
Ideal class groups of CM-fields with non-cyclic

Galois action

Masato Kurihara and Takashi Miura

Abstract. Suppose that L/k is a finite and abelian extension such that k
is a totally real base field and L is a CM-field. We regard the ideal class
group ClL of L as a Gal(L/k)-module. As a sequel of the paper [8] by the
first author, we study a problem whether the Stickelberger element for L/k
times the annihilator ideal of the roots of unity in L is in the Fitting ideal of
ClL, and also a problem whether it is in the Fitting ideal of the Pontrjagin dual
(ClL)∨. We systematically construct extensions L/k for which these properties
do not hold, and also give numerical examples.

0 Introduction

Our aim in this paper is to study the Galois action on the ideal class group of a
CM-field over a totally real base field. Let k be a totally real number field and
L be a CM-field such that L/k is finite and abelian. In this paper, we fix an
odd prime number p, and study the p-component AL of the ideal class group
ClL, namely AL = ClL⊗Zp. We put RL = Zp[Gal(L/k)] and regard AL as an
RL-module.

Let θL/k be the Stickelberger element defined by

θL/k =
∑

σ∈Gal(L/k)

ζ(0, σ)σ−1 ∈ Q[Gal(L/k)]

where ζ(s, σ) =
∑

(L/ka )=σ
N(a)−s is the partial zeta function. We define

μp∞(L) to be the group of roots of unity in L with order a power of p, and
IL = AnnRL(μp∞(L)) to be the annihilator ideal of μp∞(L) in RL. The results
in Deligne and Ribet [2] imply that ILθL/k ⊂ RL. In this setting, Brumer’s
conjecture claims that

(B) ILθL/k ⊂ AnnRL(AL).

For a commutative ring R and a finitely presented R-module M , we denote by
FittR(M) the (initial) Fitting ideal of R (cf. Northcott [12] §3.1). In general,
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we have FittR(M) ⊂ AnnR(M). As a sequel of the paper [8], we study in this
paper the following two stronger properties (SB) and (DSB) than (B);

(SB) ILθL/k ⊂ FittRL(AL),

and

(DSB) ILθL/k ⊂ FittRL((AL)∨).

Here, (AL)∨ is the Pontrjagin dual of AL with cogredient Galois action, namely
σ ∈ Gal(L/k) acts as (σf)(x) = f(σx) for f ∈ (AL)∨ and x ∈ AL. In many
cases, these two properties hold true. For example, if k = Q, (SB) always
holds true, which was proved in our previous paper [9]; if the μ-invariant of L
vanishes and any prime above p does not split in L/L+, (SB) holds by Nickel
[11] Theorem 4; if μp∞(L) is cohomologically trivial, (DSB) holds by Greither
[4]. (Nickel [11] Theorem 4 implies more, for example, it implies that (SB) holds
true if all primes above p are tamely ramified in L/k and Lcl �⊂ (Lcl)+(μp) where
Lcl denotes the normal closure of L over Q.) But these two properties do not
hold in general (see [5], [8]). In [5], some explicit numerical examples for which
(SB) does not hold were given. In [8], (DSB) was studied but explicit numerical
examples for which (DSB) does not hold were not given. In this paper, we give
explicit numerical examples for which (DSB) does not hold, and also give explicit
conditions under which (DSB) does not hold. Also, we give explicit examples
for which neither (SB) nor (DSB) holds. While the first author studied (SB)
and (DSB) in [8] using Iwasawa theoretic arguments, we study these problems
in this paper by investigating finite and abelian extensions directly. Concerning
the background and known results on these two problems, see [8] and [3]. For
the function field case, see Popescu [13].

We are interested in the Teichmüller character component of AL. So we
assume that a primitive p-th root of unity is in L, and put K = k(μp), which
is a subfield of L. Let K∞/K (resp. L∞/L) be the cyclotomic Zp-extension
of K (resp. L). We assume that L/k is a finite and abelian extension, L/K is
a p-extension and L ∩K∞ = K. We denote by K+ the maximal real subfield
of K, and by Ln the n-th layer of L∞/L (so [Ln : L] = pn) for any integer
n ≥ 0. If Gal(L/K) is cyclic, (SB) and (DSB) are equivalent. In this paper, we
consider the case that Gal(L/K) is not cyclic. In §1 we will prove the following
theorem (we will prove in §1 a slightly more general Theorem 1.2).

Theorem 0.1 We assume that no prime above p splits in K/K+ (namely
(NTZ) is satisfied, see the beginning of §1), and also that if a prime v splits
in K/K+, v is unramified in L/K (we call this property (R), see the beginning
of §1). Suppose also that G = Gal(L/K) is not cyclic. Then (DSB) does not
hold for Ln/k for all n ≥ 0. Namely, we have

ILnθLn/k �⊂ FittRLn ((ALn)∨)

for all n ≥ 0.

In §2 we will give an explicit numerical example L/k of Theorem 0.1 where
k = Q(

√
1901), p = 3, K = k(μ3) and L = K(α, β) with α3−84α−191 = 0 and

β3−57β−68 = 0. Then we know that Gal(L/K) 	 Z/3Z⊕Z/3Z. For this L/k,
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we explicitly compute AL, the Galois action on it, θL/k and also FittRL((A−L )∨)
(for the minus part A−L , see the beginning of §1). We will see directly

#μp∞(L)θL/k �∈ FittRL((AL)∨)

from these computations for this example.

In §3 and §4 we study the case that L/k does not satisfy (NTZ). In §3
we prove Proposition 3.2 which says that if L/k satisfies some conditions, L/k
satisfies neither (SB) nor (DSB). Using this Proposition 3.2, we will see in §3.2
that there is an explicit example L/k for which neither (SB) nor (DSB) holds.
The example we give in §3.2 is p = 3, k = Q(

√
69,

√
713), K = k(μ3), and

L = K(α, β) where α3 − 6α− 3 = 0 and β3 − 6β − 1 = 0. Then we know that
Gal(L/K) 	 Z/3Z ⊕ Z/3Z. For this L/k, neither (SB) nor (DSB) holds.

The condition of Proposition 3.2 is not easy to check. In §4 we will prove
another theorem by which we can easily construct examples for which neither
(SB) nor (DSB) holds.

Theorem 0.2 Suppose that L/k satisfies the conditions of §4.1. Then neither
(SB) nor (DSB) holds for Ln/k for any integer n ≥ 1. Namely, we have both

ILnθLn/k �⊂ FittRLn (ALn) and ILnθLn/k �⊂ FittRLn ((ALn)∨)

for all n ≥ 1.

We give in §4.3 a numerical example for which Theorem 0.2 can be applied.

We would like to thank heartily X.-F. Roblot who kindly helped us to com-
pute the numerical examples in this paper. Especially, we learned much from
him on the computation of the L-values and of the Galois action on the class
group of a number field. The first author would like to thank C. Greither for
several significant discussions with him.

Erratum for the paper [8]: The first named author would like to make a
correction concerning his previous paper [8]. In page 426 line 21, the correct
formula is Ĥ−1(G,Xω

L∞) = Ĥ0(G,AωL∞)∨ = (
∧2

G)(1).

Notation
For any positive integer n, μpn denotes the group of pn-th roots of unity. For a
group G and a G-module M , we denote by MG the G-invariant part of M (the
maximal subgroup ofM on whichG acts trivially), and byMG the G-coinvariant
of M (the maximal quotient of M on which G acts trivially).

1 The case that there is no trivial zero

In this section, we assume the conditions before Theorem 0.1. Namely, K =
k(μp), L/k is a finite and abelian extension, K ⊂ L, L/K is a p-extension,
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and L ∩ K∞ = K. Suppose that K+ is the maximal real subfield of K. We
take n ∈ Z≥0 and consider the n-th layer Ln of the cyclotomic Zp-extension
L∞/L. We put RLn = Zp[Gal(Ln/k)]. Any RLn-module M is decomposed into
M = M+⊕M− where M± = {x ∈M | ρ(x) = ±x} for the complex conjugation
ρ ∈ Gal(Ln/k). Let ω be the Teichmüller character which gives the action of
Gal(K/k) on μp. For any Zp[Gal(K/k)]-module M , we define Mω to be

Mω = M ⊗RK RK/〈{σ − ω(σ) | σ ∈ Gal(K/k)}〉
	 {x ∈M | σ(x) = ω(σ)x for all σ ∈ Gal(K/k)}.

Note that M →Mω is an exact functor.
For any n ∈ Z≥0, we call the following condition (R)n;

(R)n Any prime which splits in K/K+ is unramified in Ln/K .

We simply write (R) for the condition (R)0.
We also consider the following condition (no trivial zero);

(NTZ) No prime above p splits in K/K+.

Of course, if n is sufficiently large, the condition (R)n implies (NTZ). Also, if
we assume (NTZ) and (R), then we get (R)n for all n ≥ 0.

The following is a key Proposition of this section.

Proposition 1.1 We assume that Ln/k satisfies (R)n and G = Gal(L/K) is
not cyclic. Then we have

#(A−Ln)Gal(Ln/K) > #A−K

and
#(AωLn)Gal(Ln/K) > #AωK .

