQur
p

-algebra where Qur
p denotes the maximal unram-

ified extension of Qp and OQur
p

its ring of integers. Put v := π/π1 = 1 + [ε
1
p ] +

[ε
1
p ]2 + · · · + [ε

1
p ]p−1. Then it is a well-known fact that the kernel of θ is principal

and generated by v. We put A0
crys := Ã+[{vm

m!
}m>0], the divided power envelop of Ã+

with respect to Kerθ. We define Acrys as its p-adic completion. More explicitly,

Acrys =

{
∞∑

m=0

am
vm

m!

∣∣∣∣∣ am → 0 (m→∞) p-adically

}
.

We define an element t ∈ Acrys as

t := log(1 + π) =
∞∑

m=1

(−1)m+1π
m

m
.
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In fact, this infinite sum converges in Acrys with respect to its p-adic topology. We
put B+

crys := Acrys[
1
p
] and Bcrys := B+

crys[
1
t
]. Here we state a lemma we use in the next

section.

Lemma 2.14. Suppose a ∈ Ã+ satisfies θ(a) = 1, then

log a :=
∞∑

m=1

(−1)m+1 (a− 1)m

m

converges in Acrys.

(Proof of Lemma 2.14)
Since θ(a) = 1, there exist x ∈ Ã+ such that a = 1 + xv. Then we have,

log a = log(1 + xv) =
∞∑

m=1

(−1)m+1 (xv)
m

m
.

While

(−1)m+1 (xv)
m

m
= (−1)m+1(m− 1)! · xm · v

m

m!
.

The factor (m− 1)! converges to 0 as m→∞ with respect to the p-adic topology in
Acrys, which implies the convergence of log a in Acrys. □

2.4. Strategy of the calculation. In this subsection, we briefly describe the method
of calculation. We mainly follow Benois’ strategy in [4].　There is an exact sequence
of GKn-modules

1→ µpm → Kn → Kn → 1

from which we get κm : K×
n → H1(Kn, µpm) as its connecting homomorphism. Taking

the inverse limit with respect to m, we have

κ : K×
n → H1(Kn,Zp(1))

which we call the Kummer map. Using this κ, we have the following cohomological
interpretation of the Hilbert symbol.

(K×
n )

⊗2

κ⊗2

��

(·,·)Kn

))
H1(Kn,Zp(1))

⊗2 ∪Gal // H2(Kn,Zp(2))
mod pn// H2(Kn, µpn)⊗ µpn

invKn

∼
// µpn ,

where ∪Gal denotes the cup product of Galois cohomology groups. Note that since
Kn contains µpn , we have an isomorphism H2(Kn, µ

⊗2
pn )

∼−→ H2(Kn, µpn)⊗ µpn which
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induced by the cup product. On the other hand, the morphisms in the second row
can be calculated using the theory of (φ,Γ)-modules as

H1(Kn,Zp(1))
⊗2

h1⊗2

��

∪Gal // H2(Kn,Zp(2))

h2

��

mod pn// H2(Kn, µpn)⊗ µpn

h2

��

inv

∼
// µpn

H1
ΦΓ(AKn(1))

⊗2 ∪ΦΓ // H2
ΦΓ(AKn(2))

mod pn // H2
ΦΓ(µpn)⊗ µpn ,

TRKn

77ooooooooooooo

where ∪ΦΓ is the cup product we define in Proposition 2.10 and TRKn is the mod
pn reduction of the isomorphism TRKn in Proposition 2.11. Since ∪ΦΓ and TRKn

are given explicitly, all we have to do for the calculation of the Hilbert symbol is an
explicit computation of the composite homomorphism h1 ◦ κ.

Remark 2.15. Kato computed this cup product ∪Gal via the theory of syntomic
cohomology in [16] for more general setting when the residue characteristic p is odd.
Note that this cohomology theory does not work for our case p = 2.

3. Calculation of the Kummer map

In this section, we compute the composite homomorphism h1 ◦ κ.

3.1. explicit calculation of the isomorphism h1. First, we give an explicit for-
mula of the isomorphisms

h1 : H1(Kn,Zp(1))→ H1
ΦΓ(AKn(1)), h1

Qp(1) : H
1(Kn,Qp(1))→ H1

ΦΓ(BKn(1)).

Proposition 3.1. For a cohomology class [c] ∈ H1(Kn,Zp(1)) (resp. H
1(Kn,Qp(1)))

which is represented by a 1-cocycle c : GKn → Zp(1) (resp. Qp(1)), g 7→ c(g)⊗ ε, we
have

h1([c]) = [(φ− 1)(ξc ⊗ ε), (γ̂n − 1)(ξc ⊗ ε) + c(γ̂n)⊗ ε] .

(resp. h1
Qp(1)([c]) = [(φ− 1)(ξc ⊗ ε), (γ̂n − 1)(ξc ⊗ ε) + c(γ̂n)⊗ ε] .)

Here, γ̂n is any lift of γn to GKn and ξc ∈ An (resp. Bn) is an element which satisfies

g(ξc) = ξc − c(g) (∀g ∈ GKcyc).

