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Abstract. Suppose that L/k is a finite and abelian extension such that &
is a totally real base field and L is a CM-field. We regard the ideal class
group Cly of L as a Gal(L/k)-module. As a sequel of the paper [§] by the
first author, we study a problem whether the Stickelberger element for L/k
times the annihilator ideal of the roots of unity in L is in the Fitting ideal of
Clp, and also a problem whether it is in the Fitting ideal of the Pontrjagin dual
(Clp)Y. We systematically construct extensions L/k for which these properties
do not hold, and also give numerical examples.

0 Introduction

Our aim in this paper is to study the Galois action on the ideal class group of a
CM-field over a totally real base field. Let k be a totally real number field and
L be a CM-field such that L/k is finite and abelian. In this paper, we fix an
odd prime number p, and study the p-component Ay of the ideal class group
Clg, namely Aj, = Clg ®Z,. We put Ry = Z,[Gal(L/k)] and regard Ay, as an
Ry -module.

Let 61,/ be the Stickelberger element defined by

Ok = Z ¢(0,0)0~! € Q[Gal(L/k)]
oc€Gal(L/k)

N(a)~® is the partial zeta function. We define

where ((s,0) = Z(M):
tpee (L) to be the group of roots of unity in L with order a power of p, and
Ir, = Anng, (pp= (L)) to be the annihilator ideal of pye (L) in Ryr. The results
in Deligne and Ribet [2] imply that Ir0;,, C Rr. In this setting, Brumer’s

conjecture claims that
(B) ILQL/k CAnnRL(AL).

For a commutative ring R and a finitely presented R-module M, we denote by
Fittg(M) the (initial) Fitting ideal of R (cf. Northcott [12] §3.1). In general,



we have Fittp(M) C Anng(M). As a sequel of the paper [8], we study in this
paper the following two stronger properties (SB) and (DSB) than (B);

(SB) ILQL/k C FittRL (AL),
and
(DSB) 11011, C Fittr, ((AL)Y).

Here, (AL)V is the Pontrjagin dual of Ay with cogredient Galois action, namely
o € Gal(L/k) acts as (of)(z) = f(oz) for f € (AL)Y and x € Ar. In many
cases, these two properties hold true. For example, if k& = Q, (SB) always
holds true, which was proved in our previous paper [9]; if the p-invariant of L
vanishes and any prime above p does not split in L/L™, (SB) holds by Nickel
[11] Theorem 4; if p1pe (L) is cohomologically trivial, (DSB) holds by Greither
[4]. (Nickel [11] Theorem 4 implies more, for example, it implies that (SB) holds
true if all primes above p are tamely ramified in L/k and L ¢ (L") " (u,) where
L¢ denotes the normal closure of L over Q.) But these two properties do not
hold in general (see [5], [8]). In [5], some explicit numerical examples for which
(SB) does not hold were given. In [8], (DSB) was studied but explicit numerical
examples for which (DSB) does not hold were not given. In this paper, we give
explicit numerical examples for which (DSB) does not hold, and also give explicit
conditions under which (DSB) does not hold. Also, we give explicit examples
for which neither (SB) nor (DSB) holds. While the first author studied (SB)
and (DSB) in [8] using Iwasawa theoretic arguments, we study these problems
in this paper by investigating finite and abelian extensions directly. Concerning
the background and known results on these two problems, see [8] and [3]. For
the function field case, see Popescu [13].

We are interested in the Teichmiiller character component of Ar. So we
assume that a primitive p-th root of unity is in L, and put K = k(u,), which
is a subfield of L. Let Ko /K (resp. Loo/L) be the cyclotomic Z,-extension
of K (resp. L). We assume that L/k is a finite and abelian extension, L/K is
a p-extension and L N K, = K. We denote by KT the maximal real subfield
of K, and by L,, the n-th layer of Lo,/L (so [L, : L] = p") for any integer
n > 0. If Gal(L/K) is cyclic, (SB) and (DSB) are equivalent. In this paper, we
consider the case that Gal(L/K) is not cyclic. In §1 we will prove the following
theorem (we will prove in §1 a slightly more general Theorem 1.2).

Theorem 0.1 We assume that no prime above p splits in K/K* (namely
(NTZ) is satisfied, see the beginning of §1), and also that if a prime v splits
in K/K*, v is unramified in L/K (we call this property (R), see the beginning
of §1). Suppose also that G = Gal(L/K) is not cyclic. Then (DSB) does not
hold for L, /k for alln > 0. Namely, we have

11,00,k ¢ Fittr,, ((Az,)")
for allm > 0.

In §2 we will give an explicit numerical example L/k of Theorem 0.1 where
k=Q(+v/1901), p =3, K = k(us) and L = K(a, 8) with o® —84a—191 = 0 and
3% —573—68 = 0. Then we know that Gal(L/K) ~ Z/3Z®7Z/3Z. For this L/k,



we explicitly compute Az, the Galois action on it, 6/, and also Fittg, ((A7)Y)
(for the minus part A}, see the beginning of §1). We will see directly

#pup< (L)1, /i & Fittr, ((AL)Y)

from these computations for this example.

In §3 and §4 we study the case that L/k does not satisfy (NTZ). In §3
we prove Proposition 3.2 which says that if L/k satisfies some conditions, L/k
satisfies neither (SB) nor (DSB). Using this Proposition 3.2, we will see in §3.2
that there is an explicit example L/k for which neither (SB) nor (DSB) holds.
The example we give in §3.2 is p = 3, k = Q(v/69,v713), K = k(u3), and
L = K(a, 3) where a® —6a —3 =0 and 32 — 63 — 1 = 0. Then we know that
Gal(L/K) ~7/3Z & Z/3Z. For this L/k, neither (SB) nor (DSB) holds.

The condition of Proposition 3.2 is not easy to check. In §4 we will prove

another theorem by which we can easily construct examples for which neither
(SB) nor (DSB) holds.

Theorem 0.2 Suppose that L/k satisfies the conditions of §4.1. Then neither
(SB) nor (DSB) holds for L, /k for any integer n > 1. Namely, we have both

IL,,LQL,,,/k §Z FittRL” (AL”) and ILngLn/k ¢ FittRL” ((AL7L)V)
forallm > 1.

We give in §4.3 a numerical example for which Theorem 0.2 can be applied.

We would like to thank heartily X.-F. Roblot who kindly helped us to com-
pute the numerical examples in this paper. Especially, we learned much from
him on the computation of the L-values and of the Galois action on the class
group of a number field. The first author would like to thank C. Greither for
several significant discussions with him.

Erratum for the paper [8]: The first named author would like to make a
correction concerning his previous paper [8]. In page 426 line 21, the correct
formula is H—(G, Xy ) = H(G,A%_)¥ = (AN*G)(1).

Notation

For any positive integer n, p,» denotes the group of p"-th roots of unity. For a
group G and a G-module M, we denote by M© the G-invariant part of M (the
maximal subgroup of M on which G acts trivially), and by M¢ the G-coinvariant
of M (the maximal quotient of M on which G acts trivially).

1 The case that there is no trivial zero

In this section, we assume the conditions before Theorem 0.1. Namely, K =
k(up), L/k is a finite and abelian extension, K C L, L/K is a p-extension,



and L N K, = K. Suppose that K is the maximal real subfield of K. We
take n € Z>o and consider the n-th layer L,, of the cyclotomic Z,-extension
Lo/L. We put Ry, = Z,|Gal(L,, /k)]. Any Ry,-module M is decomposed into
M = M*t®M~ where M* = {x € M | p(z) = £x} for the complex conjugation
p € Gal(L, /k). Let w be the Teichmiiller character which gives the action of
Gal(K/k) on pyp. For any Z,[Gal(K/k)]-module M, we define M“ to be

MY = MQ®pg, Rx/{{oc—w(o)]|oe Gal(K/k)})
~ {zeM|o(x)=w(o)r forall o € Gal(K/k)}.
Note that M — M% is an exact functor.
For any n € Z>(, we call the following condition (R)
R)

We simply write (R) for the condition (R),.
We also consider the following condition (no trivial zero);

(NTZ) No prime above p splits in K/K™.

n’?