Proof. We put Γn = Gal(Kn/K) and Gn = Gal(Ln/K). Then Gn = G×Γn by
our assumption.

We denote by ELn the unit group and by CLn the idele class group of Ln.
For any prime w of Ln, we denote by Ln,w the completion of Ln at w, and by
ELn,w the unit group of Ln,w if w is a finite prime, and ELn,w = L×n,w if w is
an infinite prime. By Lemma 5.1 (2) in [7] (cf. also [8] §1), an exact sequence
0 −→ ELn −→ ∏

w ELn,w −→ CLn −→ ClLn −→ 0 yields an exact sequence

Ĥ0(Gn, ELn)− −→ (
⊕
v

Ĥ0(Gn,v , ELn,w))− −→ Ĥ−1(Gn, ALn)−

−→ H1(Gn, ELn)− −→ (
⊕
v

H1(Gn,v, ELn,w))− −→ Ĥ0(Gn, ALn)−

−→ H2(Gn, ELn)− −→ (
⊕
v

H2(Gn,v, ELn,w))−

where v runs over all finite primes of K, for each v we choose a prime w of
Ln above v, and Gn,v = Gal(Ln,w/Kv) is the decomposition group of Gn at v.
We know that Ĥ0(Gn,v, ELn,w) is isomorphic to the inertia group of Gn,v by
local class field theory. The exact sequence 0 −→ ELn,w −→ L×n,w −→ Z −→ 0
implies that H1(Gn,v , ELn,w) = Z/evZ where ev is the ramification index of v
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in Ln/K , and that H2(Gn,v, ELn,w) is a subgroup of the Brauer group of Kv.
We denote by l the prime of K+ below v. If l does not split in K/K+, the
complex conjugation ρ acts trivially on Ĥq(Gn,v, ELn,w) (q = 0, 1, 2) by the
above description, so ρ acts trivially on

⊕
v|l Ĥ

q(Gn,v , ELn,w). Hence we have
(
⊕

v|l Ĥ
q(Gn,v, ELn,w))− = 0. If l splits in K/K+, v is unramified in Ln/K by

our assumption (R)n. Therefore, we have Hq(Gn,v , ELn,w) = 0 (q = 0, 1, 2; see
[14] Chap.XII §3 for the case q = 2). Thus, in any case we obtain

(1.1.1) (
⊕
v

Ĥq(Gn,v , ELn,w))− = 0 for q = 0, 1, 2.

Suppose that #μp∞(L) = pc. Then we know Ln = L(μpn+c) and Kn =
K(μpn+c). We will compute Hq(Gn, ELn)− = Hq(Gn, E−Ln) = Hq(Gn, μpn+c).
As is well-known (for example, see Lemma 13.27 in [16]), we haveH1(Γn, μpn+c) =
0. Since Γn is cyclic, we have Hq(Γn, μpn+c) = 0 for any q ≥ 1. This implies
that

Hq(Gn, μpn+c) = Hq(Gn/Γn, H0(Γn, μpn+c)) = Hq(G,μpc)

by the Serre-Hochschild spectral sequence. Therefore, we obtain

(1.1.2) Hq(Gn, ELn)− = Hq(G,μpc) 	 Hq(G,Z/pcZ).

Let iLn/K : A−K −→ A−Ln be the natural map. Since the kernel of iLn/K
is isomorphic to the kernel of H1(Gn, ELn)− −→ (

⊕
vH

1(Gn,v , ELn,w))− (cf.
Remark 2.2 in [6]), considering (1.1.1), we have an isomorphism Ker(iLn/K) 	
H1(Gn, ELn)− 	 H1(G,Z/pcZ). Therefore, we have

(1.1.3) # Ker(iLn/K : A−K −→ (A−Ln)Gn) = #(G/Gp
c

).

On the other hand, the norm map A−Ln −→ A−K is surjective by Lemma 5.1 (1)
in [7] (cf. Lemma 1.4 below). Therefore, the image of iLn/K coincides with the
image of the multiplication by NGn = Σσ∈Gnσ on A−Ln . Thus, we have an exact
sequence

0 −→ H1(Gn, ELn)− −→ A−K −→ (A−Ln)Gn −→ Ĥ0(Gn, A−Ln) −→ 0.

Using (1.1.1) and (1.1.2), we get

Coker(iLn/K : A−K −→ (A−Ln)Gn) 	 Ĥ0(Gn, ALn)
− 	 H2(Gn, ELn)−

	 H2(G,Z/pcZ).

Considering an exact sequence

0 −→ Z/pcZ −→ Qp/Zp
pc−→ Qp/Zp −→ 0,

and taking cohomology, we get an exact sequence

0 −→ H1(G,Qp/Zp)/pc −→ H2(G,Z/pcZ) −→ H2(G,Qp/Zp)[pc] −→ 0

whereH2(G,Qp/Zp)[pc] is the kernel of the multiplication by pc onH2(G,Qp/Zp).
Since H2(G,Qp/Zp) is isomorphic to Hom(

∧2G,Qp/Zp) by the universal coef-
ficient sequence (see page 60 in Chap. III in [1] and Theorem 6.4 (iii) in Chap.

5



V in [1], cf. also Lemma 1.3 in [8]), we get H2(G,Qp/Zp)[pc] �= 0 from our
assumption that G is not cyclic. Since H1(G,Qp/Zp) is isomorphic to G as an
abelian group, H1(G,Qp/Zp)/pc is isomorphic to G/Gp

c

as an abelian group.
Therefore, we obtain

#H2(G,Z/pcZ) > #H1(G,Qp/Zp)/pc = #G/Gp
c

.

This implies that

(1.1.4) # Coker(iLn/K : A−K −→ (A−Ln)Gn) > #(G/Gp
c

).

It follows from (1.1.3) and (1.1.4) that #A−K < #(A−Ln)Gn .
Since H1(Gn, ELn)ω = H1(G,μpc) 	 H1(G,Z/pcZ) and

Ĥ0(Gn, ALn)ω 	 H2(Gn, ELn)
ω 	 H2(G,μpc) 	 H2(G,Z/pcZ),

by the same method as above, we obtain an exact sequence

(1.1.5) 0 −→ H1(G,Z/pcZ) −→ AωK −→ (AωLn)Gn −→ H2(G,Z/pcZ) −→ 0.

Since
#H1(G,Z/pcZ) = #G/Gp

c

< #H2(G,Z/pcZ),

we obtain #AωK < #(AωLn)Gn . This completes the proof of Proposition 1.1.

As in the proof of Proposition 1.1, we suppose that #μp∞(L) = #μp∞(K) =
pc. Let κ : Gal(L∞/k) −→ Z×p be the cyclotomic character and γ be a generator
of Gal(L∞/L) = Gal(K∞/K). We fix this γ throughout this paper. Since
#μp∞(L) = pc, we know that ordp(1−κ(γ)) = c. We also regard γ as a generator
of Gal(Ln/L) = Gal(Kn/K). For θK/k and θLn/k, we have pcθK/k ∈ RK =
Zp[Gal(K/k)], pn+cθLn/k ∈ RLn = Zp[Gal(Ln/k)], (γ − κ(γ))θLn/k ∈ RLn .

The Teichmüller character ω induces the ring homomorphism RK −→ RωK =
Zp (resp. RLn −→ RωLn = Zp[Gal(Ln/K)]) such that σ → ω(σ) for all σ ∈
Gal(K/k) (note that Gal(Ln/k) = Gal(Ln/K) × Gal(K/k)). For an element
x ∈ RK (resp. x ∈ RLn), we denote the image of x by xω.

Theorem 1.2 We assume that Ln/k satisfies (R)n, G = Gal(L/K) is not
cyclic, and that FittZp(AωK) = (pcθωK/k) where pc = #μp∞(K). We have

(γ − κ(γ))θLn/k �∈ FittRLn ((ALn)∨).

(If n = 0, we have pcθL/k �∈ FittRL((AL)∨).) In particular, we have

ILnθLn/k �⊂ FittRLn ((ALn)∨).

Remark 1.3 If [K : k] = 2 (for example, if p = 3), the class number formula im-
plies FittZp(AωK) = (pcθωK/k). In fact, by definition, we have θωK/k = L(0, ω−1).
Since [K : k] = 2, we get AωK = A−K . So we obtain

FittZp(A
ω
K) = FittZp(A

−
K) = (#A−K) = (pcL(0, ω−1)) = (pcθωK/k)

by the class number formula.
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We often use the following lemmas in this paper.

Lemma 1.4 Let L/K be an abelian p-extension of CM-fields. We put G =
Gal(L/K). For a prime v of K, we denote by Iv(L/K) the inertia group of v
in G. Then we have an exact sequence

μp∞(K) a−→ (
⊕
v

Iv(L/K))− −→ (A−L )G
N−→ A−K −→ 0

where a is induced by the reciprocity map of local class field theory, v runs over
all finite primes of K, and N is induced by the norm map.