(Proof of Proposition 3.1)
Since computations for h1 and h1

Qp(1)
are exactly the same, we give a proof only for

h1. The cohomology class [c] ∈ H1(Kn,Zp(1)) corresponds to the following extension
of Zp by Zp(1) as a GKn-module:

0→ Zp(1)→ T[c]
f−→ Zp → 0

We take 1⊗ ε and e as a basis of T[c] over Zp where g ∈ GKn acts on e as g(e) = e+
c(g)⊗ε. Then for an element x := a⊗ε+b·e ∈ T[c] (a, b ∈ Zp), the homomorphism f is
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given by f(x) = b. Applying the functor D, which is exact, we have a corresponding
exact sequence of (φ,Γn)-modules

0→ AKn(1)→ D(T[c])
D(f)−−−→ AKn → 0.

Putting δ : Zp → H1(Kn,Zp(1)) and δΦΓ : Zp = H0
ΦΓ(AKn) → H1

ΦΓ(AKn(1)) as
the connecting homomorphisms of the above exact sequences respectively, we have
a commutative diagram

Zp

h0=id
��

δ // H1(Kn,Zp(1))

h1

��
H0

ΦΓ(AKn) = Zp
δΦΓ // H1

ΦΓ(AKn(1)).

Since δ(1) = [c], we know δΦΓ(1) = h1([c]) by the above diagram. So we compute
δΦΓ(1) following the definition of the connecting homomorphism. By the definition
of the functor D we have,

D(T[c]) =
(
T[c] ⊗ An

)GKcyc = (Zp(1)⊕ Zp · e)GKcyc

= (An(1)⊕ An · e)GKcyc .

For an element x := a⊗ ε+ b · e ∈ An(1)⊕ An · e (a, b ∈ An) and g ∈ GKcyc ,

g(x) = g(a⊗ ε+ b · e) = χcyc(g)g(a)⊗ ε+ g(b)(e+ c(g)⊗ ε)

= (g(a) + g(b)c(g))⊗ ε+ g(b) · e.

Thus x = a⊗ ε+ b · e is fixed by GKcyc if and only if

g(a) + g(b)c(g) = a, g(b) = b (∀g ∈ GKcyc).

From the second condition, b ∈ (An)
GKcyc = AKn and thus the first condition says

g(a) + bc(g) = a (∀g ∈ GKcyc). Hence

D(T[c]) =
{
a⊗ ε+ b · e | a ∈ An, b ∈ AKn s, t g(a) + bc(g) = a (∀g ∈ GKcyc)

}
.

Now we compute δΦΓ(1). First we pick ξc⊗ε+e ∈ D(T[c]) for some ξc ∈ An satisfying
g(ξc) = ξc − c(g) for all g ∈ GKcyc . This element maps to 1 ∈ AKn under D(f) and
we compute its image under the homomorphism α in Definition 2.7 as

α(ξc ⊗ ε+ e) = ((φ− 1)(ξc ⊗ ε+ e), (γn − 1)(ξc ⊗ ε+ e)).

On the first component, we have

(φ− 1)(ξc ⊗ ε+ e) = (φ(ξc)⊗ ε+ e)− (ξc ⊗ ε+ e) = (φ− 1)(ξx)⊗ ε,
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and the second component,

(γn − 1)(ξc ⊗ ε+ e) = (γ̂n − 1)(ξc ⊗ ε) + (γ̂n − 1)(e)

= (γ̂n − 1)(ξc ⊗ ε) + c(γ̂n)⊗ ε.

Here since each term ξc ⊗ ε and e respectively are not fixed by GKcyc although the
element ξc⊗ ε+ e is fixed by GKcyc , we have to take some extension γ̂n of γn ∈ Γn to
GKn in the above computation. Thus we get

α(ξc ⊗ ε+ e) = ((φ− 1)(ξx)⊗ ε, (γ̂n − 1)(ξc ⊗ ε) + c(γ̂n)⊗ ε) .

The cohomology class in H1
ΦΓ(AKn(1)) defined by this pair is nothing other than the

image δΦΓ(1) by the definition of the connecting homomorphism. Hence we obtain
the proposition. □

3.2. Computation of h1 ◦ κ. In the following, we set p = 2. This subsection is
devoted to the computation of the homomorphism

h1 ◦ κ : K×
n → H1(Kn,Z2(1))→ H1

ΦΓ(AKn(1)).

We put (U1
Kn

)f as the free part of the principal unit group U1
Kn

= 〈ζpn〉 ⊕ (U1
Kn

)f of
Kn as a Z2-module. The following is a key proposition for our main result.