Any prime which splits in K/K* is unramified in L,,/K.

n

Of course, if n is sufficiently large, the condition (R), implies (NTZ). Also, if
we assume (NTZ) and (R), then we get (R),, for all n > 0.
The following is a key Proposition of this section.

Proposition 1.1 We assume that Ly /k satisfies (R)
not cyclic. Then we have

and G = Gal(L/K) is

n

# (A YOIE/E) > AT

and
H(AZ )OS 5 Ay

Proof. We put I'), = Gal(K,,/K) and G,, = Gal(L,,/K). Then G, = G xT',, by
our assumption.

We denote by Er, the unit group and by Cr, the idele class group of L.
For any prime w of L,, we denote by L, ., the completion of L,, at w, and by
Ep, . the unit group of L, ., if w is a finite prime, and Er, , = L, if w is
an infinite prime. By Lemma 5.1 (2) in [7] (cf. also [8] §1), an exact sequence
0— Er, — [, Fr,.. — Cr, — Clp, — 0 yields an exact sequence

n,w

I:IO(G,“ Ep,)” — (@ ﬁO(Gn,vv Er, )" — I:-ril(Gnv Ar,)”
— HY (G, Er,)” — (@ H (Gnw: Er, )~ — H(Gn, AL,)~

- H2(Gna EpL,)” — (@ Hz(Gn,vv Er,.))"

where v runs over all finite primes of K, for each v we choose a prime w of
L,, above v, and G, , = Gal(Ly, ,/K,) is the decomposition group of Gy, at v.
We know that H°(G,.,, Er, ) is isomorphic to the inertia group of Gy, by
local class field theory. The exact sequence 0 — FEp, , — Ly, — Z — 0
implies that H*(Gpv, EL, ) = Z/e,Z where e, is the ramification index of v



in L,/K, and that H*(G, ., B, , ) is a subgroup of the Brauer group of K.
We denote by [ the prime of K below v. If [ does not split in K/K™, the
complex conjugation p acts trivially on H4(Gy ., Er, ) (¢ = 0, 1, 2) by the
above description, so p acts trivially on €9, H9(Gy.v, Er, ). Hence we have
(®v|rHQ(G%MEan))_ = 0. If [ splits in K/K™, v is unramified in L, /K by
our assumption (R),,. Therefore, we have HY(Gy o, Er, ) =0 (¢ =0, 1, 2; see
[14] Chap.XII §3 for the case ¢ = 2). Thus, in any case we obtain

(1.1.1) P H(Gnw.EL,,)” =0 forg=0,1,2.

Suppose that #ppe~ (L) = p°. Then we know L, = L(ppn+c) and K, =
K (ppn+e). We will compute HY(Gp, Er, )~ = HY (G, B ) = HY Gy, pipnte).
As is well-known (for example, see Lemma 13.27 in [16]), we have H' (I, piyn+c) =
0. Since I', is cyclic, we have H(T'y,, piyn+c) = 0 for any ¢ > 1. This implies
that
HYG, ) = HY(Go [T HO (T ) = HU(G, e

by the Serre-Hochschild spectral sequence. Therefore, we obtain
(1.1.2) HYGn,EL,)” = HY(G, ppe) ~ HI(G,Z/p°ZL).

Let iy, /x + Ax — Ap be the natural map. Since the kernel of iy, ,x
is isomorphic to the kernel of HY(Gn,Er,)” — (®,H (Gnv. Er, )" (cf.
Remark 2.2 in [6]), considering (1.1.1), we have an isomorphism Ker(iy, /x) =~
HY(Gn,Ep,)” ~ HY(G,Z/p°Z). Therefore, we have

(1.1.3) #Ker(ir, i« A — (A7 )9) = #(G/G™).

On the other hand, the norm map A; — A} is surjective by Lemma 5.1 (1)
in [7] (cf. Lemma 1.4 below). Therefore the image of iy, ,x coincides with the
image of the multiplication by N, = ¥seq, 0 on Ap . Thus, we have an exact
sequence

0 — H'Y(Gn,Er,)” — Ag — (A[)" — H(Gn, AL ) — 0.

n

Using (1.1.1) and (1.1.2), we get

Coker(ip, /x : Ax — (AL )G)

n

12

H%(Gn, AL,)” ~ H*(Gn,EL,)”
~ H*G,Z/p°Z).

Considering an exact sequence
0 — Z/pZ — QL 2 Q2 — 0,
and taking cohomology, we get an exact sequence
0 — HY(G,Qp/Zy)/p" — H*(G,Z/p"L) — H*(G,Qp/Zy)[p] — 0

where H?(G, Q,/Z,)[p¢] is the kernel of the multiplication by p¢ on H?(G, Q,/Z,).
Since H2(G,Q,/%Zy) is isomorphic to Hom(A* G, Q,/Z,) by the universal coef-
ficient sequence (see page 60 in Chap. III in [1] and Theorem 6.4 (iii) in Chap.



Vin [1], cf. also Lemma 1.3 in [8]), we get H%(G,Q,/Z,)[p] # 0 from our
assumption that G is not cyclic. Since H(G,Q,/Z,) is isomorphic to G as an
abelian group, H'(G,Q,/Z,)/p¢ is isomorphic to G/GP" as an abelian group.
Therefore, we obtain

#H*(G,Z/p°L) > #H'(G,Qp/Zy)/p° = #G/G"".

This implies that
(1.1.4) # Coker(ip, i : A — (Ag,)%") > #(G/GP).
It follows from (1.1.3) and (1.1.4) that #A% < #(AL ).

Since HY(Gy, Ep,)* = HY(G, ppe) ~ HY(G,Z/p°Z) and

H°(Gy, Ar, )" > H*(Gn, Ev,)* ~ H*(G, pype) =~ H*(G, Z/p"L),

by the same method as above, we obtain an exact sequence
(1.1.5) 0 — HY(G,Z/p°Z) — A — (A% )9 — H*(G,Z/p°Z) — 0.

Since

#H' (G, L/p°L) = #G/G” < #H*(G,L/p°L),
we obtain #A% < #(Afn)G". This completes the proof of Proposition 1.1.

As in the proof of Proposition 1.1, we suppose that #/ipe (L) = #fipee (K) =
p°. Let k : Gal(Loo /k) — Z, be the cyclotomic character and « be a generator
of Gal(Lo/L) = Gal(K/K). We fix this v throughout this paper. Since
H#ppeo (L) = p°, we know that ord,(1—k(vy)) = c. We also regard v as a generator
of Gal(L,/L) = Gal(K, /K). For 0/, and 0, i, we have p°0,, € Rk =
2,[Gal(K/k)], p"*6y, . € Ry, = Zy[Gal(La/K)}s (1 — 5(1)0,/k € Ry,

The Teichmiiller character w induces the ring homomorphism Rx — R$ =
Zyp (vesp. Rr, — Rf = Zp|Gal(L,/K)]) such that o +— w(o) for all o €
Gal(K/k) (note that Gal(L,/k) = Gal(L,/K) x Gal(K/k)). For an element
x € Rk (resp. x € Ry, ), we denote the image of = by z¥.