Proof. This is Proposition 5.2 in [7].

In general, for an abelian extension L/k and a subfield K such that k ⊂
K ⊂ L, we define a ring homomorphism

cL/K : Q[Gal(L/k)] −→ Q[Gal(K/k)]

by the restriction σ → σ|K for σ ∈ Gal(L/k). We will use the same notation
cL/K for any group rings such as RL = Zp[Gal(L/k)], Zp[[Gal(L/k)]] (in case
L/k is infinite), etc.

Lemma 1.5 Suppose that L/k is a finite and abelian extension and k ⊂ K ⊂ L.
We denote by SL (resp. SK) the set of finite primes of k ramifying in L/k (resp.
K/k). Then we have

cL/K(θL/k) = (
∏

v∈SL\SK
(1 − ϕ−1

v ))θK/k

where ϕv is the Frobenius of v in Gal(K/k).

Proof. This is well-known, and follows from the expression of θL/k(s) by the
Euler product (see Tate [15] p.86 and Lemma 2.1 in [7]).

Proof of Theorem 1.2. Assume that (γ−κ(γ))θLn/k is in FittRLn ((ALn)∨). Let
cLn/K : RLn −→ RK be the ring homomorphism defined by the restriction.
Then we have

cLn/K((γ − κ(γ))θLn/k) ∈ FittRK (((ALn)∨)Gn)

where Gn = Gal(Ln/K). This implies that

cLn/K((γ − κ(γ))θLn/k)
ω ∈ FittZp(((A

ω
Ln)∨)Gn).

If a prime l of k is ramified in Ln/K , the primes of K+ above l do not split in
K/K+ by our assumption (R)n, so ω(ϕl) �= 1. This implies that cLn/K(θωLn/k) =
uθωK/k for some unit u ∈ Z×p by Lemma 1.5. Since #μp∞(L) = pc, we know that
pc divides κ(γ) − 1 but pc+1 does not. Therefore, we get

(cLn/K((γ − κ(γ))θLn/k)
ω) = (pcθωK/k)
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as ideals of Zp. Hence we obtain

pcθωK/k ∈ FittZp(((A
ω
Ln)∨)Gn) = FittZp(((A

ω
Ln)Gn)∨) = FittZp((A

ω
Ln)Gn).

Here, the last equality holds because FittZp(M) = (#M) for any finite Zp-
module M .

Since we are assuming FittZp(A
ω
K) = (pcθωK/k), we get

FittZp(A
ω
K) ⊂ FittZp((A

ω
Ln)Gn),

which implies that #AωK ≥ #(AωLn)Gn . This contradicts Proposition 1.1. Thus,
we get the conclusion of Theorem 1.2.

Proof of Theorem 0.1. Since (NTZ) and (R) imply (R)n for all n ≥ 0, what we
have to show is FittZp(AωK) = (pcθωK/k) by Theorem 1.2. We define the Iwasawa
module XK∞ by

XK∞ = lim← AKn

where the limit is taken with respect to the norm maps. Then by our assumption
(NTZ), we have an isomorphism (X−K∞)Gal(K∞/K) 	 A−K by Lemma 1.4.

We put ΛK∞ = Zp[[Gal(K∞/k)]] = lim← RKn . Similarly as in the finite level,

we consider the ring homomorphism ΛK∞ −→ ΛωK∞ 	 Zp[[Gal(K∞/K)]] which
is induced by ω, and we denote the image of x ∈ ΛK∞ by xω ∈ ΛωK∞ . Let
((γ−κ(γ))θK∞/k)ω ∈ ΛωK∞ be the projective limit of ((γ−κ(γ))θKn/k)ω ∈ RωKn
(which is the numerator of the p-adic L-function of Deligne and Ribet). Then
the main conjecture proved by Wiles [17] can be stated as

FittΛωK∞
(Xω

K∞) = (((γ − κ(γ))θK∞/k)ω)

because Xω
K∞ contains no nontrivial finite submodule and hence its Fitting

ideal coincides with its characteristic ideal. Let cK∞/K : ΛK∞ −→ RK be the
restriction map. By the condition (NTZ), we get

cK∞/K(((γ − κ(γ))θK∞/k)
ω) = u((1 − κ(γ))θK/k)ω = u′pcθωK/k

for some u, u′ ∈ Z×p by Lemma 1.5. From the isomorphism (Xω
K∞)Gal(K∞/K) 	

AωK , it follows that
FittZp(A

ω
K) = (pcθωK/k).

2 A numerical example

In this section, we will give an example of a number field which does not satisfy
(DSB). We will give an extension L/k explicitly, and compute the Stickelberger
element of L/k and the Fitting ideals of AL and A∨L. We will see from these
computations that (SB) holds for this L/k but (DSB) does not.

We take p = 3 and k = Q(
√

1901). Then p = 3 is inert in k. Let Fα be the
minimal splitting field of X3 − 84X − 191 over Q. We know that Fα contains
k and Fα/k is a cubic cyclic extension which is unramified everywhere. We
define Fβ to be the minimal splitting field of X3 − 57X − 68. Then we can
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check that Fβ/k is a cubic cyclic extension of k which is unramified outside 3
and that the prime of k above 3 is totally ramified in Fβ/k. Put F = FαFβ ,
L = F (μ3) and K = k(μ3). Then L/k satisfies all the conditions in Theorem
0.1. In fact, G = Gal(L/K) = Gal(F/k) 	 Z/3Z ⊕ Z/3Z is not cyclic, and
both conditions (NTZ) and (R) are satisfied because (3) is ramified in K/k and
L/K is unramified outside (3). We also have L ∩K∞ = K. (Theoretically the
existence of F can be checked by class field theory. For a modulus m = (3)2 of k,
the ray class group of k modulo m is isomorphic to Z/3Z⊕Z/3Z⊕Z/3Z. So the
class field theory tells us that there is an abelian extension F/k whose Galois
group is Z/3Z ⊕ Z/3Z, and which is unramified outside 3, and F ∩ k∞ = k.)

Let σ (resp. τ) be a generator of Gal(Fα/k) (resp. Gal(Fβ/k)). We can
write the Stickelberger element for L/k as

θ−L/k =
∑

0≤i≤2
0≤j≤2

aijσ
iτ j ∈ Q[G] 	 Q[Gal(L/k)]−.

Let χ be the unique quadratic character of Gal(K/k). We define characters ϕi
of Gal(Fα/k) and ψj of Gal(Fβ/k) by

ϕi(σ) = ζi3 and ψj(τ) = ζj3 for 0 ≤ i, j ≤ 2

where ζ3 is a primitive 3-rd root of unity. Then all the odd characters of
Gal(L/k) can be written as Ψij = χϕiψj . The element θ−L/k is characterized by
the L-values;

(2.1) Ψij(θ−L/k) = L{3}(0, Ψ−1
ij ) for all i, j such that 0 ≤ i, j ≤ 2

where L{3}(s, Ψij) is the L-function obtained by removing the Euler factors
above 3, which is (1 − Ψij(3)) in this example. In our case, L{3}(s, Ψij)’s
coincide with the usual L-functions L(s, Ψij)’s since (3) is ramified in any
subfield of L corresponding to Ψij . Using Pari/GP, we calculated the values of
these L-functions at s = 0. The following table gives these values.

(i, j) (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)
L(0, Ψij) 18 24 24 60 96 24 60 24 96

This implies that

θ−L/k =
142
3

− 2
3
σ − 2

3
σ2 − 38

3
τ − 38

3
στ +

34
3
σ2τ − 38

3
τ2 +

34
3
στ2 − 38

3
σ2τ2.

Now we identify Zp[G] with Zp[S, T ]/((S + 1)3 − 1, (T + 1)3 − 1) by sending
σ and τ to S + 1 and T + 1, respectively. In this ring, we have equalities
S3 = −3S − 3S2, T 3 = −3T − 3T 2. Using S and T , we can rewrite θ−L/k as

θ−L/k = 18 − 6S − 2S2 − 42T − 18ST − 14S2T − 14T 2 − 14ST 2 − 38
3
S2T 2.

Since IL = (3, S, T ), ILθ−L/k is generated by the following three elements;

3θ−L/k = 2(33−32S−3S2−7 ·32T−33ST−7 ·3S2T−7 ·3T 2−7 ·3ST 2−19S2T 2),
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Sθ−L/k = 8(3S + 3S2T + 3ST 2 + 3S2T 2),

and
Tθ−L/k = 4(5 · 3T + 32S2T + 2 · 3ST 2 + 2 · 3S2T 2).

Next, we proceed to the ideal class groups. By the computation using
Pari/GP, we have isomorphisms

A−K 	 Z/9Z ⊕ Z/3Z

and

A−L 	 Z/27Z ⊕ Z/9Z ⊕ Z/3Z ⊕ Z/3Z ⊕ Z/3Z ⊕ Z/3Z ⊕ Z/3Z ⊕ Z/3Z

as abelian groups. Therefore, we also have

(A−L )∨ 	 Z/27Z ⊕ Z/9Z ⊕ Z/3Z ⊕ Z/3Z ⊕ Z/3Z ⊕ Z/3Z ⊕ Z/3Z ⊕ Z/3Z.

