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Abstract

In this paper, we determine completely the initial Fitting ideal of
the minus part of the ideal class group of an abelian number field over
Q up to the 2-component. This answers an open question of Mazur
and Wiles [11] up to the 2-component, and proves Conjecture 0.1 in
[8]. We also study Brumer’s conjecture and prove a stronger version
for a CM-field, assuming certain conditions, in particular on the Galois
group.

0 Introduction

0.1. The ideal class group of a cyclotomic field is one of the most classical
and important objects in number theory. For example, the class number has
been intensively studied since Kummer. But in many situations, we need
the action of the Galois group on the ideal class group. The study of the
Galois action also has a tradition going back to Kummer.

Let K = Q(μN ) denote the cyclotomic field obtained by adjoining the
N -th roots of unity for some integer N > 0, and let ClK be the ideal
class group. The most fundamental work on the Galois action on ClK was
done by Stickelberger after the earlier works by Gauss and Kummer. We
denote by μ(K) the group of all roots of unity in K, and by Ann(μ(K))
the annihilator ideal in Z[Gal(K/Q)] as a Z[Gal(K/Q)]-module. Let θK be
the Stickelberger element (see §1 for the definition). Then Ann(μ(K))θK is
in Z[Gal(K/Q)] and annihilates ClK , namely Ann(μ(K))θK ⊂ Ann(ClK)
(cf. Stickelberger [15]). (This was proved by Kummer when N is a prime.)
Since the Stickelberger element is related to the values of L-functions, this
can be regarded as a relation between the analytic object and the algebraic
object, namely the class group.

Let K be an imaginary abelian field with [K : Q] < ∞. In their cel-
ebrated paper [11], in which Mazur and Wiles proved the Iwasawa main
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conjecture, they asked what the Fitting ideal of Cl−K is as a Z[Gal(K/Q)]-
module where Cl−K is the cokernel of ClK+ −→ ClK . In general, for a com-

mutative ring R and a finitely presented R-module M such that Rm
f−→

Rn −→ M −→ 0 is exact, the Fitting ideal (the initial Fitting ideal) of M
is defined to be the ideal of R generated by all n × n minors of the matrix
A which corresponds to f . We denote it by FittR(M). By definition, we
always have FittR(M) ⊂ AnnR(M).

In this paper, we neglect the 2-primary components of the modules,
and always work over Z′ = Z[1/2]. We put RK = Z′[Gal(K/Q)], and
Cl′K = ClK ⊗Z′ which we regard as an RK-module. Since 2 is invertible in
RK , RK is decomposed into RK = R+

K ⊕ R−K where R±K denotes the part
on which the complex conjugation acts as ±1. Any RK-module M is also
decomposed into M = M+ ⊕ M−. We are interested in the R−K-module
(Cl′K)− which is the same as Coker(ClK+ −→ ClK) ⊗ Z′. In [8], we defined
the Stickelberger ideal ΘK ⊂ RK (whose definition we will recall in §1),
which is constructed from Stickelberger elements of several abelian fields.
In this paper, we prove Conjecture 0.1 in [8], namely,

Theorem 0.1 For any imaginary abelian field K of finite degree over Q,
we have

FittR−
K

((Cl′K)−) = Θ−K .

Remark 0.2 (1) Stickelberger’s theorem implies that AnnR−
K

((Cl′K)−) ⊃
Θ−K . The above theorem gives the exact algebraic meaning of Θ−K (namely,
it is equal to the Fitting ideal which is smaller than the annihilator). In
this sense, Theorem 0.1 can be regarded as a refinement of the classical
Stickelberger’s theorem.

(2) Taking the limit of Theorem 0.1 with respect to the cyclotomic Zp-
extension and taking an odd character component, we recover the usual
main conjecture in Iwasawa theory. On the other hand, this theorem con-
tains more information than the usual main conjecture (because the main
conjecture gives only information on the character components), so this the-
orem is a refinement of the Iwasawa main conjecture. Namely, this theorem
gives a more refined relationship between the algebraic object (the left hand
side) and the analytic object (the right hand side). (We also mention that
in the proof of the theorem we use the main conjecture as an important in-
gredient, so our argument does not give a new proof of the main conjecture.)

(3) In some places in the literature, Ann(μ(K))θK ⊂ Z[Gal(K/Q)] is called
the Stickelberger ideal for K. But Iwasawa and Sinnott thought this too
small and defined a larger Stickelberger ideal ΘIS

K ⊂ Z[Gal(K/Q)]. They
proved that the index is expressed by using h−K = # Cl−K ([12], [13], [7]).
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In particular, if K = Q(μN ), their theorem implies (R−Q(μN ) : (ΘIS
Q(μN ) ⊗

Z′)−) = #(Cl′Q(μN ))
− (cf. [12]). Our Stickelberger ideal Θ−Q(μN ) coincides

with (ΘIS
Q(μN ) ⊗ Z′)− if K = Q(μN ), but not in general.