Proposition 3.2. For x ∈ (U1
Kn

)f , we have

h1 ◦ κ(x) =
[
L(f(πn)) ·

1

π
⊗ ε, λx(πn)⊗ ε− (χcyc(γn)− 1)Yx(πn)⊗ ε

]
,

where f(π) ∈ 1 + πnOK [[πn]] is a power series which satisfies f(ζ2n − 1) = x for
which the operator L defined as L(f(πn)) := (φ

p
− 1) log(f(πn)). The power series

λ(πn) ∈ OK [[πn]] is uniquely determined one corresponding to the 1-st component
and satisfies

λx(πn) ≡
χcyc(γn)− 1

2n
D log f(πn) mod πOK [[πn]],

where D := (1 + πn)
d

dπn
. The power series Yx(πn) ∈ 1

2
OK [[πn]] is defined as

Yx(πn) :=
1

2

∞∑
i=0

φi(L(f(πn))).

Although the power series Yx(πn) itself has a denominator, the term (χcyc(γn) −
1)Yx(πn) in the second component of h1 ◦ κ(x) is an element of AKn since χcyc(γn)−
1 ∈ 2nZ2 (n ⩾ 2). We prove this key proposition after introducing some lemmas.
First we consider a situation tensored with Q2, in other words, we think κ(x) ∈
H1(Kn,Zp(1)) as an element of H1(Kn,Qp(1)) and compute the image of κ(x) under
the isomorphism h1

Q2
: H1(Kn,Q2(1))→ H1

ΦΓ(BKn(1)) in Theorem 2.9.
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Lemma 3.3. For x ∈ (U1
Kn

)f ,

h1
Q2
◦ κ(x) =

[
L(f(πn)) ·

(
1

2
+

1

π

)
⊗ ε, λx(πn)⊗ ε

]
,

where f(πn) is the same as Proposition 3.2 and λx(πn) ∈ OK [[πn]]⊗
Z2

Q2 satisfies

λx(πn) ≡
χ(γn)− 1

2n
D log f(πn) mod πOK [[πn]]⊗

Z2

Q2.

(Proof of Lemma 3.3)
From Proposition 3.1, it suffices to construct ξκ(x) ∈ Bn explicitly and compute

actions of φ and γ̂n on it. Put ωx := [x, x
1
p , x

1
p2 , . . .] ∈ Ẽ+ and ax := f(πn)

[ωx]
∈ Ã+.

Applying θ : Ã+ → OCp which we defined in subsection 2.3 on ax, we have

θ(ax) = θ

(
f(πn)

[ωx]

)
=

f(θ(πn))

x
=

f(ζ2n − 1)

x
= 1.

Thus log ax defines a well-defined element in Acrys from Lemma 2.14. Since θ(ax) = 1,
there exists a ∈ Ã+ such that ax = 1 + av and log(ax) can be expressed as

log ax = av − (av)2

2
+

(av)3

3
− · · ·+ (−1)m+1 (av)

m

m
+ · · · .(3.1)

Sublemma 3.4. There exists an element bx ∈ Ã+ such that

bx ≡ log ax +
π

2
a2 mod π2B+

crys.

(Proof of Sublemma 3.4.)
Since Ẽ has characteristic 2, we have(

ε− 1

ε1/2 − 1

)2

= (ε1/2 − 1)2 = ε− 1.

Takeing the Teichmüller lift of the both sides, we obtain
[

ε−1
ε1/2−1

]2
= [ε − 1], and

hence

v2 =

(
[ε]− 1

[ε1/2]− 1

)2

≡
[

ε− 1

ε1/2 − 1

]2
= [ε− 1] ≡ π mod 2Ã+.

Thus there exists α ∈ Ã+ such that v2 = π + 2α. We show that the m-th term
(−1)m+1 (av)

m

m
in (3.1) has a suitable representative cm in Ã+ when considered with

mod π2B+
crys for every m > 2.

(Case 1 : 2 ∤ m)



14

In this case, (−1)m+1 (av)
m

m
∈ Ã+ and we see that

vm =
πm

πm
1

=
(π2

1 + 2π1)
m

πm
1

= (π1 + 2)m.

This converges to 0 as m→∞ in Ã+ and so does cm := (−1)m+1 (av)
m

m
.

(Case 2 : 2 | m and m > 2)
Writing m = 2ℓ · s (2 ∤ s, ℓ ⩾ 1), we have

(−1)m+1 (av)
m

m
=

(−1)m+1

s
am · (v

2)2
ℓ−1s

2ℓ
=

(−1)m+1

s
am · (π + 2α)2

ℓ−1s

2ℓ
.

On the last factor, we see that

(π + 2α)2
ℓ−1s

2ℓ
=

(π
2
+ α

)2ℓ−1s

· 22ℓ−1s−ℓ

≡ α2ℓ−1s22
ℓ−1s−ℓ + 22

ℓ−1s−2sα2ℓ−1s−1π mod π2B+
crys,

where since m > 2, we have 2ℓ−1s − 2 ⩾ 0. The right-hand side converges when
m→∞. We put

cm :=
(−1)m+1

s
am ·

(
α2ℓ−1s22

ℓ−1s−ℓ + 22
ℓ−1s−2sα2ℓ−1s−1π

)
.

Then cm ∈ Ã+ is congruent to (−1)m+1 (av)
m

m
mod π2B+

crys and converges to 0 as
m→∞.