Moreover, using Pari/GP, we can compute the Galois action on A−L , namely
how σ and τ act on this group. Pari/GP computes explicitly the basis of the
ideal class group, which is represented by a basis of the ring of integers of L,
though we do not write down here this representation. Let {g1, . . . , g8} be the
basis of A−L corresponding to the above isomorphism, which was computed by
Pari/GP. We denote by Mσ (resp. Mτ ) the matrix corresponding to the action
of σ (resp. τ) with respect to the above basis. The result of the computation is

Mσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 9 9 −9 9
3 4 −3 3 −3 3 3 −3
−1 1 −1 −1 0 −1 0 −1
1 −1 −1 0 0 0 −1 1
0 0 −1 −1 1 0 −1 1
−1 0 1 0 0 −1 −1 −1
1 −1 0 0 0 −1 1 1
−1 1 1 0 0 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Mτ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 9 −9 −9 0 0 −9
−3 1 3 0 0 −3 0 3
−1 1 −1 0 −1 1 0 0
−1 −1 0 0 0 1 0 0
1 −1 0 −1 1 1 0 0
−1 1 −1 −1 1 1 0 0
1 −1 −1 −1 −1 0 1 −1
0 0 −1 −1 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This means that σ(g1) = g1 + 3g2 − g3 + g4 − g6 + g7 − g8, for example.
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Thus, the transpose of a relation matrix of A−L is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ − 1 −3 1 −1 0 1 −1 1
0 σ − 4 −1 1 0 0 1 −1
0 3 σ + 1 1 1 −1 0 −1
0 −3 1 σ 1 0 0 0
−9 3 0 0 σ − 1 0 0 0
−9 −3 1 0 0 σ + 1 1 −1
9 −3 0 1 1 1 σ − 1 1
−9 3 1 −1 −1 1 −1 σ
τ − 1 3 1 1 −1 1 −1 0

0 τ − 1 −1 1 1 −1 1 0
−9 −3 τ + 1 0 0 1 1 1
9 0 0 τ 1 1 1 1
9 0 1 0 τ − 1 −1 1 −1
0 3 −1 −1 −1 τ − 1 0 0
0 0 0 0 0 0 τ − 1 0
9 −3 0 0 0 0 1 τ − 1
27 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, each row vector represents a relation of A−L . Substituting S + 1 and
T + 1 for σ and τ respectively, and applying the elementary row and column
operations, we can reduce the above matrix to⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3S 0
9 −S2 + ST − T 2

S + T S + S2 − T − ST − 2S2T + T 2

ST 3 + S2 + 2S2T − T 2

S2 6 − ST − 2S2T + T 2

0 3S
0 3T
0 9
0 −S2T + ST 2

0 S2T 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, extra zero vectors and identity matrices which were appeared in the pro-
cess of the reduction were removed. We know from this calculation that A−L
is generated by two elements as an R−L -module and that these two generators
have 10 relations in A−L . Taking all the 2 × 2 minors in the above matrix and
carrying out tedious computation, we obtain

FittR−
L
(A−L ) = (81, 3S, 3T, 27 − S2T 2).
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So we get

3θ−L/k ≡ 2(27 − 19S2T 2) ≡ −36S2T 2 ≡ 0
(
mod FittR−

L
(A−L )

)
,

and also

Sθ−L/k ≡ Tθ−L/k ≡ 0
(
mod FittR−

L
(A−L )

)
.

Therefore, we conclude that

ILθ
−
L/k ⊂ FittR−

L
(A−L )

in this case. In particular, #μp∞(L)θ−L/k ∈ FittR−
L
(A−L ) holds.

Note that we also have numerically checked

FittZp((A
−
L )G) = (27) = FittZp(A

−
K).

This corresponds to the fact that the norm map induces an isomorphism

(A−L )G
	−→ A−K .

Next we will calculate the Fitting ideal of the dual. Let {f1, . . . , f8} be
the dual basis of (A−L )∨ determined by {g1, . . . , g8}. Namely, f1, . . . , f8 are
homomorphisms from A−L to Q/Z satisfying

f1(g1) =
1
27
, f1(gj) = 0 (j �= 1),

f2(g2) =
1
9
, f2(gj) = 0 (j �= 2),

and for 3 ≤ i ≤ 8,

fi(gi) =
1
3
, fi(gj) = 0 (j �= i).

Note that any element f ∈ (A−L )∨ can be written as

f = 27f (g1)f1 + 9f (g2)f2 + 3f (g3)f3 + · · · + 3f (g8)f8.

Let M̃σ (resp. M̃τ ) be the matrix representing the action of σ (resp. τ) on (A−L )∨

corresponding to the dual basis {f1, . . . , f8}. Recall that (A−L )∨ have the
cogredient Galois action. We have

M̃σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 9 −9 9 0 −9 9 −9
0 4 3 −3 0 0 −3 3
0 −1 −1 −1 −1 1 0 1
0 1 −1 0 −1 0 0 0
1 −1 0 0 1 0 0 0
1 1 −1 0 0 −1 −1 1
−1 1 0 −1 −1 −1 1 −1
1 −1 −1 1 1 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

M̃τ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −9 −9 −9 9 −9 9 0
0 1 3 −3 −3 3 −3 0
1 1 −1 0 0 −1 −1 −1
−1 0 0 0 −1 −1 −1 −1
−1 0 −1 0 1 1 −1 1
0 −1 1 1 1 1 0 0
0 0 0 0 0 0 1 0
−1 1 0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the transpose of a relation matrix of (A−L )∨ is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ − 1 0 0 0 −1 −1 1 −1
−9 σ − 4 1 −1 1 −1 −1 1
9 −3 σ + 1 1 0 1 0 1
−9 3 1 σ 0 0 1 −1
0 0 1 1 σ − 1 0 1 −1
9 0 −1 0 0 σ + 1 1 1
−9 3 0 0 0 1 σ − 1 −1
9 −3 −1 0 0 −1 1 σ

τ − 1 0 −1 1 1 0 0 1
9 τ − 1 −1 0 0 1 0 −1
9 −3 τ + 1 0 1 −1 0 0
9 3 0 τ 0 −1 0 0
−9 3 0 1 τ − 1 −1 0 0
9 −3 1 1 −1 τ − 1 0 0
−9 3 1 1 1 0 τ − 1 1
0 0 1 1 −1 0 0 τ − 1
27 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Calculating in the same way as before, we can reduce the above matrix to⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 0 −S2T + ST 2

S 0 −T 2

T 0 −S2

0 3 S2T
0 S T 2

0 T −S2

0 0 3
0 0 S2T 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From this, we know that (A−L )∨ is generated by three elements and that these
elements have 8 relations in (A−L )∨. Furthermore, taking all the 3× 3 minors in
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the above matrix, we obtain

FittR−
L
((A−L )∨) = (81, 9S, 9T, 3S2, 3T 2, 3ST ).

Thus, we have

3
2
θ−L/k ≡ 27 − 19S2T 2 �≡ 0

(
mod FittR−

L
((A−L )∨)

)
,

S

8
θ−L/k ≡ 3S �≡ 0

(
mod FittR−

L
((A−L )∨)

)
,

T

2
θ−L/k ≡ 3T �≡ 0

(
mod FittR−

L
((A−L )∨)

)
.

In conclusion, we have
ILθ
−
L/k �⊂ FittR−

L
((A−L )∨)

unlike to the previous case. We also have

#μp∞(L)θ−L/k = 3θ−L/k �∈ FittR−
L
((A−L )∨).

Note that we have checked numerically

FittZp(((A
−
L )∨)G) = FittZp(((A

−
L )G)) = (81) � (27) = FittZp(A

−
K),

namely #(A−L )G = 81 > #A−K = 27. Note that this is the inequality which was
obtained in Proposition 1.1.

3 Examples for which neither (SB) nor (DSB)

holds

In this section, we will prove that there are extensions L/k for which neither
(SB) nor (DSB) holds.

3.1. We begin with the following easy lemma.

Lemma 3.1 Let k be a totally real number field and M/k be a finite abelian
extension such that M is a CM-field. Suppose that M ′ is an intermediate CM-
field of M/k such that M/M ′ is a p-extension. Then we have

# Ker(A−M ′ −→ A−M ) ≤ [M : M ′].

Proof. As is well-known, there is an injective map from Ker(A−M ′ −→ A−M ) to
H1(Gal(M/M ′), EM )− = H1(Gal(M/M ′), μp∞(M)). We put M ′′ = M ∩M ′∞
where M ′∞ is the cyclotomic Zp-extension of M ′, and G = Gal(M/M ′), H =
Gal(M/M ′′). Consider an exact sequence

0 −→ H1(G/H, μp∞(M ′′)) −→ H1(G,μp∞(M)) −→ H1(H,μp∞(M)).