(4) For example, for a cyclotomic field K = Q(μN), we define our ΘK by
ΘK = Θ′K ∩ RK , using some RK-module Θ′K in Q[Gal(K/Q)] (see §1). In
some places in the literature, Ann(μ(K))Θ′K ⊂ Z[Gal(K/Q)] is used as the
Stickelberger ideal (because to treat the product is sometimes easier than
to treat the intersection), but this ideal is smaller than our ΘK , and does
not fit well with the Fitting ideal.

(5) We will explain how one can obtain the information on the Galois action
on ClK in the simplest example. Suppose K = Q(μ57). Then we can
compute ΘQ(μ57) = (9, σ40 −7, σ−1 +1) ⊂ RQ(μ57) where σi is the element in
Gal(Q(μ57)/Q) such that σi(ζ) = ζi for ζ ∈ μ57. There is a unique maximal
ideal m = (3, σ40 − 1, σ−1 + 1) of RQ(μ57) which contains ΘQ(μ57). Since
σ40−7 is not in m2, Theorem 0.1 implies that FittR−

Q(μ57)
((Cl′Q(μ57))

−) 
⊂ m2.

This shows that (Cl′Q(μ57))
− is generated by one element (because if it was

generated by exactly n elements with n ≥ 2, the Fitting ideal would be
generated by the determinants of n×n matrices with entries in m, so would
be in mn). Hence, (Cl′Q(μ57))

− is isomorphic to R−Q(μ57)/(9, σ40 − 7, σ−1 +1).
In this case, the class number of K = Q(μ57) is 9, so ClQ(μ57) = (Cl′Q(μ57))

−,
and we can determine the Galois action as follows;

ClQ(μ57) � Z[Gal(Q(μ57)/Q)]/(9, σ40 − 7, σ−1 + 1).

Note that the information that ΘQ(μ57) ⊂ AnnRQ(μ57)
(ClQ(μ57)) (Stickel-

berger) and (R−Q(μ57) : Θ−Q(μ57)
) = # ClQ(μ57) (Iwasawa-Sinnott) does not

even determine the structure of ClQ(μ57) as an abelian group (namely, there
are still two possibilities Z/3 ⊕ Z/3 and Z/9). On the other hand, our iso-
morphism above, of course, implies that ClQ(μ57) is cyclic of order 9 as an
abelian group. (This can be also obtained easily from genus theory.)

(6) Theorem 0.1 was already proved in several special cases. For example,
for a prime p which does not divide [K : Q], the p-component of Theorem
0.1 is a theorem of Mazur and Wiles (Chap. I §10 in [11] Theorem 2). If
K = Q(μpn) for some prime p, Theorem 0.1 was proved by Greither in [3]
(for more, see [8] §0).

(7) Very roughly speaking, a key idea of the proof of Theorem 0.1 is to
consider many abelian number fields (subfields of K and abelian fields which
contain K) simultaneously.

(8) Theorem 0.1 implies the following beautiful result by D. Solomon (cf.
[14]), which is a generalization of the theorem of Mazur and Wiles we referred
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to in (6). Let p be an odd prime number, and let ψ : Gal(Q/Q) −→ Q×p be
any odd Dirichlet character whose order could be divisible by p. We denote
by K the imaginary abelian field corresponding to Kerψ. We will define
the ψ-quotient AψK at the end of §4. We exclude special ψ (see the end of
§4), and regard the generalized Bernoulli number B1,ψ−1 as an element of
Oψ = Zp[Imageψ]. Then Theorem 0.1 immediately implies

#AψK = #Oψ/(B1,ψ−1)

which is a theorem of Solomon (see Corollary 4.3). For more information on
AψK than the order, for example, concerning on the structure of AψK , see [9]
and [10].

0.2. We can apply our method to a slightly more general setting, which
we will describe. Let p be an odd prime number, k a totally real number
field, and K/k a finite abelian extension such that K is a CM-field. The
Stickelberger element θK/k is defined by

θK/k =
∑

σ∈Gal(K/k)

ζ(0, σ)σ−1 ∈ Q[Gal(K/k)]

where ζ(s, σ) =
∑

(
K/k
�

)=σ
N(a)−s is the partial zeta function. For sim-

plicity, we suppose that a primitive p-th root of unity is not in K. Then
by Deligne and Ribet we know θK/k ∈ Zp[Gal(K/k)]. We study the p-
component of Brumer’s conjecture, namely the problem of whether θK/k
kills the p-component AK = ClK ⊗Zp of the ideal class group of K. More
precisely, we study a stronger version that considers whether θK/k is in the
Fitting ideal of AK . Generally, the answer is no (see [6]). But for example,
Greither proved that the equivariant Tamagawa number conjecture implies
this property for the Pontryagin dual of AK , at least in our setting (see
[5]). There are several cases where this stronger version holds for AK itself.
For example, this holds if K/k is “nice” (cf. Greither [3]) and if we assume
there is “no trivial zero” in the p-adic L-functions and some extra conditions
(see Greither [4] §3 and Theorem 0.4 in [8]). It seems difficult to remove
the assumption on the trivial zeros, but in this paper, we give examples for
which the stronger version holds even if “trivial zeros” occur. Instead of the
non-existence of trivial zeros, we assume a strong condition on Gal(K/k).