Theorem 1.2 We assume that L, /k satisfies (R),, G = Gal(L/K) is not
cyclic, and that Fittz, (A% ) = (p00§/k) where p¢ = #ppe (K). We have

(v = £(N))0r,./k & Fittr,, ((Az,)").
(If n =0, we have p°0y,;, & Fittr, ((Ar)Y).) In particular, we have
ILneLn/k? ¢ FittRLﬂ ((ALn)V)'

Remark 1.3 If [K : k] = 2 (for example, if p = 3), the class number formula im-
plies Fittz (A%) = (pceu;(/k). In fact, by definition, we have 6., = L(0,w™1).
Since [K : k] = 2, we get A%, = Ay So we obtain

Fitty, (A%) = Fittz, (Ax) = (#4%) = (0°L(0,w ") = (0% 1)

by the class number formula.



We often use the following lemmas in this paper.

Lemma 1.4 Let L/K be an abelian p-extension of CM-fields. We put G =
Gal(L/K). For a prime v of K, we denote by I,(L/K) the inertia group of v
in G. Then we have an exact sequence

pp (K) = (@D L(L/K))™ — (Af)e —= Ag — 0

where a is induced by the reciprocity map of local class field theory, v runs over
all finite primes of K, and N is induced by the norm map.

Proof. This is Proposition 5.2 in [7].

In general, for an abelian extension L/k and a subfield K such that k C
K C L, we define a ring homomorphism

cr/x - Q[Gal(L/k)] — Q[Gal(K/k)]

by the restriction o +— o|x for 0 € Gal(L/k). We will use the same notation
cr/k for any group rings such as Rp = Z,[Gal(L/k)], Zy[[Gal(L/k)]] (in case
L/k is infinite), etc.

Lemma 1.5 Suppose that L/k is a finite and abelian extension andk C K C L.
We denote by Sy, (resp. Sk ) the set of finite primes of k ramifying in L/k (resp.
K/k). Then we have

cr/k(Ork) = ( H (1=, )0k x
veSL\SK

where ,, is the Frobenius of v in Gal(K/k).

Proof. This is well-known, and follows from the expression of 6 /4(s) by the
Euler product (see Tate [15] p.86 and Lemma 2.1 in [7]).

Proof of Theorem 1.2. Assume that (y —x(7))0r, sk is in Fittg, ((Az,)"). Let
cr,/k + Rr, — Rk be the ring homomorphism defined by the restriction.
Then we have

cr,/x((v = K()0r,, /1) € Fittr, (AL,)")e,)
where G,, = Gal(L,,/K). This implies that
cr,/x((v = K(Y)0r, /1) € Fittz, (A7,)")c.,)-

If a prime [ of k is ramified in L,,/K, the primes of KT above [ do not split in
K/K™ by our assumption (R),,, so w(y() # 1. This implies that e,k (07 ) =
u0§/k for some unit u € Z,’ by Lemma 1.5. Since #1, (L) = p°, we know that
p¢ divides k() — 1 but p°*t! does not. Therefore, we get

(cr,/x((v = K(V))0L,/k)*) = (PC9§/1€)



as ideals of Z,. Hence we obtain
POin € Fittz, (((A7,)")e,) = Fittz, ((A7,)9")") = Fittz, (A7, )9).

Here, the last equality holds because Fittz (M) = (#M) for any finite Z,-
module M.
Since we are assuming Fittz, (A%) = (p°0% ), we get

Fitty, (A%) C Fittz, (A7 )°"),

which implies that #A% > #(Afn)G". This contradicts Proposition 1.1. Thus,
we get the conclusion of Theorem 1.2.

Proof of Theorem 0.1. Since (NTZ) and (R) imply (R),, for all n > 0, what we
have to show is Fittz, (A%) = (p°0% ;) by Theorem 1.2. We define the Iwasawa
module Xg__ by

X, =lim Ag,

where the limit is taken with respect to the norm maps. Then by our assumption
(NTZ), we have an isomorphism (X _ )aai(k../k) = Ax by Lemma 1.4.
We put Ax_ =Z,[[Gal(K/k)]] = lim Rk, . Similarly as in the finite level,

we consider the ring homomorphism Ax  — A% =~ Z,[[Gal(K/K)]|| which
is induced by w, and we denote the image of * € Ak by 2z € A% _. Let
(v =r(V)0k. k)" € A% be the projective limit of ((y —k(7))0xk, /x)” € Ry
(which is the numerator of the p-adic L-function of Deligne and Ribet). Then
the main conjecture proved by Wiles [17] can be stated as

Fittay (X%_) = (((v = £())0k./x)”)

because Xj_ contains no nontrivial finite submodule and hence its Fitting
ideal coincides with its characteristic ideal. Let cx_/x : Ax,, — Rk be the
restriction map. By the condition (NTZ), we get

ko k(v = K(V))0K . /6)*) = u((1 — £(7)0K /)" = U/chuﬁ/k

for some u, u’ € Z, by Lemma 1.5. From the isomorphism (X% _)aal(k../K) =
A%, it follows that
Fittz, (A% ) = (pct9§/k).

2 A numerical example

In this section, we will give an example of a number field which does not satisfy
(DSB). We will give an extension L/k explicitly, and compute the Stickelberger
element of L/k and the Fitting ideals of Ay and AX. We will see from these
computations that (SB) holds for this L/k but (DSB) does not.

We take p = 3 and k = Q(v/1901). Then p = 3 is inert in k. Let F, be the
minimal splitting field of X3 — 84X — 191 over Q. We know that F, contains
k and F,/k is a cubic cyclic extension which is unramified everywhere. We
define Fj to be the minimal splitting field of X® — 57X — 68. Then we can



check that Fjg/k is a cubic cyclic extension of k which is unramified outside 3
and that the prime of k& above 3 is totally ramified in Fg/k. Put F' = F,F}g,
L = F(us) and K = k(uz). Then L/k satisfies all the conditions in Theorem
0.1. In fact, G = Gal(L/K) = Gal(F/k) ~ Z/3Z & Z/3Z is not cyclic, and
both conditions (NTZ) and (R) are satisfied because (3) is ramified in K/k and
L/K is unramified outside (3). We also have L N K, = K. (Theoretically the
existence of F' can be checked by class field theory. For a modulus m = (3)2 of k,
the ray class group of k£ modulo m is isomorphic to Z/3Z®7Z/3Z®Z/37Z. So the
class field theory tells us that there is an abelian extension F/k whose Galois
group is Z/3Z @ Z/37Z, and which is unramified outside 3, and F Nk = k.)

Let o (resp. 7) be a generator of Gal(Fy,/k) (resp. Gal(Fg/k)). We can
write the Stickelberger element for L/k as

0L/, = Z aijo't) € Q[G] ~ Q[CGal(L/k)]™.
0<i<2
0<5<2

Let x be the unique quadratic character of Gal(K/k). We define characters ¢;
of Gal(F,/k) and ; of Gal(Fg/k) by

pi(0) = ¢4 and ¥;(r) =( for 0< i, j <2

where (3 is a primitive 3-rd root of unity. Then all the odd characters of
Gal(L/k) can be written as ¥;; = x¢;1;. The element 01, is characterized by
the L-values;

(2.1) V(07 ) = Lyay(0, Wih) forall 4,j such that 0 <4, j <2

where Lysy(s, Wi;) is the L-function obtained by removing the Euler factors
above 3, which is (1 — ¥;;(3)) in this example. In our case, Lsy(s, Wij)’s
coincide with the usual L-functions L(s, ¥;;)’s since (3) is ramified in any
subfield of L corresponding to ¥;;. Using Pari/GP, we calculated the values of
these L-functions at s = 0. The following table gives these values.