We know H1(G/H, μp∞(M ′′)) = 0 and μp∞(M) = μp∞(M ′′). Therefore, we
have

#H1(G,μp∞(M)) ≤ #H1(H,μp∞(M)) ≤ #H ≤ #G = [M : M ′],
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which completes the proof of Lemma 3.1.

In this section we assume that k is a totally real number field andK = k(μp).
For simplicity, we also assume [K : k] = 2 (namely we replace k by K+ if it is
needed). Suppose that L/k is an abelian extension such that K ⊂ L. We also
assume that

Gal(L/K) 	 (Z/pZ)⊕r, A−K 	 (Z/pZ)⊕r for some r ≥ 2,

and the natural map A−K −→ A−L is the zero map.

Proposition 3.2 Assume that L/k satisfies the above conditions. We also as-
sume that there are intermediate fields Kα, Kβ of L/K such that [Kα : K] =
[Kβ : K] = p, each prime of k which splits in K and which is ramified in L is
ramified in Kα, A−Kα is generated by exactly r elements as a Zp[Gal(Kα/K)]-
module, A−Kβ is generated by exactly r′ elements as a Zp[Gal(Kβ/K)]-module,
and r′ > r. Then neither (SB) nor (DSB) holds for L/k.

We will give in §3.2 a numerical example which satisfies all the conditions
of the above proposition. Before the proof, we remark that our assumption
implies that (R) is not satisfied for L/k. In fact, if (R) is satisfied, by Lemma
1.4 we have isomorphisms (A−L )Gal(L/Kα) 	 A−Kα and (A−L )Gal(L/Kβ) 	 A−Kβ .
This shows that r = r′ by Nakayama’s lemma. Therefore, (R) is not satisfied in
our case. After the proof of Proposition 3.2, we will show that our assumption
in Proposition 3.2 implies that (NTZ) is not satisfied for L/k.

Proof of Proposition 3.2. We have L∩K∞ = K. In fact, if we put K ′ = L∩K∞,
we know that A−K −→ A−K′ is injective. By Lemma 3.1, we have # Ker(A−K −→
A−L ) ≤ # Ker(A−K′ −→ A−L ) ≤ [L : K ′]. Since the left hand side is pr by our
assumption, we must have [L : K ′] = pr and K ′ = K. We put pc = #μp∞(L)
as in §1. Then we have #μp∞(K) = pc.

For an intermediate field M of L/K such that [M : K] = p, we consider
RM = Zp[Gal(M/k)] and the decomposition RM = R+

M ⊕ R−M . Here, R−M =
Zp[Gal(M/k)]− is isomorphic to Zp[Gal(M/K)]. For any element x ∈ RM , we
denote by x− ∈ R−M 	 Zp[Gal(M/K)] the minus component of x. We take a
faithful character ψM : Gal(M/K) −→ μp ⊂ Q

×
p , and put OψM = Zp[ImageψM ]

which we regard as a Zp[Gal(M/K)]-module on which Gal(M/K) acts via ψM .
We also denote by ψM the ring homomorphism Zp[Gal(M/K)] −→ OψM which
is defined by σ → ψM (σ) for all σ ∈ Gal(M/K). We define (A−M )ψM by

(A−M )ψM = A−M ⊗Zp[Gal(M/K)] OψM .

Suppose that σM is a generator of Gal(M/K). Then σM acts trivially on
μp∞(M) = μp∞(K) = μpc . Thus, we have (σM − 1)θM/k ∈ Zp[Gal(M/k)]
where θM/k is the Stickelberger element of M/k. We consider (σM − 1)θ−M/k ∈
Zp[Gal(M/K)] and ψM ((σM − 1)θ−M/k) ∈ OψM .

Lemma 3.3 For an intermediate field M of L/K such that [M : K] = p, we
have

FittOψM ((A−M )ψM ) = (ψM ((σM − 1)θ−M/k)).
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Proof. This can be proved by the class number formula. Let ordp : Q×p −→ Z be
the normalized additive valuation at p such that ordp(p) = 1. The class number
formula says that ordp(#A−K) = ordp(pcθ−K/k) and

ordp(#A−M ) = ordp(pcθ−K/kNQp(μp)/Qp(ψM (θ−M/k)))

where NQp(μp)/Qp is the norm from Qp(μp) to Qp. Hence we have

ordp(
#A−M
#A−K

) = ordp(NQp(μp)/Qp(ψM (θ−M/k))).

On the other hand, since the norm map A−M −→ A−K is surjective by Lemma
1.4, we have

(A−M )ψM = A−M/(1 + σM + ...+ σp−1
M )A−M = A−M/ Image(A−K −→ A−M ).

Since the natural map iL/K : A−K −→ A−L is the zero map by our assumption,
the image of iM/K : A−K −→ A−M is in the kernel of iL/M : A−M −→ A−L . By
Lemma 3.1 we have # Ker(A−K −→ A−M ) ≤ p and # Ker(A−M −→ A−L ) ≤ pr−1.
Therefore, we must have # Ker(A−K −→ A−M ) = p and # Ker(A−M −→ A−L ) =
pr−1. It follows that

#(A−M )ψM = # Coker(A−K −→ A−M ) = p
#A−M
#A−K

.

This implies that

ordp(#(A−M )ψM ) = ordp(NQp(μp)/Qp(ψM ((σM − 1)θ−M/k))).

Thus, we get lengthOψM ((A−M )ψM ) = lengthOψM (OψM /ψM ((σM − 1)θ−M/k)),
which implies the conclusion of Lemma 3.3 (note that OψM is a discrete valua-
tion ring).

Now we prove Proposition 3.2. First, we will prove that (SB) does not hold.
Since the map (A−L )Gal(L/Kβ) −→ A−Kβ which is induced by the norm map is
surjective, the number of generators of A−L as a Zp[Gal(L/K)]-module is ≥ r′ by
Nakayama’s lemma. We consider a surjective homomorphism (A−L )Gal(L/Kα) −→
A−Kα . Let ψ1 = ψKα be a faithful character of Gal(Kα/K). For any Zp[Gal(Kα/K)]-
module M , we define the ψ1-quotient by Mψ1 = M ⊗Zp[Gal(Kα/K)] Oψ1 . We
consider a surjective homomorphism ((A−L )Gal(L/Kα))ψ1 −→ (A−Kα)ψ1 which is
the ψ1-quotient of the above homomorphism. The number of generators of
((A−L )Gal(L/Kα))ψ1 (resp. (A−Kα)ψ1) as an Oψ1 -module is ≥ r′ (resp. r) by
Nakayama’s lemma. Therefore, we obtain

(3.1.1) Ker(((A−L )Gal(L/Kα))ψ1 −→ (A−Kα)ψ1) �= 0.

It follows from Lemma 3.3 that

FittOψ1
(((A−L )Gal(L/Kα))ψ1) � (ψ1((σKα − 1)θ−Kα/k)).
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Let σ ∈ Gal(L/K) be a K-isomorphism whose restriction to Kα is σKα . The
image of (σ − 1)θ−L/k in Zp[Gal(Kα/K)] is u(σKα − 1)θ−Kα/k for some unit u
by Lemma 1.5 because all the primes of k which split in K and which are
ramified in L are ramified in Kα. If (σ − 1)θ−L/k was in FittZp[Gal(L/K)](A−L ),
ψ1((σKα −1)θ−Kα/k) would be in FittOψ1

(((A−L )Gal(L/Kα))ψ1), which is a contra-
diction. Therefore, we have (σ − 1)θ−L/k �∈ FittZp[Gal(L/K)](A−L ), and conclude
that (SB) does not hold.

Next, we prove that (DSB) does not hold. In the proof of Lemma 3.3, we
proved that # Ker(A−K −→ A−Kβ ) = p, # Ker(iL/Kβ ) = pr−1, and Image(iKβ/K) =
Ker(iL/Kβ). Let ψ2 = ψKβ be a faithful character of Gal(Kβ/K). In the proof
of Lemma 3.3 we also proved that (A−Kβ )ψ2 is isomorphic to Coker(iKβ/K), so
we have an injective homomorphism

(3.1.2) (A−Kβ )ψ2 ↪→ (A−L )Gal(L/Kβ).

Let π be a prime element of Oψ2 . For any m ∈ Z>0 we know that Oψ2/(πm)
is a Gorenstein ring, so the Pontrjagin dual (Oψ2/(πm))∨ is isomorphic to
Oψ2/(π

m) (cf. [10] Proposition 4 on page 328). Since (A−Kβ )ψ2 is a finite Oψ2-
module, we can apply the above argument to know that the Pontrjagin dual
((A−Kβ )ψ2)∨ is generated by exactly r′ elements as a Zp[Gal(Kβ/K)]-module.
Therefore, from the injectivity (3.1.2) we know that the number of generators
of (A−L )∨ is ≥ r′.

By the same method as (3.1.2), we obtain an injective homomorphism

(3.1.3) (A−Kα)ψ1 ↪→ (A−L )Gal(L/Kα).