We assume that there is a finite abelian extension K ′/k such that K ′ is
a CM-field, K ⊂ K ′, K ′/K is a p-extension which is unramified everywhere,
and K ′/k satisfies the condition

(Ap) ΓK ′ = P�1 × ...× P�r

where ΓK ′ is the Sylow p-subgroup of Gal(K′/k), l1,...,lr are all the ramifying
primes of k in K whose ramification indices are divisible by p, and P�i is the
Sylow p-subgroup of the inertia group of li in Gal(K′/k) (1 ≤ i ≤ r).
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Theorem 0.3 We assume that K is contained in K ′ which satisfies the
above conditions, and μp 
⊂ K ′. Moreover, we assume that for every prime
p of k above p, the ramification index of p in k/Q is odd, the μ-invariant of
the cyclotomic Zp-extension K∞/K is zero, and all the primes p of k above
p are unramified in K. Then we have

θK/k ∈ FittZp[Gal(K/k)](AK).

In particular, θK/kAK = 0.

Note that this theorem can be applied to the case where a prime above p
splits completely inK/k (the case where trivial zeros occur) ifK is contained
in some good extension K ′/k satisfying the above conditions. Moreover, we
will define the Stickelberger ideal ΘK ′/k in §3, and will prove in §3 that
FittZp[Gal(K′/k)]−(A−K ′) = Θ−K ′/k ⊗ Zp (see Theorem 3.6). The fields which
satisfy the condition (Ap) naturally appear in the theory of Euler systems,
and Theorem 0.3 has an application to the structure theorem in the style
of [9] for the class groups of CM-fields, which we hope to study in our
forthcoming paper.

In §4, we study the Fitting ideal for the m-th layer K ′m of the cyclotomic
Zp-extension K ′∞/K ′ with some m > 0, and prove the analogous result (see
Theorem 4.1).

The first named author would like to thank C. Greither and D. Solomon
for helpful discussions on Fitting ideals, and to thank J. Coates for his
inspiring comments when the author gave a “Kuwait Lecture” in 2000 in
Cambridge where he stated Theorem 0.1 as a conjecture.

Erratum The first-named author would like to give a correction concerning
the paper [8]. He is very grateful to D. Solomon for his question on Corollary
0.7 in [8].
Page 41 Corollary 0.7: The claim should be “Conjecture 0.1 is true for F =
Kn (the n-th layer of the cyclotomic Zp-extension)” instead of “Conjecture
0.1 is true for F = K(μpn)”, in order to apply Theorems 0.5 and 0.6.

Notation
For a positive integer n, μn denotes the group of all n-th roots of unity. For
a group G and a G-module M , we denote by MG the G-invariant part of
M (the maximal subgroup of M on which G acts trivially), and by MG the
G-coinvariant of M (the maximal quotient of M on which G acts trivially).
For a prime number p, ordp : Q× −→ Z is the normalized additive valuation
such that ordp(p) = 1.
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1 Stickelberger ideals

1.1. Notation. Let K ′/Q be an abelian extension, and let K be a subfield
of K ′ such that [K ′ : K] <∞. We denote by

cK ′/K : Z[Gal(K′/Q)] −→ Z[Gal(K/Q)]

the ring homomorphism induced by the restriction σ �→ σ|K for any σ ∈
Gal(K′/Q). The homomorphism of Z-modules

νK ′/K : Z[Gal(K/Q)] −→ Z[Gal(K′/Q)]

is defined by σ �→ ΣcK′/K(τ)=στ for any σ ∈ Gal(K/Q). These notations will
be used for any group rings such as Q[Gal(K/Q)], Zp[Gal(K/Q)], etc.

1.2. Let K be an imaginary abelian field of finite degree over Q.
First of all, we recall the definition of the Stickelberger ideal of K/Q in

[8]. We define the Stickelberger element by

θK =
∑

σ∈Gal(K/Q)

ζ(0, σ)σ−1 ∈ Q[Gal(K/Q)]

where ζ(s, σ) =
∑

(K/Q
a

)=σ
a−s is the partial zeta function. Namely, if the

conductor of K is N , θK is the image of

N∑
a=1

(a,N)=1

(
1
2
− a

N
)σ−1
a ∈ Q[Gal(Q(μN )/Q)]

where σa is the element of Gal(Q(μN )/Q) such that σa(ζ) = ζa for any
ζ ∈ μN .

Suppose that N is the conductor of K, and N = �e11 · ... · �err is the
prime decomposition of K (we take e1,...,er > 0). We say K satisfies the
assumption (A) if

(A) Gal(K/Q) = I�1 × ...× I�r

where I�i is the inertia subgroup of �i in Gal(K/Q). A typical example is,
of course, K = Q(μN ). We first assume that K satisfies this condition (A).