(i, J)

(0, 0)

(1, 0)

(2, 0)

(0, 1)

(1, 1)

(2, 1)

(0, 2)

(1, 2)

(2, 2)

L(0, ¥;;)

18

24

24

60

96

24

60

24

96

This implies that
142 2 2 , 38 38 342_§2+% 5 38 2.2

L/k:T—ga—ga—?T—?UT ?UT 37' 30'7' 3
Now we identify Z,[G] with Z,[S, T]/((S+1)> —1, (T + 1) — 1) by sending
oand 7 to S+ 1 and T + 1, respectively. In this ring, we have equalities

S3 =35 — 382, T3 = —3T — 3T2. Using S and T, we can rewrite 92//; as

0 ), =18 = 65 — 25% — 42T — 18ST — 145°T — 14T* — 145T" — ?SQTQ.

Since I, = (3, S, T), ILGZ/k is generated by the following three elements;

30,

L = 2(3°—328-35%-7.3°T - 3°ST—7-35°T —7-37°~7-35T*~195°T?),



S07 ), = 8(38 +38°T +35T* + 35°T?),

and
TO; ), =4(5- 3T +3%S?T +2-35T% +2-35°T?).

Next, we proceed to the ideal class groups. By the computation using
Pari/GP, we have isomorphisms

Ay ~7/9Z®L/3L
and
AL ~Z)2TL S L)L S L/3L S L/3LSL/3LBL/3L S L/3L & Z/3L
as abelian groups. Therefore, we also have
(A7) ~Z/)2T2 0 Z)IZ S L/3Z S L/3L S L)3L D L/3L & Z)3Z & Z/3Z.

Moreover, using Pari/GP, we can compute the Galois action on A}, namely
how o and 7 act on this group. Pari/GP computes explicitly the basis of the
ideal class group, which is represented by a basis of the ring of integers of L,
though we do not write down here this representation. Let {g1, ..., gs} be the
basis of A} corresponding to the above isomorphism, which was computed by
Pari/GP. We denote by M, (resp. M) the matrix corresponding to the action
of o (resp. 7) with respect to the above basis. The result of the computation is

1 0 0 0 9 9 -9 9
3 4 -3 3 -3 3 3 =3
-1 1 -1 -1 0 -1 0 -1
1 -1 -1 0 0 0o -1 1
Mo 0 o -1 -1 1 0o -1 1
-1 0 1 0 o -1 -1 -1
1 -1 0 0 0o -1 1 1
-1 1 1 0 0 1 -1 0
and
1 0 9 -9 -9 0 0 -9
-3 1 3 0 0O -3 0 3
-1 1 -1 0 -1 1 0 O
-1 -1 0 0 0 1 0 0
My = 1 -1 0 -1 1 1 0 0
-1 1 -1 -1 1 1 0 O
1 -1 -1 -1 -1 0 1 -1
0 0 -1 -1 1 0o 0 1

This means that o(g1) = g1 + 392 — g3 + 94 — g6 + g7 — gs, for example.
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Thus, the transpose of a relation matrix of A} is

c—1 -3 1 -1 0 1 -1 1
0 c—4 -1 1 0 0 1 -1
0 3 c+1 1 1 -1 0 -1
0 -3 1 o 1 0 0 0
-9 3 0 0 o-1 0 0 0
-9 -3 1 0 0 o+1 1 -1
9 -3 0 1 1 1 o—1 1
-9 3 1 -1 -1 1 -1 o

T—1 3 1 1 -1 1 -1 0
0 T—1 -1 1 1 -1 1 0
-9 -3 7+1 0 0 1 1 1
9 0 0 T 1 1 1 1
9 0 1 0 -1 -1 1 -1
0 3 -1 -1 -1 7-1 0 0
0 0 0 0 0 0 T—1 0
9 -3 0 0 0 0 1 T—1
27 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

Here, each row vector represents a relation of A;. Substituting S + 1 and
T + 1 for o0 and 7 respectively, and applying the elementary row and column
operations, we can reduce the above matrix to

35 0
9 —S2 4 8T —T?
S+T S+8%2—-T-—8ST—-28%T +7T?
ST 345242827 — T2
52 6— ST — 25T + T2
0 35
0 3T
0 9
0 — 827 + ST?2
0 5272

Here, extra zero vectors and identity matrices which were appeared in the pro-
cess of the reduction were removed. We know from this calculation that A}
is generated by two elements as an R, -module and that these two generators
have 10 relations in A, . Taking all the 2 x 2 minors in the above matrix and
carrying out tedious computation, we obtain

Fitt- (A7) = (81, 35, 3T, 27— S*T?).
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So we get
307, = 2(27 — 195°T%) = ~365°72 =0 (mod Fitt,_ (A7),
and also
807, =T0;, =0 (mod Fitt, (47)).
Therefore, we conclude that
100, C Fitty (A7)

in this case. In particular, #fpe (L)@Z/k € FittRZ (A7) holds.
Note that we also have numerically checked

Fittz, ((A])g) = (27) = Fitty, (A).

This corresponds to the fact that the norm map induces an isomorphism

(Ap)e — Ak
Next we will calculate the Fitting ideal of the dual. Let {f1, ..., fs} be
the dual basis of (A} )" determined by {g1, ..., gs}. Namely, fi, ..., fs are

homomorphisms from A, to Q/Z satisfying

Filg) = 55 Filg) =0 G #1),

Falen) =50 Falg) =0 (G #2),
and for 3 <1i < 8,
filg) =5, Filo) =0 #i).

Note that any element f € (A;)Y can be written as

F=27f(g1)fr +9f(92)f2 +3f(g3) f3 + -+ 3f(gs) fs.

Let M, (resp. M) be the matrix representing the action of & (resp.7) on (A})Y
corresponding to the dual basis {f1, ..., fs}. Recall that (A;)" have the
cogredient Galois action. We have

9 -9 9 o -9 9 -9
4 3 =3 0 0 -3 3
-1 -1 -1 -1 1 0 1
1 -1 0 -1 O 0 0
-1 0 0 1 0 0 0
1 -1 0 0o -1 -1 1
-1 1 o -1 -1 -1 1 -1
1 -1 -1 1 1 -1 1 0

= =0 O O




and

0 1 3 -3 -3 3 -3 0
1 1 -1 0 o -1 -1 -1
~ -1 0 0 0 -1 -1 -1 -1
M = -1 0 -1 0 1 1 -1 1
0 -1 1 1 1 1 0 0
0 0 0 0 0 0 1 0
-1 1 0 0 0 0o -1 1

oc—1 0 0 -1 -1 1 -1
-9 o—-4 1 -1 1 -1 -1 1
9 -3 o+1 1 0 1 0 1
-9 3 1 o 0 0 1 -1
0 0 1 1 o-1 0 1 -1
9 0 -1 0 0 o+1 1 1
-9 3 0 0 0 1 c—1 -1
9 -3 -1 0 0 -1 1 o

T—1 0 -1 1 1 0 0 1
9 T—1 -1 0 0 1 0 -1
9 -3 7+1 0 1 -1 0 0
9 3 0 T 0 -1 0 0
-9 3 0 1 -1 -1 0 0
9 -3 1 1 -1 7-1 0 0
-9 3 1 1 1 0 T—1 1
0 0 1 1 -1 0 0 T—1
27 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

Calculating in the same way as before, we can reduce the above matrix to

—S2T + ST?
—_T2
—-S2
S2T

T2
52
3
5272

coocoocooNW0»n©

ocoNUnhwooo

From this, we know that (A;)Y is generated by three elements and that these
elements have 8 relations in (A7 )Y. Furthermore, taking all the 3 x 3 minors in
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the above matrix, we obtain
Fittp—((A7)Y) = (81, 98, 9T, 357, 372, 35T).

Thus, we have

3 _ . _
207, =27 — 19872 £ 0 (mod Fittp, ((47)")) .

gag/k =35#£0 (mod Fitt ((AZ)V)) :
%%m =3T#0 (mod Fitt ((Ag)v)) .