Finally, on the second term in (3.1), we see that

(−1)2+1 (av)
2

2
= −a2(π + 2α)

2
= −π

2
a2 − α.

Then we obtain

log ax ≡ av − π

2
a2 − α +

∞∑
m⩾3

cm mod π2B+
crys

This implies that log ax + π
2
a2 mod π2B+

crys is represented by a well-defined element
bx := av − α +

∑∞
m⩾3 cm ∈ Ã+. □

We go back to the proof of Lemma 3.3. First, we consider GKcyc action on this
element bx ∈ Ã+.

Sublemma 3.5. For g ∈ GKcyc,

g(bx) ≡ bx − κ(x)(g)π mod π1πB
+
crys
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(Proof of sublemme 3.5.)
For g ∈ GKcyc , we have

g(log ax) = log
g(f(πn))

[g(ωx)]
= log

f(πn)

[ωx][ε]κ(x)(g)

= log
f(πn)

[ωx]
− κ(x)(g)t

= log ax − κ(x)(g)t.

Here, the element t is the one we defined in subsection 2.3. From Sublemma 3.4, this
implies a congruence

g
(
bx −

π

2
a2
)
≡ bx −

π

2
a2 − κ(x)(g)π mod π1πB

+
crys.(3.2)

Note that we use a congruence of mod π1πB
+
crys here which is immediately deduced

from Sublemma 3.4. Since a =
(

f(πn)
[ωx]
− 1
)
· 1
v
, we have

g(a) =

(
f(πn)

[ωx][ε]κ(x)(g)
− 1

)
· 1
v

=

(
f(πn)

[ωx](1 + π)κ(x)(g)
− 1

)
· 1
v

≡
(
f(πn)

[ωx]
− 1

)
· 1
v
= a mod π1B

+
crys.

Hence we see that

g
(π
2
a2
)
=

π

2
g(a)2 ≡ π

2
a2 mod π1πB

+
crys.

From (3.2), this congruence yields

g(bx) ≡ bx − κ(x)(g)π mod π1πB
+
crys.

□
Next, we consider the action of φ on bx.

Sublemma 3.6.(φ
2
− 1
)
bx ≡ L(f(πn)) +

π

2
(φ− 1)(a2) mod π1πB

+
crys

(Proof of Lemma 3.6)
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On the action of φ on log ax, we see that(φ
2
− 1
)
log ax =

(φ
2
− 1
)
log

f(πn)

[ωx]

=
1

2
log

φ(f(πn))

[ωx]2
− log

f(πn)

[ωx]

=
(φ
2
− 1
)
log f(πn) = L(f(πn)).

On the other hand,(φ
2
− 1
) π

2
a2 =

1

4
φ(π)φ(a2)− π

2
a2 =

1

4
(π2 + 2π)φ(a2)− π

2

≡ π

2
(φ− 1)a2 mod π1πB

+
crys.

Thus from Sublemma 3.4, we obtain(φ
2
− 1
)
bx ≡ L(f(πn)) +

π

2
(φ− 1)a2 mod π1πB

+
crys.

□
From Sublemma 3.4, θ(bx) = 0 and there exists an element b′x ∈ Ã+ such that

bx = b′xv. By sublemma 3.6,{(φ
2
− 1
)
bx

}
·
(
1 +

π

2

)
≡ L(f(πn))·

(
1 +

π

2

)
+
π

2

{
(φ− 1)a2

}
·
(
1 +

π

2

)
mod π1πB

+
crys.

Transforming this, we obtain

(φ− v)
(
b′x ·
(
1 +

π

2

))
≡ L(f(πn)) ·

(
1 +

π

2

)
+ π(φ− 1)

(
a2

2

)
mod π1πB

+
crys.

Since the both sides of the above congruence mod π1πB
+
crys are actually elements in

B̃+, we have the same congruence mod π1πB̃
+ = π1πB

+
crys ∩ B̃+.

Sublemma 3.7. There exists cx ∈ B̃+ such that cx ≡ b′x ·
(
1 + π

2

)
mod π1πB̃

+ and

(φ− v)(cx) = L(f(πn)) ·
(
1 +

π

2

)
+ π(φ− 1)

(
a2

2

)
(Proof of sublemma 3.7.)
We show that for any y ∈ π1πB̃

+, there exists z such that (φ − v)(z) = y. For
this, it suffices to show the following convergence for any π1πx (x ∈ B̃+),(φ

v

)m (π1πx

v

)
:=
(φ
v

(φ
v
· · ·
(φ
v

(π1πx

v

))
· · ·
))
−→ 0 (as m→∞).
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In fact, for any y ∈ π1πB̃
+, a power series −

∑∞
m=0

(
φ
v

)m (y
v

)
is a solution z of the

equation (φ− v)(z) = y. If m = 1, we see that(φ
v

)(π1πx

v

)
=
(φ
v

) (
π2
1x
)
=

π2φ(x)

v
= π1πφ(x).