In this paper, we neglect the 2-primary components of ideal class groups.
We put Z′ = Z[1/2], and RK = Z′[Gal(K/Q)]. Let F(K) be the set of
all intermediate fields of K/Q. We define an RK-module Θ′K to be the
RK -submodule of Q[Gal(K/Q)] generated by all νK/F (θF ) for F ∈ F(K),
namely

Θ′K = 〈{νK/F (θF ) | F ∈ F(K)}〉 ⊂ Q[Gal(K/Q)].
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We need not use all subfields ofK. We denote by D the set of all numbers
of the form d = �n1

1 · ... · �nrr where ni = 0 or ei for all i such that 1 ≤ i ≤ r.
For any d ∈ D, we define Kd to be the maximal subfield in K which is
unramified outside d over Q. If d = �

ei1
i1

· ... · �eisis ,

Gal(Kd/Q) = I�i1 × ...× I�is

holds. Hence, Kd is ramified at primes dividing d, and K/Kd is unramified
outside N/d and ramified at primes dividing N/d. The fields K�

e1
1

,..., K�err
are linearly disjoint over Q, and their compositum is K. Suppose that
F ∈ F(K), and F/Q is unramified outside d and ramified at primes dividing
d. By definition, F is in Kd. We know cKd/F (θKd) = θF by Lemma 2.1 in
[8], so

νK/F (θF ) = [Kd : F ]νK/Kd(θKd).

This shows that Θ′K is generated as an RK-module by all νK/Kd(θKd)’s;

Θ′K = 〈{νK/Kd(θKd) | d ∈ D}〉 ⊂ Q[Gal(K/Q)].

In the same way, we can easily check that our Θ′K coincides with Θ′K/Q in
[8]. We define the Stickelberger ideal ΘK to be

ΘK = Θ′K ∩RK .

For any imaginary abelian extension K/Q of finite degree, we can take
K ′ which satisfies the condition (A) and K ′/K is unramified everywhere (K ′

is unique for K; cf. Lemma 2.3 in [8]). We define ΘK to be

ΘK = cK ′/K(ΘK ′) ⊂ RK .

(In [8], ΘK was denoted by ΘK/Q.)

1.3. Suppose that p is an odd prime number. We put RK,p = RK ⊗ Zp =
Zp[Gal(K/Q)]. In order to prove Theorem 0.1, it is enough to prove

FittR−
K,p

((Cl′K)− ⊗ Zp) = Θ−K ⊗ Zp

for all odd primes p. In the following, we fix an odd prime number p, and
we will prove the above equality. We write Gal(K/Q) = ΔK × ΓK where
#ΔK is prime to p and ΓK is a p-group. Then RK,p is semi-local and is
decomposed as follows. The group ring Zp[ΔK ] is semi-local, and isomorphic
to a product of discrete valuation rings. Let Δ̂K be the group of Q×p -valued
characters of ΔK . We say two characters χ1 and χ2 are Qp-conjugate if
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σχ1 = χ2 for some σ ∈ Gal(Qp/Qp). Using this equivalence relation on
Δ̂K , we have Zp[ΔK ] =

⊕
χOχ, and

RK,p = Zp[Gal(K/Q)] =
⊕
χ

Oχ[ΓK ]

where the sum is taken over the equivalence classes of Δ̂K (we choose a
character χ from each equivalence class), and Oχ = Zp[Imageχ] which is
the Zp[ΔK ]-module such that ΔK acts via χ (cf. [8] 1.4). Note that the
order of χ is prime to p, so Oχ is a discrete valuation ring which is unramified
over Zp.

For any RK,p-moduleM , we denote byMχ theOχ[ΓK ]-moduleM⊗Zp[ΔK ]

Oχ = M ⊗RK,p Oχ[ΓK ]. We have decomposition M =
⊕

χM
χ. In the fol-

lowing, for the ideal class group we use the notation AK = ClK ⊗Zp, and

AχK = AK ⊗Zp[ΔK ] Oχ = AK ⊗RK,p Oχ[ΓK ]

which is an Oχ[ΓK ]-module. We also consider (ΘK ⊗ Zp)χ. By the above
decomposition of RK,p, AK , and (ΘK ⊗Zp), in order to prove Theorem 0.1,
it is enough to prove

Theorem 1.1 Let p be an odd prime number, and let χ be an odd character
of ΔK . Then we have

FittOχ[ΓK ](A
χ
K) = (ΘK ⊗ Zp)χ.

1.4. In this subsection, we begin with the following lemma which is more
or less well-known.

Lemma 1.2 Let F , F ′ be CM-fields such that F ⊂ F ′ and F ′/F is an
abelian extension. Then we have an exact sequence

(
⊕

Iv(F ′/F ) ⊗ Zp)− −→ (A−F ′)Gal(F ′/F ) −→ A−F −→ 0

where v runs over all finite primes of F , and Iv(F ′/F ) is the inertia group
of v in Gal(F ′/F ).

Proof. Let F ′′ be the intermediate field such that F ′/F ′′ is a p-extension
and [F ′′ : F ] is prime to p. Since Gal(F ′/F ) = Gal(F ′/F ′′) × Gal(F ′′/F ),
for a prime v of F , taking a prime w0 of F ′′ which is above v, we have

(
⊕
w|v

Iw(F ′/F ′′))Gal(F ′′/F ) � Iw0(F
′/F ′′) � Iv(F ′/F ) ⊗ Zp.
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This implies (
⊕
Iw(F ′/F ′′))−Gal(F ′′/F ) = (

⊕
Iv(F ′/F )⊗Zp)− (where w (resp.

v) runs over all finite primes of F ′′ (resp. F )). It is easy to see (A−F ′′)Gal(F ′′/F ) �
A−F . Therefore, in order to prove this lemma, we may assume F ′/F is a p-
extension. Then this lemma follows from Proposition 5.2 in [8].