Taking the dual and the ψ1-quotient, we have a surjective homomorphism

(((A−L )∨)Gal(L/Kα))ψ1 −→ ((A−Kα)ψ1)
∨

where the number of generators of (((A−L )∨)Gal(L/Kα))ψ1 is ≥ r′ and the number
of generators of ((A−Kα)ψ1)∨ is r. Therefore, the above surjective homomorphism
has nontrivial kernel. This implies that

FittOψ1
((((A−L )∨)Gal(L/Kα))ψ1) � (ψ1((σKα − 1)θ−Kα/k))

by Lemma 3.3. Therefore, by the same method as in the case of (SB), we know
that (σ − 1)θ−L/k is not in FittZp[Gal(L/K)]((A−L )∨). Thus, (DSB) does not hold.
This completes the proof of Proposition 3.2.

We finally remark that our assumption in Proposition 3.2 implies that (NTZ)
is not satisfied for L/k. In fact, (3.1.1) and Lemma 1.4 imply that there is a
prime p of k which splits in K and is ramified in L/Kα. Then p has to be
ramified in Kα/K by our assumption. Therefore, the inertia group of p in
Gal(L/k) is not cyclic. This shows that p is above p. Since p splits in K, (NTZ)
is not satisfied.

3.2. We give a numerical example which satisfies the conditions of Proposition
3.2.
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Let p = 3, k = Q(
√

69,
√

713) and K = k(μ3) = k(
√−3). Suppose that

α, β satisfy α3 − 6α − 3 = 0 and β3 − 6β − 1 = 0, and put Kα = K(α),
Kβ = K(β). The minimal splitting field of x3 − 6x− 3 (resp. x3 − 6x− 1) over
Q is a S3-extension and contains

√
69 (resp.

√
93). Therefore, both k(α)/k and

k(β)/k are cubic cyclic extensions. We put L = KαKβ. We have Gal(L/K) =
Gal(Kα/K)⊕ Gal(Kβ/K) = Gal(k(α)/k) ⊕ Gal(k(β)/k) 	 (Z/3Z)⊕2.

There is only one prime p in k above 3. We can check that both k(α)/k and
k(β)/k are unramified outside p, and that p is totally ramified both in k(α) and
in k(β). Since K = k(

√−3) = k(
√−23), p splits in K. Two primes of K above

p are totally ramified in L. So L/k satisfies neither (NTZ) nor (R).
We can easily check that A−K 	 (Z/3Z)⊕2 by the computations of the class

numbers of imaginary quadratic fields which are contained in K. More precisely,
we have

A−K = AQ(
√−23) ⊕AQ(

√−31).

We can check that the natural map AQ(
√−23) −→ AQ(

√−23,
√−3,α) is the zero

map both theoretically (using that the λ-invariant of Q(
√−23) is 1) and nu-

merically (using Pari/GP). We will explain it numerically. By Pari/GP, we can
check that A−

Q(
√−23,

√−3,α)
	 Z/3Z. Since the norm map A−

Q(
√−23,

√−3,α)
−→

AQ(
√−23) is surjective by class field theory, it is bijective. This shows that the

natural map AQ(
√−23) −→ AQ(

√−23,
√−3,α) is the zero map. Similarly, using

A−
Q(
√−31,

√−3,β)
	 Z/3Z, we know that AQ(

√−31) −→ AQ(
√−31,

√−3,β) is also the

zero map. Therefore, A−K −→ A−L is the zero map.

Using Pari/GP, we can compute

A−Kα 	 Z/81Z ⊕ Z/27Z ⊕ Z/3Z.

The action of a generator σKα of Gal(Kα/K) is represented by the matrix

MσKα =

⎛
⎝ −32 21 −27

−10 4 0
0 0 1

⎞
⎠ .

The meaning of the matrix is the same as §2. Putting S = σKα − 1, we obtain
a relation matrix ⎛

⎝ S + 33 −21 27 81 0 0
10 S − 3 0 0 27 0
0 0 S 0 0 3

⎞
⎠

of A−Kα as a Zp[Gal(Kα/K)]-module. The above matrix is reduced to(
3 S 0 0
0 0 27S 3 + 3S + S2 − 9S2

)
.

This shows that A−Kα is generated by exactly two elements.
In the same way, we have

A−Kβ 	 Z/9Z ⊕ Z/3Z ⊕ Z/3Z.
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The action of a generator σKβ of Gal(Kβ/K) is represented by the matrix

MσKβ
=

⎛
⎝ −2 0 −3

0 1 0
0 0 1

⎞
⎠ .

We put T = σKβ − 1, then a relation matrix of A−Kβ is

⎛
⎝ T + 3 0 3 9 0 0

0 T 0 0 3 0
0 0 T 0 0 3

⎞
⎠ .

Therefore, A−Kβ is generated by exactly three elements. Thus, our L/k satisfies
all the conditions of Proposition 3.2. Hence we know that neither (SB) nor
(DSB) holds for our L/k.

We finally remark that we could not compute numerically the Fitting ideal
of A−L for this example. We can compute

A−L 	 Z/81Z ⊕ Z/81Z ⊕ Z/9Z ⊕ Z/9Z ⊕ Z/9Z ⊕ Z/9Z ⊕ Z/9Z

as an abelian group. But since the degree of L is too large, we could not compute
the action of Gal(L/K) on A−L , using Pari/GP.

4 Other examples

4.1. In this subsection, we describe the setting and the assumptions in this
section. Let k′ be a totally real number field and K ′ = k′(μp). We assume
(K ′)+ = k′, so [K ′ : k′] = 2. Let F ′/k′ be a finite and abelian p-extension
such that Gal(F ′/k′) is not cyclic. We further assume that F ′/k′ is ramified
at a prime above p. We put L′ = F ′K ′. We assume (NTZ) and (R) for L′/k′.
So every prime above p does not split in K ′/k′, and every prime which splits
in K ′/k′ is unramified in L′/k′. Let k′∞/k

′ (resp. F ′∞/F
′) be the cyclotomic

Zp-extension. We further assume that F ′ ∩ k′∞ = k′, and all the primes of F ′

above p are totally ramified in F ′∞.
We also assume that there is a CM-field K ′′ which is a quadratic extension

of k′ such that A−K′′ = 0, and that there is a prime p′ of k′ above p which
is ramified in F ′ and which splits in K ′′. Put L′′ = F ′K ′′. Then (R) is not
satisfied for L′′/k′ because p′ splits in K ′′ and is ramified in L′′. Also, (NTZ)
is not satisfied for L′′/k′ because p′ splits in K ′′. Since p′ splits in K ′′ and does
not split in K ′, we have K ′ �= K ′′. We assume that every prime of k′ which is
prime to p and which splits in K ′′ is unramified in L′′/k′.

In this setting, we put K = K ′K ′′. Then K is a CM-field and K/k′ is
an abelian extension such that Gal(K/k′) 	 Z/2Z ⊕ Z/2Z. The maximal real
subfield K+ of K is a quadratic extension of k′. We put k = K+, F = kF ′ and
L = kL′ = kL′′. We have K = kK ′ = k(μp). Let p′ be a prime of k′ above p
which is ramified in F ′ and which splits in K ′′. Since p′ does not split in K ′,
it does not split in k. We denote by p the prime of k above p′. Then p splits
in K, and is ramified in L. In particular, neither (NTZ) nor (R) is satisfied for
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L/k. Since every prime above p is totally ramified in F ′∞/F
′, every prime of L

(resp. K) above p is also totally ramified in L∞ (resp. K∞).

4.2. In this subsection, we will prove Theorem 0.2. Put G = Gal(L/K) =
Gal(L′/K ′) = Gal(L′′/K ′′) = Gal(F/k) = Gal(F ′/k′) and Γ = Gal(K∞/K) =
Gal(K ′∞/K ′) = Gal(K ′′∞/K ′′). Let κ : Γ −→ Z×p be the cyclotomic character
and γ be a generator of Γ.

We put Γ1 = Gal(K1/K) = Gal(K ′1/K
′) = Gal(K ′′1 /K

′′) where K1 (resp.
K ′1, K

′′
1 ) is the first layer of K∞/K (resp. K ′∞/K

′, K ′′∞/K
′′). We regard γ as

a generator of Γ1.
As in §3, we consider RK′

1
= Zp[Gal(K ′1/k′)] and the decomposition RK′

1
=

R+
K′

1
⊕ R−K′

1
. For any element x ∈ RK′

1
, we denote by x− ∈ R−K′

1
	 Zp[Γ1]

the minus component of x. Let ψ : Γ1 −→ μp ⊂ Q
×
p be a faithful character,

and Oψ = Zp[Imageψ] be a Zp[Γ1]-module on which Γ1 acts via ψ. The ring
homomorphism Zp[Γ1] −→ Oψ defined by σ → ψ(σ) for all σ ∈ Γ1 is also
denoted by ψ. So ψ(x−) ∈ Oψ is defined for x ∈ RK′

1
.

For any Zp[Γ1]-module M , we define Mψ by Mψ = M ⊗Zp[Γ1] Oψ. We will
prove

Lemma 4.1

(4.2.1) FittOψ (((A−L′
1
)G)ψ) = (ψ(((γ − κ(γ))θK′

1/k
′ )−)),

(4.2.2) FittOψ ((((A−L′
1
)∨)G)ψ) � (ψ(((γ − κ(γ))θK′

1/k
′)−)).