In conclusion, we have
100 Fitt - ((A0)Y)
unlike to the previous case. We also have
Hitp (D)0, = 307, & Fitt (7)),
Note that we have checked numerically
Fittz, (((A7)")a) = Fittz, (A7)9)) = (81) € (27) = Fittz, (Ay),

namely #(A; )¢ = 81 > #A, = 27. Note that this is the inequality which was
obtained in Proposition 1.1.

3 Examples for which neither (SB) nor (DSB)
holds

In this section, we will prove that there are extensions L/k for which neither
(SB) nor (DSB) holds.

3.1. We begin with the following easy lemma.

Lemma 3.1 Let k be a totally real number field and M/k be a finite abelian
extension such that M is a CM-field. Suppose that M’ is an intermediate CM-
field of M/k such that M/M’ is a p-extension. Then we have

#Ker(Ay,, — Ayy) < [M: M'].
Proof. As is well-known, there is an injective map from Ker(A4,,, — A},) to
HY(Gal(M/M'), Err)~ = HY(Gal(M/M'), ppe (M)). We put M” = M N M/,

where M/ is the cyclotomic Z,-extension of M’, and G = Gal(M/M'), H =
Gal(M/M"). Consider an exact sequence

0 — HY(G/H, iy (M")) — H'(G, iy (M) — H'(H, f1y= (M)).

We know HY(G/H, pipee (M")) = 0 and pipec (M) = ppee (M"). Therefore, we
have

#H (G, piyee (M) < FEH (H, pryoe (M) < ##H < 4G = [M : M'],
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which completes the proof of Lemma 3.1.

In this section we assume that k is a totally real number field and K = k(p,).
For simplicity, we also assume [K : k] = 2 (namely we replace k by K if it is
needed). Suppose that L/k is an abelian extension such that K C L. We also
assume that

Gal(L/K) ~ (Z/pZ)®", Ay ~ (Z/pZ)®" for some r > 2,
and the natural map A, — A is the zero map.

Proposition 3.2 Assume that L/k satisfies the above conditions. We also as-
sume that there are intermediate fields Ko, Kg of L/K such that [Ky : K| =
[Kg : K] = p, each prime of k which splits in K and which is ramified in L 1is
ramified in Ko, Ay is generated by ezactly r elements as a Zp[Gal(K,/K)]-
module, Ay is generated by exactly v’ elements as a Zp|Gal(Kg/K)|-module,
and ' > r. Then neither (SB) nor (DSB) holds for L/k.

We will give in §3.2 a numerical example which satisfies all the conditions
of the above proposition. Before the proof, we remark that our assumption
implies that (R) is not satisfied for L/k. In fact, if (R) is satisfied, by Lemma
1.4 we have isomorphisms (A} )gai(r/k,.) = Ak, and (A} )caL/ks) =~ A;(ﬁ.
This shows that = v’ by Nakayama’s lemma. Therefore, (R) is not satisfied in
our case. After the proof of Proposition 3.2, we will show that our assumption
in Proposition 3.2 implies that (NTZ) is not satisfied for L/k.

Proof of Proposition 3.2. We have LNK,, = K. In fact, if we put K’ = LN K,
we know that A — Ay, is injective. By Lemma 3.1, we have # Ker(A, —
A7) < #Ker(Ap, — A7) < [L: K']. Since the left hand side is p” by our
assumption, we must have [L : K'| = p” and K’ = K. We put p® = #pup (L)
as in §1. Then we have #pp (K) = p°.

For an intermediate field M of L/K such that [M : K] = p, we consider
Ry = Zp|Gal(M/k)] and the decomposition Ry = R}, @ Ry,. Here, Ry, =
Zp|Gal(M/k)]~ is isomorphic to Z,[Gal(M/K)]. For any element x € Ry, we
denote by = € R}, ~ Z,[Gal(M/K)] the minus component of z. We take a
faithful character ¢as : Gal(M/K) — u, C @:, and put Oy,, = Z,[Image ¢r/]
which we regard as a Z,[Gal(M/K)]-module on which Gal(M/K) acts via ¢r.
We also denote by 15; the ring homomorphism Z,[Gal(M/K)] — Oy,, which
is defined by o — 9y (0) for all o € Gal(M/K). We define (A};)y,, by

(Arp)var = Anr Oz, [Gai(m/ i) Oy -

Suppose that oy is a generator of Gal(M/K). Then oy acts trivially on
ppoe (M) = pipoc (K) = ppe. Thus, we have (oar — 1)0p/1 € Zyp|Gal(M/E)]
where 6,7/, is the Stickelberger element of M/k. We consider (o — 1)0
2,Gal(M/K)] and éar((73r — 1)03;3) € Oy

Mk €

Lemma 3.3 For an intermediate field M of L/K such that [M : K] = p, we
have

Fitto,,, (Ax)en) = (ar((oa — Dby ,)-
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Proof. This can be proved by the class number formula. Let ord, : Q) — Z be
the normalized additive valuation at p such that ord,(p) = 1. The class number
formula says that ord,(#A%) = ordy(p°0} ;) and

Ordp(#AJQ) = Ordp(pcel_(/kNQp(Hp)/Qp (wM (9;/1/16)))

where Ng, (,,)/q, is the norm from Q,(u,) to Q. Hence we have

#Ay

d
ordy( y

) = ordp(Noy, 1) /0, (Um0 /1)))-

On the other hand, since the norm map A,, — A} is surjective by Lemma
1.4, we have

(Ay)on = Anp/ (Ao + .o+ 08 DAY, = A,/ Tmage(Ay — Ay).

Since the natural map iy /g : Ay — A} is the zero map by our assumption,
the image of ip;/x 1 A — A}, is in the kernel of iy /ps : Ay, — A7, By
Lemma 3.1 we have # Ker(A, — A};) < p and #Ker(A,;, — A7) <p" L
Therefore, we must have #Ker(Axy — A};) = p and #Ker(A,, — A;) =
p"~L. Tt follows that

# AN

#(Ay v = # Coker(Ap — Ay,) = p#A;_( .

This implies that
Ordp(#(AK/[)wM) = Ordp(NQp(up)/Qp (wM((UM — 1)9;4/k)))

Thus, we get 1engthOwM ((Ay)wn) = lengthOwM (Oyp /U2 ((o0r — 1)0;4/k)),
which implies the conclusion of Lemma 3.3 (note that Oy,, is a discrete valua-
tion ring).

Now we prove Proposition 3.2. First, we will prove that (SB) does not hold.
Since the map (A7 )qaiz/Kxs) — A;(ﬁ which is induced by the norm map is

surjective, the number of generators of A; as a Z,[Gal(L/K )]-module is > ' by
Nakayama’s lemma. We consider a surjective homomorphism (A} )gai(n/x.) —
A . Let i1 =Yg, be a faithful character of Gal(K,/K). For any Z,[Gal(Ko/K)]-
module M, we define the v-quotient by My, = M ®gz,(qal(k,/K)] Ov,- We
consider a surjective homomorphism ((A})cai(r/K.))vn — (A, )y, Which is
the vi-quotient of the above homomorphism. The number of generators of

((A7)Gal(L/Ko))ur (resp. (Ag )y,) as an Oy, -module is > 7' (resp. 7) by
Nakayama’s lemma. Therefore, we obtain

(3.1.1) Ker(((A7)cai(r/ka))vr — (Ag )y) # 0.

It follows from Lemma 3.3 that

Fitto,, ((AL)calr/ka))v) & (W1((ox, = 1) 1))
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Let 0 € Gal(L/K) be a K-isomorphism whose restriction to K, is ox,. The
image of (o — 1)02/,C in Zy[Gal(K./K)] is u(ox, — 1)0;@/,“ for some unit u
by Lemma 1.5 because all the primes of k which split in K and which are
ramified in L are ramified in K,. If (¢ — 1)02/,C was in Fittz (qaiz,/ k) (A7),
1 (o, — 1)9;(0/k) would be in Fitto,, (((A7)gal(L/K.))v:), Which is a contra-
diction. Therefore, we have (o — 1)(92/,C ¢ Fittz, (caiz/K) (A7), and conclude
that (SB) does not hold.