As in the definition of ΘK , suppose that K ′/K is unramified everywhere.
By Lemma 1.2, the norm map induces an isomorphism (A−K ′)Gal(K′/K)

�−→
A−K . Hence, for any odd character χ ∈ Δ̂K , regarding it as a character
of ΔK ′ , we have cK ′/K(FittOχ[ΓK′ ](A

χ
K ′)) = FittOχ[ΓK ](A

χ
K). Therefore, in

order to prove Theorem 1.1, we may assume that K satisfies the condition
(A) in subsection 1.2.

In the rest of §1 and §2, we always assume that K satisfies the con-
dition (A). Since L(0, ψ) 
= 0 for any odd character ψ of Gal(K/Q), the
ψ-component of Θ′K ⊗Q does not vanish, and (Θ′K ⊗Q)− = (RK ⊗Q)− =
Q[Gal(K/Q)]−. Since Zp is flat over Z′, we can easily check that

(ΘK ⊗ Zp)− = (Θ′K ∩RK)− ⊗ Zp = (Θ′K ⊗ Zp)− ∩RK,p
in RK,p ⊗ Q = Qp[Gal(K/Q)]. Therefore, taking the χ-component we also
obtain

Lemma 1.3 We have (ΘK ⊗ Zp)χ = (Θ′K ⊗ Zp)χ ∩Oχ[ΓK ].

Suppose that K contains a primitive p-th root of unity, namely μp ⊂ K.
Let ω : ΔK −→ Z×p be the Teichmüller character, namely the character
giving the action on μp. We denote the image of θK in (Qp[Gal(K/Q)])χ =
Qp(Imageχ)[ΓK ] by θχK . It is well-known that if χ 
= ω, θχK is in RχK,p =
Oχ[ΓK ]. Hence we have (ΘK ⊗ Zp)χ = (Θ′K ⊗ Zp)χ for χ 
= ω.

2 The ω-component

In this section, we fix an odd prime number p, and work over RK,p =
Zp[Gal(K/Q)]. In this section, we will prove Theorem 1.1 for χ = ω. First
of all, we need the following lemma which is well-known (Washington [17],
Lemma 6.9 and its proof).

Lemma 2.1 For Q(μpm) with m > 0, we put

I = {α ∈ RQ(μpm ),p | αθQ(μpm ) ∈ RQ(μpm ),p}.

Then we have I = AnnRQ(μpm ),p
(μpm). (For an R-module M , AnnR(M)

means the annihilator of M .)
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In this section, we assume that K satisfies the condition (A), and we
will use the same notation as in the previous section. We fix an odd prime
number p, and assume that μp ⊂ K. Hence p is ramified in K, and one of
�1,...,�r is p. Therefore, pm with some m > 0 is in D. This also implies that
μpm ⊂ K, and Kpm = Q(μpm).

Lemma 2.2 Suppose that β ∈ RK,p satisfies βνK/Q(μpm )(θQ(μpm )) ∈ RK,p.
Then there is an element α ∈ AnnRQ(μpm ),p

(μpm) such that

βνK/Q(μpm )(θQ(μpm )) = νK/Q(μpm )(αθQ(μpm )).

Proof. Put c = cK/Q(μpm ) and ν = νK/Q(μpm ). Since βν(θQ(μpm )) =
ν(c(β)θQ(μpm )), c(β)θQ(μpm ) is in RQ(μpm ),p. Hence Lemma 2.1 implies
c(β) ∈ AnnRQ(μpm ),p

(μpm), and we can take α = c(β).

We put D0 = {d ∈ D | p does not divide d}, and D1 = {d ∈ D |
p divides d}. Suppose at first that d is in D1. Then pm divides d by def-
inition. We define d′ = d/pm, which is prime to p by definition. For any
integer a, we write a = pm[ apm ]+ra where [ apm ], ra ∈ Z are integers satisfying
0 ≤ ra < pm.

We have

θKd = cQ(μd)/Kd(
d∑
a=1

(a,d)=1

(
1
2
− a

d
)σ−1
a ) = cQ(μd)/Kd(

d∑
a=1

(a,d)=1

(
1
2
−
pm[ apm ] + ra

d
)σ−1
a )

= cQ(μd)/Kd(νQ(μd)/Q(
1
2
) − 1

d′

d∑
a=1

(a,d)=1

[
a

pm
]σ−1
a − 1

d

pm∑
a=1

(a,p)=1

aνQ(μd)/Q(μpm )(σ
−1
a ))

=
ed
2
νKd/Q(1) − cQ(μd)/Kd(

1
d′

d∑
a=1

(a,d)=1

[
a

pm
]σ−1
a ) − ed

d
νKd/Q(μpm )(

pm∑
a=1

(a,p)=1

aσ−1
a )

where ed = [Q(μd) : Kd]. Therefore, we know

θKd −
ed
d′
νKd/Q(μpm )(θQ(μpm )) ∈ RKd,p .