Proof. We will first prove (4.2.1). Since (R)1 is satisfied for L′1/k′, the norm
map induces an isomorphism

(A−L′
1
)G

	−→ A−K′
1

by Lemma 1.4. Therefore, we have FittR−
K′

1

((A−L′
1
)G) = FittR−

K′
1

(A−K′
1
).

Using the class number formula and the fact that #μp∞(K ′1) = p#μp∞(K ′),
we get

ordp(
#A−K′

1

#A−K′
) = ordp(NQp(μp)/Qp(ψ(θ−K′

1/k
′))) + 1

by the same method as Lemma 3.3. Since A−K′ −→ A−K′
1

is injective in our case,
we have an exact sequence

0 −→ A−K′ −→ A−K′
1
−→ (A−K′

1
)ψ −→ 0.

It follows that

ordp(#(A−K′
1
)ψ) = lengthOψ ((A−K′

1
)ψ) = lengthOψ (Oψ/ψ((γ − κ(γ))θ−K′

1/k
′)),

which implies (4.2.1).
Next, we will prove (4.2.2). Suppose that n is an integer > 1. As in the proof

of Proposition 1.1, we have Hq(Gal(L′n/L
′
1), EL′

n
)− = 0 for any q ≥ 1. Using
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the long exact sequence in §1 for L′n/L
′
1, we obtain Ĥ0(Gal(L′n/L

′
1), A

−
L′
n
) =

H1(Gal(L′n/L′1), A
−
L′
n
) = 0 by our assumption (NTZ). This implies that the

natural map A−L′
1
−→ (A−L′

n
)Gal(L′

n/L
′
1) is bijective (cf. the proof of Proposition

1.1). Put AK′∞ = lim→ AK′
n

and AL′∞ = lim→ AL′
n
. Thus, we have an isomorphism

(4.2.2.1) A−L′
1

	−→ (A−L′∞
)Gal(L′

∞/L
′
1).

Put XK′∞ = A∨K′∞
and XL′∞ = A∨L′∞

. In the proof of Theorem 0.3 in [8], we
proved

(4.2.2.2) FittΛ−
K′∞

((X−L′∞
)G) ⊂ (p, γ − 1)(((γ − κ(γ))θK′∞/k′ )

−).

The isomorphism (4.2.2.1) induces an isomorphism (X−L′∞
)G×Gal(L′∞/L′

1)
	 ((A−L′

1
)∨)G.

We denote by cK′∞/K
′
1

: ΛK′∞ = Zp[[Gal(K ′∞/k
′)]] −→ RK′

1
the natural restric-

tion map. Since every prime of k′ above p is ramified in K ′1, by Lemma 1.5 we
have

(4.2.2.3) cK′∞/K
′
1
((γ − κ(γ))θK′∞/k′) = (γ − κ(γ))θK′

1/k
′ .

Hence by (4.2.2.2) and (4.2.2.3) we have

FittR−
K′

1

(((A−L′
1
)∨)G) ⊂ (p, γ − 1)(((γ − κ(γ))θK′

1/k
′)−),

which implies (4.2.2).

Next, we consider L′′/K ′′. Since K ′′ �= K ′, K ′′ does not contain a primitive
p-th root of unity, so neither does K ′′1 . Put RK′′

1
= Zp[Gal(K ′′1 /k

′)]. Since
IK′′

1
= AnnRK′′

1
(μp∞(K ′′1 )) = RK′′

1
, we have θK′′

1 /k
′ ∈ RK′′

1
by a theorem of

Deligne and Ribet.
As we did for K ′1, we consider the decomposition RK′′

1
= R+

K′′
1
⊕ R−K′′

1
, and

use the notation x− ∈ R−K′′
1

which is the minus component of x for any x ∈ RK′′
1
.

For a faithful character ψ : Γ1 −→ μp, we also consider the ring homomorphism
ψ : R−K′′

1
	 Zp[Γ1] −→ Oψ .

We will prove

Lemma 4.2

(4.2.3) FittOψ (((A−L′′
1
)G)ψ) � (ψ(θ−K′′

1 /k
′ ))

(4.2.4) FittOψ ((((A−L′′
1
)∨)G)ψ) ⊂ (ψ(θ−K′′

1 /k
′)).

Proof. We first note that

(4.2.3.1) FittOψ ((A−K′′
1
)ψ) = (ψ(θ−K′′

1 /k
′)).

We can prove (4.2.3.1) by the class number formula, using the same method as
Lemma 3.3 and (4.2.1) (now we use #μp∞(K ′′1 ) = #μp∞(K ′′) = 1).

21



We first prove (4.2.3). By Lemma 1.4, we have a commutative diagram of
exact sequences

0 −→ (
⊕

w Iw(L′′1/K ′′1 ))− α−→ (A−L′′
1
)G −→ A−K′′

1
−→ 0⏐⏐�β ⏐⏐�γ ⏐⏐�

0 −→ (
⊕

v Iv(L
′′/K ′′))− δ−→ (A−L′′)G −→ A−K′′ −→ 0

where w (resp. v) runs over all finite primes of K ′′1 (resp. K ′′). Let vk′ be
the prime of k′ below a prime v of K ′′. If vk′ is not above p and splits in
K ′′/k′, v is unramified in L′′ by our assumption. Hence (

⊕
v Iv(L

′′/K ′′))− =
(
⊕

v|p Iv(L
′′/K ′′))−. Similarly, we have (

⊕
w Iw(L′′1/K

′′
1 ))− = (

⊕
w|p Iw(L′′1/K

′′
1 ))−.

If v is above p, v is totally ramified in K ′′1 because every prime above p is totally
ramified in F ′∞/F

′. Let w be the prime of K ′′1 above v. Then the restriction
map Iw(L′′1/K

′′
1 ) −→ Iv(L′′/K ′′) is bijective because every prime of L′′ above

v is totally ramified in L′′1 . Therefore, β is bijective. Since A−K′′ = 0, δ is also
bijective. Thus, α has a left inverse β−1 ◦ δ−1 ◦ γ. Hence we have isomorphisms

(4.2.3.2) (A−L′′
1
)G 	 (

⊕
w|p

Iw(L′′1/K
′′
1 ))− ⊕A−K′′

1
	 (

⊕
v|p

Iv(L′′/K ′′))− ⊕A−K′′
1

as R−K′′
1
-modules. Since there is a prime p′ of k′ above p which splits in K ′′ and

which is ramified in L′′, (
⊕

v|p Iv(L
′′/K ′′))− �= 0. Therefore, we have

FittR−
K′′

1

((A−L′′
1
)G) ⊂ (p, γ − 1) FittR−

K′′
1

(A−K′′
1
).

By (4.2.3.1), this implies that

FittOψ (((A−L′′
1
)G)ψ) ⊂ ψ((γ − 1)θ−K′′

1 /k
′).

This completes the proof of (4.2.3).
Finally, we will prove (4.2.4). Since #μp∞(L′′1 ) = 1, we have H1(G,EL′′

1
)− =

0. This implies that the natural map A−K′′
1

−→ (A−L′′
1
)G is injective. Hence

((A−L′′
1
)∨)G −→ (A−K′′

1
)∨ is surjective, so (((A−L′′

1
)∨)G)ψ −→ ((A−K′′

1
)∨)ψ is also

surjective, which gives an inclusion

FittOψ ((((A−L′′
1
)∨)G)ψ) ⊂ FittOψ(((A−K′′

1
)∨)ψ).

In general, for any Zp[Γ1]-module M , we define Mψ to be the kernel of NΓ1 =
1 + γ + ...+ γp−1 on M . We have an exact sequence

0 −→Mψ −→M
NΓ1−→M −→Mψ −→ 0.

Suppose that M is finite. Then by the above exact sequence, we have

#(M∨)ψ = #(Mψ)∨ = #Mψ = #Mψ.

Applying the above equality to M = A−K′′
1
, we get

FittOψ ((((A−L′′
1
)∨)G)ψ) ⊂ FittOψ (((A−K′′

1
)∨)ψ) = FittOψ ((A−K′′

1
)ψ).

Using (4.2.3.1), we obtain (4.2.4).
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Remark 4.3 Note that (4.2.3) shows that (SB) does not hold for L′′1/k
′. In

fact, we have cL′′
1 /K

′′
1
(θL′′

1 /k
′) = uθK′′

1 /k
′ for some u ∈ R×K′′

1
by Lemma 1.5

because all the primes of k′ above p are ramified in K ′′1 , and a prime of k′ which
is not above p and which splits in K ′′ is unramified in L′′1/K ′′1 . So if θL′′

1 /k
′ was

in FittRL′′
1
(AL′′

1
), θ−K′′

1 /k
′ would be in FittR−

K′′
1

((A−L′′
1
)G), and ψ(θ−K′′

1 /k
′) would

be in FittOψ (((A−L′′
1
)G)ψ), which contradicts (4.2.3).