If m = 2, (φ
v

)2 (π1πx

v

)
=
(φ
v

)
(π1πφ(x)) = π1φ(π)φ

2(x).

Thus inductively, we have
(
φ
v

)m (π1πx
v

)
= π1φ

m−1(π)φm(x) and φm−1(π) goes to 0

when m→∞ in B̃+. Hence we obtain the desired convergence. □
Dividing the both side of the equation in Sublemma 3.7 by π, we have

(φ− 1)

(
cx
π1

− a2

2

)
= L(f(πn)) ·

(
1

π
+

1

2

)
.(3.3)

On the other hand, g ∈ GKcyc acts on cx as

g(cxv) ≡ g
(
bx ·
(
1 +

π

2

))
≡ (bx − κ(x)(g)π) ·

(
1 +

π

2

)
≡ cxv − κ(x)(g)π mod π1πB̃

+.

This implies

g

(
cx
π1

)
− cx

π1

≡ −κ(x)(g) mod π1B̃
+.

Since we know g(a) ≡ a mod π1B̃
+ from the proof of Sublemma 3.5, we have

(g − 1)

(
cx
π1

− a2

2

)
≡ −κ(x)(g) mod π1B̃

+.

The above congruence actually yields an equality. In fact, the right hand side
−κ(x)(g) ∈ Q2. For the left hand side,

(φ− 1)

(
(g − 1)

(
cx
π1

− a2

2

))
= (g − 1)

(
(φ− 1)

(
cx
π1

− a2

2

))
= (g − 1)

(
L(f(πn)) ·

(
1

π
+

1

2

))
= 0.

Here in the second equality, we use (3.3). There is an exact sequence

0→ Q2 → B̃
φ−1−−→ B̃ → 0.

Then we see that (g−1)
(

cx
π1
− a2

2

)
∈ Q2. Since Q2∩π1B̃

+ = 0, we obtain a equality

(g − 1)

(
cx
π1

− a2

2

)
= −κ(x)(g).
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We now check this cx
π1
− a2

2
is an element in Bn. There is an diagram of exact sequences

0 // Q2

id
��

// Bn

incl
��

φ−1 // Bn

incl
��

// 0

0 // Q2
// B̃

φ−1 // B̃ // 0.

Since we have (φ−1)
(

cx
π1
− a2

2

)
∈ BKn ⊂ Bn from (3.3), we can see that cx

π1
− a2

2
∈ Bn

from the above diagram. Hence, this element cx
π1
− a2

2
is nothing other than the element

ξκ(x) ∈ Bn in Proposition 3.1. From (3.3), we have finished the computation of the
first component of h1

Q2
◦ κ(x). We finally compute its second component which we

call λx(πn)⊗ ε. Due to Proposition 3.1,

λx(πn)⊗ ε = (γ̂n − 1)(ξx ⊗ ε) + κ(γ̂n)⊗ ε.

We see that

(γ̂n − 1)(ξx ⊗ ε) + κ(γ̂n)⊗ ε = (γ̂n − 1)

((
cx
π1

− a2

2

)
⊗ ε

)
+ κ(γ̂n)⊗ ε

=

(
χcyc(γn)γ̂n

(
cx
π1

− a2

2

)
−
(
cx
π1

− a2

2

))
⊗ ε+ κ(γ̂n)⊗ ε.

From Sublemma 3.7, we have a congruence

cx
π1

≡ bx ·
(
1

π
+

1

2

)
mod πB̃+.

Then Sublemma 3.4 implies

cx
π1

≡
(
log ax +

π

2
a2
)
·
(
1

π
+

1

2

)
mod πB+

crys

⇐⇒ cx
π1

− a2

2
≡ log ax ·

(
1

π
+

1

2

)
mod πB+

crys.

On the factor 1
π
+ 1

2
, γ̂n acts as

γ̂n

(
1

π
+

1

2

)
=

1

(1 + π)χcyc(γn) − 1
+

1

2
(3.4)

≡ 1

χcyc(γn)π
·
(
1− χcyc(γn)− 1

2
π

)
+

1

2
mod πB+

crys

=
1

χcyc(γn)

(
1

π
+

1

2

)
.
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Thus we have

χcyc(γn)γ̂n

(
cx
π1

− a2

2

)
−
(
cx
π1

− a2

2

)
≡ χcyc(γn)γ̂n

(
log ax ·

(
1

π
+

1

2

))
−
(
log ax ·

(
1

π
+

1

2

))
mod πB+

crys

≡ χcyc(γn) log γ̂n(ax) ·
1

χcyc(γn)

(
1

π
+

1

2

)
−
(
log ax ·

(
1

π
+

1

2

))
mod πB+

crys

= (log γ̂n(ax)− log ax) ·
(
1

π
+

1

2

)
.

Here, we see that

γ̂n(ax) = γ̂n

(
f(πn)

[ωx]

)
=

γ̂n(f(πn))

[ωx][ε]κ(x)(γ̂n)
.

Hence,

log γ̂n(ax)− log ax ≡ γ̂n(log f(πn))− log f(πn)− κ(x)(γ̂n)π mod π2B+
crys.