Put cd = ed/d
′. Since

[Q(μd) : Q(μpm)] = [Q(μd′) : Q] = d′
∏
�|d′

(1 − 1
�
),

cd can be also written as

cd = (
∏
�|d′

(1 − 1
�
))[Kd : Q(μpm)]−1.
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Next, suppose that d ∈ D0. Then, since Kd does not contain a primitive
p-th root of unity, θKd is in RKd,p.

Proposition 2.3 ΘK ⊗ Zp ⊂ RK,p is generated by the following elements;
(i) νK/Kd(θKd) for all d ∈ D0,
(ii) νK/Kd(θKd − cdνKd/Q(μpm )(θQ(μpm ))) for all d ∈ D1 such that d 
= pm,
(iii) νK/Q(μpm )(αθQ(μpm )) for α ∈ AnnRQ(μpm ),p

(μpm).

Proof. We have already seen that the above elements are in RK,p. We will
show that ΘK is generated by these elements. Suppose that x is an element
of ΘK . By the definition of Θ′K , x can be written as x = Σd∈DαdνK/Kd(θKd)
with αd ∈ RK,p. We write

x =
∑
d∈D0

αdνK/Kd(θKd) +
∑

d∈D1\{pm}
αdνK/Kd(θKd − cdνKd/Q(μpm )(θQ(μpm )))

+(αpm +
∑

d∈D1\{pm}
αdcd)νK/Q(μpm )(θQ(μpm )).

Since x is in RK,p, we know (αpm +
∑

d∈D1\{pm} αdcd)νK/Q(μpm )(θQ(μpm )) ∈
RK,p. It follows from Lemma 2.2 that we can take α ∈ AnnRQ(μpm ),p

(μpm)
such that

(αpm +
∑

d∈D1\{pm}
αdcd)νK/Q(μpm )(θQ(μpm )) = νK/Q(μpm )(αθQ(μpm )).

This completes the proof.

Let K∞/K be the cyclotomic Zp-extension. In §3 of [8], we defined
the Stickelberger ideal ΘK∞, which is an ideal of the completed group
ring Zp[[Gal(K∞/Q)]] (ΘK∞ was denoted by ΘK∞/Q in [8]). The defini-
tion is as follows. Let D1 be as above. For any d ∈ D1, we denote by
Kd,∞/Kd the cyclotomic Zp-extension, and by Kd,n the n-th layer. The ele-
ment θKd,∞ in the total quotient ring of Zp[[Gal(Kd,∞/Q)]] is defined as the
“projective limit” of θKd,n ; more precisely, θKd,∞ is the element satisfying
the property that (σ − κ(σ))θKd,∞ ∈ Zp[[Gal(Kd,∞/Q)]] is the projective
limit of (σ − κ(σ))θKd,n ∈ Zp[Gal(Kd,n/Q)] for all σ ∈ Gal(Kd,∞/Q) where
κ : Gal(Kd,∞/Q) −→ Z×p is the cyclotomic character. We define Θ′K∞ to be
the Zp[[Gal(K∞/Q)]]-module in the total quotient ring of Zp[[Gal(K∞/Q)]]
generated by all νK∞/Kd,∞(θKd,∞) for d ∈ D1. The ideal ΘK∞ is defined by
ΘK∞ = Θ′K∞ ∩ Zp[[Gal(K∞/Q)]].

We denote by K(Δ) the fixed subfield of K by ΓK . Namely, K(Δ) is the
subfield such that Gal(K(Δ)/Q) = ΔK . Let ω be the Teichmüller character.
We consider the ω-component (ΘK∞)ω which is an ideal of Oω[[ΓK∞ ]] where
ΓK∞ = Gal(K∞/K(Δ)), and Oω = Zp on which ΔK acts via ω.
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Proposition 2.4 (1) Let cK∞/K : Oω[[ΓK∞ ]] −→ Oω[ΓK ] be the natural
restriction map. Then we have

cK∞/K((ΘK∞)ω) = (ΘK ⊗ Zp)ω.

(2) FittOω [ΓK ](AωK) = (ΘK ⊗ Zp)ω.

Proof. (1) By the definition of the Stickelberger ideals and Lemma 1.3, it is
clear that cK∞/K((ΘK∞)ω) ⊂ (ΘK ⊗ Zp)ω.

We prove the other inclusion. Suppose d is in D0. Since p is ramified
in K/Kd, the image of NGal(K/Kd) =

∑
σ∈Gal(K/Kd)

σ in Oω[ΓK ] is zero,
so the image of νK/Kd(θKd) in Oω[ΓK ] is zero. Hence by Proposition 2.3,
(ΘK ⊗ Zp)ω is generated by the elements

νK/Kd(θKd − cdνKd/Q(μpm )(θQ(μpm )))
ω

where d ∈ D1\{pm}, and νK/Q(μpm )(αθQ(μpm ))ω with α ∈ AnnRQ(μpm ),p
(μpm).