Next, we prove that (DSB) does not hold. In the proof of Lemma 3.3, we
proved that # Ker(Ap — A}ﬁ) =p, #Ker(ip/k,) = p"~1, and Image(ig,/k) =
Ker(ir/k,). Let 12 = 1k, be a faithful character of Gal(K3/K). In the proof
of Lemma 3.3 we also proved that (A;([,)w is isomorphic to Coker(ig,/x ), 50
we have an injective homomorphism

(3.1.2) (A, s — (A GE/ED),

Let 7 be a prime element of Oy,. For any m € Z~ we know that Oy, /(7™)
is a Gorenstein ring, so the Pontrjagin dual (Oy,/(7™))Y is isomorphic to
Oy, /(7™) (cf. [10] Proposition 4 on page 328). Since (A, )y, is a finite Oy,-
module, we can apply the above argument to know that the Pontrjagin dual
((A]_(ﬁ)w)v is generated by exactly r’ elements as a Z,[Gal(K /K )]-module.
Therefore, from the injectivity (3.1.2) we know that the number of generators
of (A7)V is > r'.

By the same method as (3.1.2), we obtain an injective homomorphism

(3.1.3) (A )y = (Ap)G2NE/Ka),

e

Taking the dual and the 1-quotient, we have a surjective homomorphism

(((AD))GarL/ ko)) — (Ag. )

where the number of generators of (((A})")cai(L/K.))y: 18 > 7" and the number
of generators of ((Ax._)y,)" is r. Therefore, the above surjective homomorphism
has nontrivial kernel. This implies that

Fitto,, (A7)")cai(L/x0)e) & (W1((0x, — D5 1))

by Lemma 3.3. Therefore, by the same method as in the case of (SB), we know
that (o — 1)02/,C is not in Fitty [ai(n/x) ((A7)Y). Thus, (DSB) does not hold.
This completes the proof of Proposition 3.2.

We finally remark that our assumption in Proposition 3.2 implies that (NTZ)
is not satisfied for L/k. In fact, (3.1.1) and Lemma 1.4 imply that there is a
prime p of k which splits in K and is ramified in L/K,. Then p has to be
ramified in K,/K by our assumption. Therefore, the inertia group of p in
Gal(L/k) is not cyclic. This shows that p is above p. Since p splits in K, (NTZ)
is not satisfied.

3.2. We give a numerical example which satisfies the conditions of Proposition
3.2.
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Let p = 3, k = Q(v69,v713) and K = k(u3) = k(v/—3). Suppose that
a, (3 satisfy a® —6a —3 = 0 and 3% — 68 — 1 = 0, and put K, = K(a),
K = K(). The minimal splitting field of 23 — 6z — 3 (resp. z® — 6z — 1) over
Q is a G3-extension and contains v/69 (resp. v/93). Therefore, both k(a)/k and
k(B)/k are cubic cyclic extensions. We put L = K,Kg. We have Gal(L/K) =
Gal(K,/K) ® Gal(Kg/K) = Gal(k(a)/k) ® Gal(k(B)/k) ~ (Z/3Z)%2.

There is only one prime P in k above 3. We can check that both k(a)/k and
k(B)/k are unramified outside p, and that p is totally ramified both in k(«) and
in k(3). Since K = k(v/—3) = k(/—23), p splits in K. Two primes of K above
p are totally ramified in L. So L/k satisfies neither (NTZ) nor (R).

We can easily check that A ~ (Z/3Z)®? by the computations of the class
numbers of imaginary quadratic fields which are contained in K. More precisely,
we have

A = Agv=m) ® Ao(v=a1)
We can check that the natural map Ay /=53y — Ag(/=23,,/=5,4) is the zero

map both theoretically (using that the A-invariant of Q(v/—23) is 1) and nu-
merically (using Pari/GP). We will explain it numerically. By Pari/GP, we can

check that Aé(\/_—%,\/_—&a) ~ 7,/3Z. Since the norm map Aé(\/_—%,\/_—&a) —

Ag(y=23) is surjective by class field theory, it is bijective. This shows that the
natural map Ay /=23 — Ag(y=25,/=5,) 1S the zero map. Similarly, using

Aé(\/T&l,\/?‘s,ﬁ) ~ Z/3Z, we know that Ag/—51) — Ag(y=31,v=3,5) I8 also the
zero map. Therefore, A — A} is the zero map.

Using Pari/GP, we can compute
Ag ~Z/SIZOL[2TL ® L/3L.

The action of a generator ok, of Gal(K,/K) is represented by the matrix

32 21 -27
My = -0 4 0
0 0 1

The meaning of the matrix is the same as §2. Putting S = ok, — 1, we obtain
a relation matrix

S+33 —-21 27 8 0 O
10 S—-3 0 0 27 0
0 0 S 0 0 3

of Ay as a Zp[Gal(K,/K)]-module. The above matrix is reduced to

3 5 0 0
0 0 278 3+35+S5%2-95% )°

This shows that A;(a is generated by exactly two elements.
In the same way, we have

Ag, 2 L|IL S L[3L S L/3L.
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The action of a generator o, of Gal(Kz/K) is represented by the matrix

-2 0 -3
My, =( 0 1 0
0 0 1

We put T' = ok, — 1, then a relation matrix of Ay is
T+3 0 3 9 0 0

0 T 0 0 3 0

0 0O T 0 0 3

Therefore, Af_(a is generated by exactly three elements. Thus, our L/k satisfies

all the conditions of Proposition 3.2. Hence we know that neither (SB) nor

(DSB) holds for our L/k.

We finally remark that we could not compute numerically the Fitting ideal
of A} for this example. We can compute

Ay ~7/817.& 7/81Z.& 197, & 7./97. & 7./97. & 7./9Z. & 7./ 97

as an abelian group. But since the degree of L is too large, we could not compute
the action of Gal(L/K) on A}, using Pari/GP.

4 Other examples

4.1. In this subsection, we describe the setting and the assumptions in this
section. Let k' be a totally real number field and K’ = k'(u,). We assume
(K"t =K, s0 [K' : K] = 2. Let F'/K' be a finite and abelian p-extension
such that Gal(F’'/k’) is not cyclic. We further assume that F'/k’ is ramified
at a prime above p. We put L' = F'K’. We assume (NTZ) and (R) for L'/K'.
So every prime above p does not split in K'/k’, and every prime which splits
in K'/k' is unramified in L'/k'. Let kl_ /k’ (vesp. F. /F’) be the cyclotomic
Zp-extension. We further assume that F' N k., = &/, and all the primes of F’
above p are totally ramified in F__.

We also assume that there is a CM-field K" which is a quadratic extension
of k' such that Ay, = 0, and that there is a prime p’ of k' above p which
is ramified in F” and which splits in K”. Put L” = F'K"”. Then (R) is not
satisfied for L”/k’ because p’ splits in K" and is ramified in L”. Also, (NTZ)
is not satisfied for L” /k’ because p’ splits in K”. Since p’ splits in K" and does
not split in K/, we have K’ # K”. We assume that every prime of ¥’ which is
prime to p and which splits in K" is unramified in L”/k’.

In this setting, we put K = K'K”. Then K is a CM-field and K/k' is
an abelian extension such that Gal(K/k'") ~ Z/27 & Z/27Z. The maximal real
subfield Kt of K is a quadratic extension of k. We put k = K, F' = kF' and
L =FkL' =EkL". We have K = kK' = k(u,). Let p’ be a prime of k' above p
which is ramified in F’ and which splits in K”. Since p’ does not split in K’,
it does not split in k. We denote by p the prime of k above p’. Then p splits
in K, and is ramified in L. In particular, neither (NTZ) nor (R) is satisfied for
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L/k. Since every prime above p is totally ramified in F/_/F’, every prime of L
(resp. K) above p is also totally ramified in L, (resp. K).