Due to [4, Lemma 2.2.1],

γ̂n(log f(πn))− log f(πn) ≡
χcyc(γn)− 1

2n
D log f(πn) · π mod π2B̃+.

This implies a congruence mod πB̃+

χcyc(γn)γ̂n

(
cx
π1

− a2

2

)
−
(
cx
π1

− a2

2

)
≡ (γ̂n(log f(πn))− log f(πn)− κ(x)(γ̂n)π) ·

(
1

π
+

1

2

)
mod πB̃+,

where we use πB+
crys ∩ B̃ = πB̃+. Thus we obtain

λx(πn) =

(
χcyc(γn)γ̂n

(
cx
π1

− a2

2

)
−
(
cx
π1

− a2

2

))
+ κ(γ̂n)

≡
(
χcyc(γn)− 1

2n
D log f(πn) · π − κ(x)(γ̂n)π

)
·
(
1

π
+

1

2

)
+ κ(γ̂n) mod πB̃+

≡ χcyc(γn)− 1

2n
D log(f(πn)) mod πB̃+.

However, since λx(πn) ∈ BKn and πB̃+∩BKn = πOK [[πn]]⊗
Z2

Q2, the above congruence

mod πB̃+ is in fact the one mod πOK [[πn]]⊗
Z2

Q2 and hence λx(πn) ∈ OK [[πn]]⊗
Z2

Q2.

Thus we finally obtain the claim of Lemma 3.3. □



20

Lemma 3.8. There exists a power series Yx(πn) ∈ 1
2
AKn such that

(φ− 1)Yx(πn) =
1

2
L(f(πn))

(Proof of Lemma 3.8)
Since x ∈ U1

Kn
, we have f(πn) ∈ 1+πnOK [[πn]] and L(f(πn)) =

(
φ
p
− 1
)
log f(πn) ∈

πnOK [[πn]]. We define

Yx(πn) := −
∞∑
i=0

φi

(
L(f(πn)) ·

1

2

)
.

Note that this Yx(πn) is a well-defined element in 1
2
AKn since φi(πn)→ 0 as i→∞

in BKn . We can see that Yx(πn) satisfies (φ− 1)(Yx(πn)) =
1
2
L(f(πn)) □

From Lemma 3.8, we have a 1-coboundary of the complex C•(BKn(1))

[(φ− 1)(Yx(πn)⊗ ε), (γn − 1)(Yx(πn)⊗ ε)] =

[
L(f(πn)) ·

1

2
⊗ ε, (χcyc(γn)− 1)Yx(πn)⊗ ε

]
Subtracting this 1-coboundary from the result in Lemma 3.3, we obtain

h1
Q2
◦ κ(x) =

[
L(f(πn)) ·

1

π
⊗ ε, λx(πn)⊗ ε− (χcyc(γn)− 1)Yx(πn)⊗ ε

]
.(3.5)

Thus the first component of the above representative for h1
Q2
◦ κ(x) is actually an

element in AKn(1). We show that so does the second component.

Lemma 3.9. We have λx(πn) ∈ OK [[πn]], hence

λx(πn) ≡
χcyc(γn)− 1

2n
D log f(πn) mod πOK [[πn]].

(Proof of Lemma 3.9)
From (3.5), the 1-cocycle condition says

(γn − 1)

(
L(f(πn)) ·

1

π
⊗ ε

)
= (φ− 1) (λx(πn)⊗ ε− (χcyc(γn)− 1)Yx(πn)⊗ ε)

⇐⇒ (φ− 1)(λx(πn)) = χcyc(γn)γn

(
L(f) · 1

π

)
− L(f) · 1

π
+ (φ− 1)(χcyc(γn)− 1)Yx.

Then we can see that (φ−1)(λx(πn)) ∈ AKn . While, there is a commutative diagram

0 // Z2

incl
��

// An

incl
��

φ−1 // An

incl
��

// 0

0 // Q2
// Bn

φ−1 // Bn
// 0
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which implies that there exists r ∈ Q2 such that λx(πn) − r ∈ An. However, from
Lemma 3.3, we have

λx(πn) ≡
χ(γn)− 1

2n
D log f(πn) mod πOK [[πn]]⊗

Z2

Q2.

In other words, we can see that λx(πn) = (an element in AKn)+(terms divisible by π).
Hence r must be 0 and λx(πn) ∈ An ∩ (OK [[πn]]⊗

Z2

Q2) = OK [[πn]]. □
We finally prove Proposition 3.2.
(Proof of Proposition 3.2)
There is a commutative diagram

(U1
Kn

)f
κ // (H1(Kn,Z2(1)))

f

ι

��

h1

∼
// (H1

ΦΓ(AKn(1)))
f

ιΦΓ

��
H1(Kn,Q2(1))

h1
Q2

∼
// H1

ΦΓ(BKn(1)),

where (M)f denotes the torsion-free part of a Z2-module M . Note also that ι, ιΦΓ are
the homomorphisms which induced by inclusions. Since we consider only torsion-free
parts of Z2-modules in the first row, the vertical arrows ι, ιΦΓ are injective. From
(3.5) and Lemma 3.9, for any x ∈ (U1