Now we proceed to the proof of Theorem 0.2. Let Gal(K/k′)∨ be the group of
characters of Gal(K/k′). For any χ ∈ Gal(K/k′)∨ and a Zp[Gal(K/k′)]-module
M , we define

Mχ = {x ∈M | σ(x) = χ(σ)x for all σ ∈ Gal(K/k′)}.
Let χ1 be the trivial character, χk be the character corresponding to k/k′, and
χ′ (resp. χ′′) be the character corresponding to K ′/k′ (resp. K ′′/k′). Any
Zp[Gal(K/k′)]-module M is decomposed into M = Mχ1 ⊕Mχk ⊕Mχ′ ⊕Mχ′′

.
Since χ′, χ′′ are odd characters (and χ1, χk are even characters), we have
M− = Mχ′ ⊕ Mχ′′

. We identify Gn = Gal(Ln/k) with Gal(L′n/k
′) by the

restriction map, and also identify Gn with Gal(L′′n/k′). We have an isomorphism

(4.2.5) A−Ln = Aχ
′
Ln

⊕ Aχ
′′
Ln

	 A−L′
n
⊕A−L′′

n

as Zp[Gn]-modules for any n ≥ 0.
Using the identifications of Gn with Gal(L′n/k

′) and with Gal(L′′n/k
′), we

regard θL′
n/k

′ , θL′′
n/k

′ as elements in Q[Gn]. Then we have

(4.2.6) θLn/k = θL′
n/k

′θL′′
n/k

′ .

We will give a proof of (4.2.6). We use a technique of Tate [15] Proposition 1.8
on page 87. Let σ (resp. τ) be a generator of Gal(Ln/L′n) (resp. Gal(Ln/L′′n)),
which is a cyclic group of order 2. Note that στ is in Gn and this equals to the
complex conjugation ρ. We know that Gal(Ln/k′) 	 Gn × 〈σ〉 	 Gn × 〈τ〉. We
have an isomorphism

C[Gal(Ln/k′)]−
	−→ C[Gal(L′n/k

′)]− ⊕ C[Gal(L′′n/k
′)]− 	 C[Gn]− ⊕ C[Gn]−

where the first isomorphism is induced by cLn/L′
n
⊕ cLn/L′′

n
and the second

isomorphism comes from our identifications of Gn with Gal(L′n/k
′) and with

Gal(L′′n/k′). Since cLn/L′
n

(resp. cLn/L′′
n
) is defined by σ → 1 (resp. τ → 1), the

above first isomorphism satisfies a+ bσ → (a+ b, a− b) for any a, b ∈ C[Gn]−.
Let x be an element of C[Gal(Ln/k′)]−. The multiplication by x defines

an endomorphism of C[Gal(Ln/k′)]− which is a free C[Gn]−-module of rank
2. Hence, the determinant induces a homomorphism N : C[Gal(Ln/k′)]− −→
C[Gn]−. Namely, N (a+ bσ) = a2 − b2 for any a, b ∈ C[Gn]−, and

(4.2.7) N (x) = cLn/L′
n
(x)cLn/L′′

n
(x).

Let θLn/k′ (s) be a C[Gal(Ln/k′)]-valued function defined in [15] satisfying
θLn/k′(0) = θLn/k′ . Using Tate [15] Proposition 1.8 on page 87, we have

(4.2.8) N (θLn/k′(s)) =
∏
v∈S

(1 − ϕ−1
v N(v)−s)θLn/k(s)
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where S is the set of primes of k′ which are ramified in k/k′ and are unramified
in Ln/k, and N(v) is the norm of a prime v. If v is in S, it is unramified in
Ln/K , so it is prime to p. Hence it is unramified in K ′, and is unramified in
L′n. Therefore, we have

S = {v : a prime of k′ | v is ramified in Ln/k′ and is unramified in L′n/k′}.
By Tate [15] Corollary 1.7 on page 86, we have

(4.2.9) cLn/L′
n
(θLn/k′(s)) =

∏
v∈S

(1 − ϕ−1
v N(v)−s)θL′

n/k
′ (s).

If a prime v of k′ is ramified in Ln and unramified in L′′n, it is ramified in K ′ so
it is a prime above p. But this contradicts our assumption that all the primes
above p are totally ramified in L′′n/L

′′. Hence there is no prime of k′ which is
ramified in Ln and unramified in L′′n. By Tate [15] Corollary 1.7 on page 86, we
have

(4.2.10) cLn/L′′
n
(θLn/k′ (s)) = θL′′

n/k
′(s).

By (4.2.7), (4.2.8), (4.2.9), and (4.2.10), we get

N (θLn/k′(s)) = cLn/L′
n
(θLn/k′(s))cLn/L′′

n
(θLn/k′ (s)).

Substituting s = 0, we obtain (4.2.6). This completes the proof of (4.2.6).

Now, we will prove that (SB) does not hold for Ln/k for n ≥ 1. Suppose that
(γ−κ(γ))θLn/k is in FittRLn (ALn). Since (A−Ln)Gal(Ln/L1) −→ A−L1

is surjective
by Lemma 1.4, we have cLn/L1((γ − κ(γ))θ−Ln/k) ∈ FittR−

L1
(A−L1

), and

cLn/K1((γ − κ(γ))θ−Ln/k) ∈ FittR−
K1

((A−L1
)G).

By Lemma 1.5, cLn/K1(θ
−
Ln/k

) = uθ−K1/k
for some u ∈ (R−K1

)× because every
prime of k above p is totally ramified in K1, and every prime of k which is not
above p and which splits in K is unramified. Therefore, we have

(γ − κ(γ))θ−K1/k
∈ FittR−

K1
((A−L1

)G).

By (4.2.5) and (4.2.6), this implies that

(γ − κ(γ))θ−K′
1/k

′θ
−
K′′

1 /k
′ ∈ FittR−

K1
((A−L′

1
)G) FittR−

K1
((A−L′′

1
)G)

and

ψ((γ − κ(γ))θ−K′
1/k

′θ
−
K′′

1 /k
′ ) ∈ FittOψ (((A−L′

1
)G)ψ) FittOψ (((A−L′′

1
)G)ψ).

On the other hand, by (4.2.1) and (4.2.3) we have

FittOψ (((A−L′
1
)G)ψ) FittOψ (((A−L′′

1
)G)ψ) � (ψ((γ − κ(γ))θ−K′

1/k
′θ
−
K′′

1 /k
′ )).

This is a contradiction.
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By the same method, we can prove that (DSB) does not hold. Suppose that
(γ−κ(γ))θLn/k is in FittRLn (A∨Ln). As we saw in §1, H1(Gal(Ln/L1), ELn)− =
H1(Gal(Ln/L1), μp∞(Ln)) = 0 ([16] Lemma 13.27), which implies that A−L1

−→
A−Ln is injective. Therefore, we get

(γ − κ(γ))θ−K1/k
∈ FittR−

K1
(((A−L1

)∨)G)

by the same method as above. By (4.2.5) and (4.2.6), we have

(γ − κ(γ))θ−K′
1/k

′θ
−
K′′

1 /k
′ ∈ FittR−

K1
(((A−L′

1
)∨)G) FittR−

K1
(((A−L′′

1
)∨)G)

= FittR−
K1

(((A−L1
)∨)G).

But (4.2.2) and (4.2.4) imply that

FittOψ ((((A−L1
)∨)G)ψ) � (ψ((γ − κ(γ))θ−K′

1/k
′θ
−
K′′

1 /k
′)),

which is a contradiction. This completes the proof of Theorem 0.2.

4.3. We give an example which satisfies the conditions of Theorem 0.2. We
consider p = 3, k′ = Q(

√
1901) and K ′ = k′(μ3). Let F ′α (resp. F ′β) be the

minimal splitting field of X3 − 84X − 191 (resp. X3 − 57X − 68). Both F ′α and
F ′β are S3-extensions over Q containing k′. We put F ′ = F ′αF

′
β . The prime (3)

of k′ is ramified in F ′β , so in F ′. The extension F ′/k′ is unramified outside 3.
The Galois group G = Gal(F ′/k′) is not cyclic and isomorphic to Z/3Z⊕Z/3Z.
Put L′ = F ′K ′. Then L′/k′ satisfies both (NTZ) and (R) as we explained in §2.
From our construction (see §2), we know F ′ ∩ k′∞ = k′, and every prime above
3 is totally ramified in F ′∞/F

′.
We put K ′′ = k′(

√−2). Then A−K′′ = 0, and (3) splits in K ′′/k′. Put
L′′ = F ′K ′′. Then L′′/K ′′ is unramified outside (3). We take k = k′(

√
6) =

Q(
√

6,
√

1901), F = kF ′, K = kK ′ = K ′K ′′, and L = kL′. Thus, the extension
L/k satisfies all the conditions of Theorem 0.2, namely the conditions in the
subsection 3.1. Applying Theorem 0.2, we know that neither (SB) nor (DSB)
holds for Ln/k for all n ≥ 1.
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