4.2. In this subsection, we will prove Theorem 0.2. Put G = Gal(L/K) =
Gal(L'/K') = Gal(L"/K") = Gal(F/k) = Gal(F'/k') and T' = Gal(K/K) =
Gal(K.,/K') = Gal(K7,/K"). Let k : ' — Z be the cyclotomic character
and v be a generator of T

We put 'y = Gal(K;/K) = Gal(Kj/K') = Gal(K{/K") where K1 (resp.
K1, KY) is the first layer of Koo /K (resp. K. /K', K/ /K"). We regard ~ as
a generator of I'y.

As in §3, we consider Ry, = Z,[Gal(K/k")] and the decomposition Ry =
R;rq @ R;q. For any element x € Rp;, we denote by =z~ € R;q ~ Z,[I']
the minus component of z. Let ¢ : I'1 — p, C @; be a faithful character,
and Oy = Zp[Imaget)] be a Z,[I'1]-module on which I'y acts via ¢. The ring
homomorphism Z,[I'y] — O, defined by o — (o) for all ¢ € T'; is also
denoted by 9. So (™) € Oy is defined for z € R;.

For any Z,[I'1]-module M, we define M, by My = M ®z,r,] Oy. We will
prove

Lemma 4.1

(4.2.1) Fitto, (A7, )a)w) = (v = k(7)) 0x /) 7)),

(4.2.2) Fitto, (A7,)")e)w) & (W (((v = £k /w)7))-

Proof. We will first prove (4.2.1). Since (R), is satisfied for L} /k’, the norm
map induces an isomorphism

(A7) = Ay,

by Lemma 1.4. Therefore, we have FittR;/ ((AZ'1>G) = FittR;/ (A]_q).
1 1

Using the class number formula and the fact that # e (K1) = p#Fppe (K'),
we get
#AL, .
Ordp(#A;(l) = ordp(Ny, (u,) /@, (W (0, ))) +1

by the same method as Lemma 3.3. Since Ay, — A}, is injective in our case,
1
we have an exact sequence

0— Ags — A — (A — 0.
It follows that
ordy (#(Aj, )v) = lengthy, ((Aj,)w) = lengthy (Oy /P((v = £(7))0k, /1))
which implies (4.2.1).

Next, we will prove (4.2.2). Suppose that n is an integer > 1. As in the proof
of Proposition 1.1, we have H9(Gal(L;,/L}),Er, )~ = 0 for any ¢ > 1. Using
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the long exact sequence in §1 for L/ /L], we obtain ﬁO(Gal(L’n/L’l),AZ;l) =
H'(Gal(L;,/L}), A, ) = 0 by our assumption (NTZ). This implies that the
natural map AZ,I — (Ap, )GaEL/L) s bijective (cf. the proof of Proposition

1.1). Put A =lim Ag, and A, =lim Ap,. Thus, we have an isomorphism

(4.2.2.1) Ap, =5 (A, )OI e/ 1),

oo

Put Xx: = A}, and Xz, = A}, . In the proof of Theorem 0.3 in [8], we
proved
(4.2.2.2) Fitt,— (X2, )a) € (0,7 = D(((v = (V) 0kcr yw)7)-

The isomorphism (4.2.2.1) induces an isomorphism (X7, )axcar, /o)) = ((A7,)Y)a-
We denote by cx:_/x1 : Axr, = Zp[[Gal(K, /k')]] — Ry the natural restric-

tion map. Since every prime of k' above p is ramified in K{, by Lemma 1.5 we
have

(4.2.2.3) CK!_ /K] (v = ﬁ(’Y)WKg,O/k/) =(y - ﬁ(’Y)WK;/k'-
Hence by (4.2.2.2) and (4.2.2.3) we have

Fittp (A7) ")) € (0,7 = DOy = £(0))0k; /1)),
which implies (4.2.2).

Next, we consider L”/K". Since K" # K', K" does not contain a primitive
p-th root of unity, so neither does Ki. Put Ry, = Z,[Gal(K{/k')]. Since
Igy = AnnRKi, (1p= (K1) = Riy, we have 0/ € Rgy by a theorem of
Deligne and Ribet.

As we did for K/, we consider the decomposition Rky = R}i, @ RI_Q” and
use the notation 2~ € R}, which is the minus component of z for any z € Rg.

1
For a faithful character ¢ : I'y — p,,, we also consider the ring homomorphism
(I R;q, ~ Zp[l'] — Oy.
We will prove

Lemma 4.2

(123) Fitto, (A7 )e)e) € (6(0g0))
(4.2.4) Fitto, ((A7,)")e)w) € (W0, 40)-
Proof. We first note that

(1.2.3.) Fitto, (A )v) = ({05, ).

We can prove (4.2.3.1) by the class number formula, using the same method as
Lemma 3.3 and (4.2.1) (now we use #ppee (K{') = #pup- (K') = 1).
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We first prove (4.2.3). By Lemma 1.4, we have a commutative diagram of
exact sequences

0 — (@B, luLi/K)” — (Ap)e — Agy — 0

l [ |

0 — (@, LI"/K")~ > A)e — Agn — 0

where w (resp. v) runs over all finite primes of K} (resp. K”). Let vy be
the prime of &’ below a prime v of K”. If vy is not above p and splits in
K" /k', v is unramified in L” by our assumption. Hence (@, I,(L"/K"))~ =
(B, Lo(L"/K"))~. Similarly, we have (B, Lw(LY/K{))™ = (D, Lw(LY/KT))".
If v is above p, v is totally ramified in K because every prime above p is totally
ramified in F/ /F’. Let w be the prime of K{ above v. Then the restriction
map I,(LY/K{) — I,(L"/K") is bijective because every prime of L" above
v is totally ramified in LY. Therefore, 3 is bijective. Since Ay, = 0, ¢ is also
bijective. Thus, « has a left inverse 37! 0 §~! o y. Hence we have isomorphisms

(42.32) (A6~ (@ L(LI/EY)” @ A, ~ (D L(L"/K")” @ Ay,
w(p v|p
as Rl_q/—modules. Since there is a prime p’ of k" above p which splits in K” and

which is ramified in L”, (,, Io(L"/K"))~ # 0. Therefore, we have

Fittp- ((Azy)a) € (p,y —1) Fittp— (Asr)-
1

K
By (4.2.3.1), this implies that
Fitto, ((A7,)6)s) € ¥((7 = Doxy 1)

This completes the proof of (4.2.3).
Finally, we will prove (4.2.4). Since #pp~(LY) = 1, we have H'(G, Ey)~ =
0. This implies that the natural map Az_q' — (AZ,,)G is injective. Hence
~ v VN S ~ v Z vy e
((AL’{) Vg — (AKY) is surjective, so (((AL,I,) )a)y — ((AKY) )y is also
surjective, which gives an inclusion

Fitto, ((((47,)")a)w) C Fitto, ((A5)")y)-

In general, for any Z,[I'1]-module M, we define MY to be the kernel of Ny, =
1+v+..+~7"1 on M. We have an exact sequence

0— MY — MM My, — 0.
Suppose that M is finite. Then by the above exact sequence, we have
HMY )y = #(MY)" = M = $M.
Applying the above equality to M = A;q,, we get
Fitto, (((Azy))e)w) C Fitto, (((Ag,)*)y) = Fitto, (Ag,)s).