Kn
)f , we have

h1
Q2
◦ κ(x) =

[
L(f(πn)) ·

1

π
⊗ ε, λx(πn)⊗ ε− (χcyc(γn)− 1)Yx(πn)⊗ ε

]
,

and the first and second components of the above representative are in AKn(1). Thus
the pair of elements in AKn(

L(f(πn)) ·
1

π
⊗ ε, λx(πn)⊗ ε− (χcyc(γn)− 1)Yx(πn)⊗ ε

)
also defines a cohomology class in H1

ΦΓ(AKn(1)) which maps to h1
Q2
◦κ(x) under ιΦΓ.

By the commutativity of the above diagram and the injectivity of ιΦΓ, we have

h1 ◦ κ(x) =
[
L(f(πn)) ·

1

π
⊗ ε, λx(πn)⊗ ε− (χcyc(γn)− 1)Yx(πn)⊗ ε

]
.

This completes the proof of Proposition 3.2. □

4. Calculation of the Hilbert symbol

In this section, we calculate the Hilbert symbol and give an explicit formula fol-
lowing the strategy we mentioned in Subsection 2.4.
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4.1. Computation of the cup product ∪ΦΓ.

Lemma 4.1. Let x, y ∈ (U1
Kn

)f . There is a power series Hx,y ∈ AKn such that
(h1 ◦ κ(x)) ∪ΦΓ (h

1 ◦ κ(y)) = [Hx,y ⊗ ε2] and

Hx,y ≡
χcyc(γn)− 1

2n
(D log f · L(g)− L(f)φ(D log f)) · 1

π

+(χcyc(γn)− 1) (L(f)φ(Yy)− YxL(g)) ·
1

π
mod OK [[πn]].

Here f(πn), g(πn) ∈ OK [[πn]] are power series which satisfy f(ζ2n − 1) = x, g(ζ2n −
1) = y.

(Proof of Lemma 4.1)
Using Proposition 3.2, we have

h1 ◦ κ(x) =

[
L(f(πn)) ·

1

π
⊗ ε, λx(πn)⊗ ε− (χcyc(γn)− 1)Yx(πn)⊗ ε

]
,

h1 ◦ κ(y) =

[
L(g(πn)) ·

1

π
⊗ ε, λy(πn)⊗ ε− (χcyc(γn)− 1)Yy(πn)⊗ ε

]
.

From Proposition 2.10, we can compute the cup product as (h1◦κ(x))∪ΦΓ(h
1◦κ(y)) =

[Hx,y ⊗ ε2], where

Hx,y = (λx − (χcyc(γn)− 1)Yx) · χcyc(γn)γn

(
L(g) · 1

π

)
−
(
L(f) · 1

π

)
· φ (λy − (χcyc(γn)− 1)Yy) .

As we saw in (3.4), we have

γn

(
1

π

)
≡ 1

χcyc(γn)π
mod OK [[πn]],

and from [4, Lemma 2.2.1], for F (X) ∈ OK [[X]], we also have

γn(F (πn)) ≡ F (πn) mod πOK [[πn]].

These congruences implies

Hx,y ≡ (λx − (χcyc(γn)− 1)Yx)L(g) ·
1

π

−L(f) · φ (λy − (χcyc(γn)− 1)Yy) ·
1

π
mod OK [[πn]].

Here, from Proposition 3.2, we know

λx(πn) ≡
χcyc(γn)− 1

2n
D log f, λy(πn) ≡

χcyc(γn)− 1

2n
D log g mod πOK [[πn]].



23

Then we obtain

Hx,y ≡
χcyc(γn)− 1

2n
(D log f · L(g)− L(f)φ(D log f)) · 1

π

+(χcyc(γn)− 1) (L(f)φ(Yy)− YxL(g)) ·
1

π
mod OK [[πn]].

□

4.2. Explicit formula for the Hilbert symbol. We finally compute the image of
(h1 ◦ κ(x)) ∪ΦΓ (h1 ◦ κ(y)) under TRKn and complete the calculation of the Hilbert
symbol.

Theorem 4.2. For x, y ∈ U1
Kn

,

[x, y]Kn

= −(1 + 2n−1)TrK/Q2

(
Resπn (D log f · L(g)− L(f)φ(D log(g)))

dπn

π(1 + πn)

)
−2nTrK/Q2

(
Resπn (L(f)φ(Yy)− YxL(g))

dπn

π(1 + πn)

)
.

Here power series f(πn), g(πn) are the same as in Lemma 4.1.