In the proof of Lemma 3.4 (2) in [8], we proved that

(2.4.1) θKd,∞ − cdνKd,∞/Q(μp∞ )(θQ(μp∞ )) ∈ Zp[[Gal(Kd,∞/Q)]].

In fact, the constant cF ∈ Zp for a CM-field F is defined in the proof of
Lemma 3.4 (2) in [8]. Concerning cKd and cQ(μpm ), it follows from the
formula on page 53 line 27 in [8] that

cKd/cQ(μpm ) = (
∏
�|d′

(1 − 1
�
))[Kd : Q(μpm)]−1 = cd.

By the argument on page 53 line 31 in [8], this implies (2.4.1). Therefore,
we have

νK∞/Kd,∞(θKd,∞ − cdνKd,∞/Q(μp∞ )(θQ(μp∞ ))) ∈ ΘK∞ ,

and
νK/Kd(θKd − cdνKd/Q(μpm )(θQ(μpm ))) ∈ cK∞/K(ΘK∞).

In the same way, for any σ ∈ Gal(Q(μp∞)/Q), the fact that (σ−κ(σ))θQ(μp∞ )

is in Zp[[Gal(Q(μp∞)/Q)]] implies νK∞/Q(μp∞ )((σ − κ(σ))θQ(μp∞ )) ∈ ΘK∞ ,
and

νK/Q(μpm )((σ|Q(μpm ) − κ(σ))θQ(μpm )) ∈ cK∞/K(ΘK∞).

Since {σ|Q(μpm )−κ(σ) | σ ∈ Gal(Q(μp∞)/Q)} generates AnnRQ(μpm ),p
(μpm),

we obtain (ΘK ⊗ Zp)ω = cK∞/K((ΘK∞)ω) by Proposition 2.3.

(2) As usual, we define
XK∞ = lim← AKn

12



where AKn = ClKn ⊗Zp for the n-th layer Kn of K∞/K, and the projective
limit is taken with respect to the norm maps. By [8] Corollary 0.10, we
know

FittZp[[Gal(K∞/Q)]](X
−
K∞) = (ΘK∞)−,

which implies FittOω[[ΓK∞ ]](Xω
K∞) = (ΘK∞)ω. We denote by Iv(K∞/K)

the inertia subgroup in Gal(K∞/K) of a prime v of K above p. Since p
is ramified in K, we have (

⊕
v|p Iv(K∞/K))ω = 0. Therefore, the natural

homomorphism (Xω
K∞)Gal(K∞/K) −→ AωK is an isomorphism by Lemma 1.2.

Hence, by Proposition 2.4 (1) we obtain

FittOω[ΓK ](A
ω
K) = cK∞/K(FittOω[[ΓK∞ ]](X

ω
K∞))

= cK∞/K((ΘK∞)ω) = (ΘK ⊗ Zp)ω.

3 The case p is tamely ramified

In this section, we consider the Fitting ideals in a slightly more general
setting. We suppose that k is a totally real base field and K is a CM-field
such that K/k is finite and abelian. We suppose that p is an odd prime
number and study AK = ClK ⊗Zp as a Zp[Gal(K/k)]-module. We use the
same notation as in subsection 1.3; in particular, we write Gal(K/k) =
ΔK × ΓK where #ΔK is prime to p and ΓK is a p-group, and consider AχK
which is an Oχ[ΓK ]-module for an odd character χ of ΔK .

Let K(Δ) be the subfield of K such that Gal(K(Δ)/k) = ΔK . Suppose
that l1,...,lr are all the ramifying primes of k inK/K(Δ), and P�i is the inertia
group of a prime above li in Gal(K/K(Δ)), namely the Sylow p-subgroup of
the inertia group of li in Gal(K/k). We assume the following condition

(Ap) ΓK = Gal(K/K(Δ)) = P�1 × ...× P�r .

Clearly, if K/Q satisfies the condition (A) in §1, it satisfies (Ap) for k = Q.
In the same way as in the absolutely abelian case, the Stickelberger element
θK/k is defined by

θK/k =
∑

σ∈Gal(K/k)

ζ(0, σ)σ−1 ∈ Q[Gal(K/k)]

where ζ(s, σ) =
∑

(
K/k
�

)=σ
N(a)−s is the partial zeta function. Using sub-

fields F of K and the Stickelberger elements θF/k ∈ Q[Gal(F/k)], we de-
fine Θ′K/k to be the Z′[Gal(K/k)]-submodule of Q[Gal(K/k)] generated
by all νK/F (θF/k) for intermediate fields F of K/k, and define ΘK/k =
Θ′K/k ∩ Z′[Gal(K/k)].

We first introduce some results in [8], which will be used several times
later. We define Θ′K∞/k in the total quotient ring of Zp[[Gal(K∞/k)]] to be
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the Zp[[Gal(K∞/k)]]-module generated by all νK∞/F∞(θF∞/k) for interme-
diate fields F∞ of K∞/k∞ (cf. the definition when k = Q in §2 before the
proof of Proposition 2.4), and define ΘK∞/k = Θ′K∞/k ∩ Zp[[Gal(K∞/k)]]
(cf. [8] §2, §3).