Using (4.2.3.1), we obtain (4.2.4).
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Remark 4.3 Note that (4.2.3) shows that (SB) does not hold for L{/k’. In
fact, we have cpv gy (0py /i) = ubgy e for some u € R;q, by Lemma 1.5
because all the primes of k' above p are ramified in K, and a prime of k' which
is not above p and which splits in K" is unramified in LY /K{'. So if Oy, /5 was
in Fittr,, (Azy), 03y sy Would be in FittR;(i,((Az/{)G)’ and zp(egq,/k,) would

be in Fitto, (((Az,l,)g)w), which contradicts (4.2.3).

Now we proceed to the proof of Theorem 0.2. Let Gal(K/k’)Y be the group of
characters of Gal(K/k’). For any x € Gal(K/k')" and a Z,[Gal(K/k’)]-module
M, we define

MX={z e M|o(z)=x(o)x for all o € Gal(K/K')}.

Let x1 be the trivial character, xj be the character corresponding to k/k’, and
X' (resp. Xx”) be the character corresponding to K’/k’ (resp. K"/k'). Any
Z,|Gal(K /k")]-module M is decomposed into M = MX' @ MXk ¢ MX @ MX".
Since x/, x” are odd characters (and x1, xx are even characters), we have
M~ = MX @ MX". We identify G, = Gal(L,/k) with Gal(L/,/k') by the
restriction map, and also identify G,, with Gal(L!! /k’). We have an isomorphism

(4.2.5) A7, =AY @AY ~ Ap, @ Ag,

as Zy[Gpl-modules for any n > 0.
Using the identifications of G,, with Gal(L] /k') and with Gal(L!/k’), we
regard 0z, /s, Opn /1 as elements in Q[G,]. Then we have

(426) 9Ln/k == gL;L/k’QL:{/k"

We will give a proof of (4.2.6). We use a technique of Tate [15] Proposition 1.8
on page 87. Let o (resp. 7) be a generator of Gal(L, /L)) (resp. Gal(L, /L)),
which is a cyclic group of order 2. Note that o7 is in G,, and this equals to the
complex conjugation p. We know that Gal(L,/k") ~ G,, x (o) ~ G, x (T). We
have an isomorphism

C[Gal(L,/k")]~ = C[Gal(L,/k')]~ ® C[Cal(L!/k")]” ~ C[G,]” @ C[Gn]~

where the first isomorphism is induced by ¢, /1, @ cr,/r» and the second
isomorphism comes from our identifications of G, with Gal(L, /k') and with
Gal(Ly, /k"). Since cr,,,/r: (vesp. cg, /pn) is defined by o+ 1 (resp. 7+ 1), the
above first isomorphism satisfies @ 4+ bo — (a 4+ b,a — b) for any a, b € C[G,] .

Let  be an element of C[Gal(L,,/k’)]”. The multiplication by z defines
an endomorphism of C[Gal(L, /k’)]” which is a free C[G,] -module of rank
2. Hence, the determinant induces a homomorphism N : C[Gal(L, /k")]” —

C[G,])~. Namely, N(a + bo) = a® — b* for any a, b € C[G,]™, and

(427) N(l‘) = CL,,L/LjL (l‘)CL"/L;: (.13)

Let 01, /iv(s) be a C[Gal(L,/k')]-valued function defined in [15] satisfying
0z, /1 (0) = 0r, /iv. Using Tate [15] Proposition 1.8 on page 87, we have

(4.2.8) N, () =] =@, " N@w)*)bz, /x(s)

vES
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where S is the set of primes of ¥’ which are ramified in k/k" and are unramified
in L,/k, and N(v) is the norm of a prime v. If v is in S, it is unramified in
L,/K, so it is prime to p. Hence it is unramified in K’, and is unramified in
L!,. Therefore, we have

S = {v:aprime of k' | v is ramified in L,,/k’ and is unramified in L, /k'}.

By Tate [15] Corollary 1.7 on page 86, we have

(4.2.9) cr, e, O, 0 (s)) = [T = @5 "N (W) ™*)0p, i (5)-
vES

If a prime v of &’ is ramified in L,, and unramified in L/, it is ramified in K’ so
it is a prime above p. But this contradicts our assumption that all the primes
above p are totally ramified in L!//L”. Hence there is no prime of k£’ which is
ramified in L,, and unramified in L!/. By Tate [15] Corollary 1.7 on page 86, we
have

(4.2.10) Ly O,k (8) = Oy w (s).
By (4.2.7), (4.2.8), (4.2.9), and (4.2.10), we get
N(QL”/k' (s)) = CL,/L, (9L,,/k' (3))CL,,/L;; (eLn/k' (s))-

Substituting s = 0, we obtain (4.2.6). This completes the proof of (4.2.6).

Now, we will prove that (SB) does not hold for L,,/k for n > 1. Suppose that
(v=r(¥)0L, /i is in Fittr, (AL, ). Since (AL )cai(z,/L,) — AL, is surjective
by Lemma 1.4, we have g, sz, ((7 — /ﬁ(y))egn/k) € FittRZl (Az,), and

i i (0 = KOOz, ) € Fitt ((A7,)c).
By Lemma 1.5, ¢r, /x, (QZ/k) = ubly, ), for some u € (Rk,)” because every

prime of k above p is totally ramified in K7, and every prime of k£ which is not
above p and which splits in K is unramified. Therefore, we have

(3~ K0, 1 € Fitt ((A7,)a).
By (4.2.5) and (4.2.6), this implies that
(v — ﬁ(y))@l_(i/k,e;q/k/ € FittRR1 ((AZ’1>G) FittR}1 ((Az/l/)g)
and
(v = KO0k, j O i) € Fitto, (AL, )a)w) Fitto, (A7, )a)w)-
On the other hand, by (4.2.1) and (4.2.3) we have
Fitto, (A7, )o)s) Fitto, (AL, )a)e) € (01 = 50)0ics 5 )

This is a contradiction.

24



By the same method, we can prove that (DSB) does not hold. Suppose that
(v=k(7))0L, /i isin Fittr, (A} ). As we saw in §1, HYGal(L,/L1),EL,)” =
H'(Gal(Ly, /L), o (Ly)) = 0 ([16] Lemma 13.27), which implies that A} —
A} is injective. Therefore, we get

(v = k()b 1, € Fittg (((AL,))a)
by the same method as above. By (4.2.5) and (4.2.6), we have

(= OBy Oy o € Fitte (((A7)")e) Fitt e (((A7)")c)
= Fitty_ (47,)")e).

But (4.2.2) and (4.2.4) imply that
Fitto, (A7,)")e)w) & (v = 80k /Oy 1))

which is a contradiction. This completes the proof of Theorem 0.2.

4.3. We give an example which satisfies the conditions of Theorem 0.2. We
consider p = 3, k' = Q(v1901) and K’ = k'(u3). Let F}, (resp. Fj) be the
minimal splitting field of X3 — 84X — 191 (resp. X® —57X —68). Both F, and
Fj; are G3-extensions over Q containing k. We put F' = FéFé The prime (3)
of k' is ramified in Fj , so in F'. The extension F'/k’ is unramified outside 3.
The Galois group G = Gal(F’/k’) is not cyclic and isomorphic to Z/3Z ® Z/3Z.
Put L' = F'K'. Then L'/K' satisfies both (NTZ) and (R) as we explained in §2.
From our construction (see §2), we know F’ Nkl = k', and every prime above
3 is totally ramified in F/_/F".

We put K” = k'(v/=2). Then Ay, = 0, and (3) splits in K”/k’. Put
L" = F'K". Then L"/K" is unramified outside (3). We take k = ¥'(v/6) =
Q(v6,v1901), F = kF', K = kK' = K'K", and L = kL'. Thus, the extension
L/k satisfies all the conditions of Theorem 0.2, namely the conditions in the
subsection 3.1. Applying Theorem 0.2, we know that neither (SB) nor (DSB)
holds for L, /k for all n > 1.
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