(Proof of Theorem 4.1)
First we show the theorem for x, y ∈ (U1

Kn
)f . All we have to do is just computing

TRn(Hx,y ⊗ ε) mod 2n. By the fact that elements in OK [[πn]] have no residue and
Lemma 4.1, we have

TRn(Hx,y ⊗ ε)

= TRn

(
χcyc(γn)− 1

2n
(D log f · L(g)− L(f)φ(D log f)) · 1

π

)
+TRn

(
(χcyc(γn)− 1) (L(f)φ(Yy)− YxL(g)) ·

1

π

)
= − χcyc(γn)− 1

log(χcyc(γn))
TrK/Q2

(
Resπn (D log f · L(g)− L(f)φ(D log f))

dπn

π(1 + πn)

)
−2n χcyc(γn)− 1

log(χcyc(γn))
TrK/Q2

(
Resπn (L(f)φ(Yy)− YxL(g))

dπn

π(1 + πn)

)
.

On the other hand, we can see that

χcyc(γn)− 1

log(χcyc(γn))
≡ 1 +

1

2
(χcyc(γn)− 1) (mod 2n).
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Since γn is a topological generator of the Galois group Γn, there exists u ∈ Z×
2 such

that χcyc(γn) − 1 = 2nu. Then we have 1
2
(χcyc(γn) − 1) = 2n−1u ≡ 2n−1 (mod 2n)

because Z×
2 = 〈−1, 5〉. Thus we obtain Theorem 4.1 when x, y ∈ (U1

Kn
)f .

Next we consider the case that one of x and y is not in (U1
Kn

)f . Since U1
Kn

=
〈ζ2n〉⊕ (U1

Kn
)f , it suffices to consider the case when y = ζ2n . in the following, we use

the Artin-Hasse formula and some facts from [4] on power series.

Theorem (Artin-Hasse, [3]). For y ∈ U1
Q2(ζ2n )

,

[x, ζpn ]Q2(ζ2n ) = −
1 + 2n−1

2n
TrQ2(ζ2n )/Q2(log x).

Lemma 4.3 (Proposition 2.2.1, [4]). For any F (X) ∈ OK [[X]],

Resπn

(
F (πn)

dπn

π(1 + πn)

)
=

1

2n

∑
ζ∈µ2n

F (ζ − 1).

Lemma 4.4 (Lemma 2.2.5.1, [4]). Let x ∈ UKn and f(X) ∈ OK [[X]] which satisfies
f(ζ2n − 1) = x. Then

TrKn/Q2 log x = −TrK/Q2

(∑
ζ∈µ2n

L(f)(ζ − 1)

)
.

We verify the validity of Theorem 4.1 for x ∈ U1
Kn

and y = ζ2n . First we compute
the Hilbert symbol via the Artin-Hasse formula. We see that

(x, ζ2n)Kn =
ρKn(x)(ζ22n)

ζ22n
=

ρKn(x) |Q2(ζ2n )ab (ζ22n)

ζ22n
=

ρQ2(ζ2n )(NKn/Q2(ζ2n )(x))(ζ22n)

ζ22n

= (ζ2n ,NKn/Q2(ζ2n )(x))Q2(ζ2n ),

where NKn/Q2(ζ2n ) denotes the field norm of the extension Kn/Q2(ζ2n). Then the
Artin-Hasse formula implies

[x, ζ2n ]Kn = [NKn/Q2(ζ2n )(x), ζ2n ]Q2(ζ2n ) = −1 + 2n−1

2n
TrQ2(ζ2n )/Q2(log(NKn/Q2(ζ2n )(x)))

= −1 + 2n−1

2n
TrKn/Q2(log x).

Next we compute the right-hand side of the formula in Theorem 4.1. When y = ζ2n ,
we can take g(πn) = πn− 1 to get L(g(πn)) =

(
φ
2
− 1
)
log(1+ πn). Hence by Lemma
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4.3 and the definition of the power series Yy(πn), we have

Resπn (L(f)φ(Yy)− YxL(g))
dπn

π(1 + πn)

=
1

2n

∑
ζ∈µ2n

(L(f(X))φ(Yy(X))− Yx(X)L(g(X))) |X=ζ−1= 0.

Similarly, we also have Resπn (D log f · L(g)) = 0. Thus we can see that

−(1 + 2n−1)TrK/Q2

(
Resπn (D log f · L(g)− L(f)φ(D log(g)))

dπn

π(1 + πn)

)
−2nTrK/Q2

(
Resπn (L(f)φ(Yy)− YxL(g))

dπn

π(1 + πn)

)
= (1 + 2n−1)TrK/Q2

(
Resπn (L(f)φ(D log(g)))

dπn

π(1 + πn)

)
= (1 + 2n−1)TrK/Q2

(
1

2n

∑
ζ∈µ2n

(L(f)φ(D log(g))) |X=ζ−1

)

=
1 + 2n−1

2n
TrK/Q2

∑
ζ∈µ2n

(L(f(ζ − 1)))

= −1 + 2n−1

2n
TrK/Q2

(
TrKn/Q2 log x

)
= −1 + 2n−1

2n
TrKn/Q2 (log x)

Here we use
φ(D log(g(X))) = φ((1 +X)

d

dX
log(1 +X)) = 1

in the third equality and Lemma 4.4 in the fourth equality. This completes the proof.
□
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