For any CM-field F which is finite and abelian over k, we know by
Deligne and Ribet (cf. [1]) that θχF/k ∈ Oχ[ΓF ] for any odd character χ of
ΔF such that χ 
= ω (where ω is the Teichmüller character). We take an
odd character χ of ΔK such that χ 
= ω. By the above result of Deligne and
Ribet, we have (Θ′K∞/k)

χ = Θχ
K∞/k and (Θ′K/k ⊗Zp)χ = (ΘK/k ⊗Zp)χ. We

consider Xχ
K∞ , which is an Oχ[[ΓK∞ ]]-module.

Theorem 3.1 ([8] Theorem 0.9) We assume that (Ap), χ 
= ω, every prime
p of k above p is tamely ramified in K, and the μ-invariant of the cyclotomic
Zp-extension K∞/K is zero. Then we have

FittOχ[[ΓK∞ ]](X
χ
K∞) = Θχ

K∞/k.

The following lemma follows from Proposition 5.2 in [8].

Lemma 3.2 Suppose that χ 
= ω. Then the sequence

0 −→ (
⊕
v|p

Iv(K∞/K))χ −→ (Xχ
K∞)Gal(K∞/K) −→ AχK −→ 0

is exact, where v runs over all primes of K above p, and Iv(K∞/K) is the
inertia group of v in Gal(K∞/K).

Suppose that K satisfies the condition of Theorem 3.1. Moreover, we
assume χ(p) 
= 1 for all primes p of k above p. This assumption implies
χ(p) − 1 is a unit in Oχ, so we have

(
⊕
v|�

Iv(K∞/K))χ � Zp[Gal(K/k)/D�(K/k)]χ = 0,

where D�(K/k) is the decomposition group of p in Gal(K/k). Therefore,
(
⊕

v|p Iv(K∞/K))χ =
⊕

�|p(
⊕

v|� Iv(K∞/K))χ = 0, which implies that the
natural map

(Xχ
K∞)Gal(K∞/K)

�−→ AχK

is an isomorphism by Lemma 3.2. On the other hand, it follows from Lemma
2.1 in [8] (Tate [16] p. 86) that cM∞/M (θχM∞/k) = (unit)θχM/k in Oχ[ΓM ] for
any subfield M of K under the same condition on χ. Therefore, we have
cK∞/K(Θχ

K∞/k
) = Θχ

K/k
. Hence, as a corollary of Theorem 3.1, we obtain
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Corollary 3.3 (cf. [8] Theorem 0.4) We assume the same conditions of
Theorem 3.1, and also assume that χ(p) 
= 1 for all p of k above p. Then
we have

FittOχ[ΓK ](A
χ
K) = (ΘK/k ⊗ Zp)χ.

Thus, the problem lies in the case of characters χ such that χ(p) = 1 for
some p above p. (In this case we say that the trivial zero occurs.)

Proposition 3.4 For every prime p of k above p, we assume that the ram-
ification index of p in k/Q is odd. Suppose also that K/k satisfies the
assumption (Ap), the μ-invariant of the cyclotomic Zp-extension K∞/K is
zero, and all the primes p of k above p are unramified in K. Then, for any
odd character χ of ΔK such that χ 
= ω, we have

FittOχ[ΓK ](A
χ
K) ⊂ (ΘK/k ⊗ Zp)χ.

Proof. This proposition can be proved by the same method as Theorem 0.6
in [8]. Since the proof is almost the same, we only give a sketch. We use the
same technique as Greither [3] and Wiles [19].

We fix a positive integer n. By our assumption on the ramification index
of p, a prime above p is ramified inK+(μpn)/K+Q(μpn)+, soK+(μpn)/K+Q(μpn)+

andKQ(μpn)+/K+Q(μpn)+ are linearly disjoint. Therefore, using the Cheb-
otarev density theorem, we can choose a prime number r such that r splits
in Q(μpn), r is inert in Q( p

√
p), r is unramified in K, and every prime above

r is inert in K/K+ (cf. Proposition 4.1 in Greither [3]; note that we do not
need the assumption of “niceness” when we choose such r). Therefore, r ≡ 1
(mod pn), and the Frobenius ϕp of p in Gal(kr,pn/Q) generates Gal(kr,pn/Q),
where kr,pn denotes the subfield of Q(μr) with degree pn. We define E to
be the compositum of K and kr,pn . Note that E also satisfies (Ap). We use
the notation AE , XE∞ , ΓE, ΘE/k etc. Since all the primes of k above p are
unramified in E, we have

⊕
v|p

Iv(E∞/E) �
⊕
�|p

Zp[Gal(E/k)]/(ϕ� − 1)

where ϕ� is the Frobenius of p. Using

FittZp[Gal(E/k)](
⊕
�|p

Zp[Gal(E/k)]/(ϕ� − 1)) = (
∏
�|p

(ϕ� − 1))

and the exact sequence

0 −→ (
⊕
v|p

Iv(E∞/E))χ −→ (Xχ
E∞)Gal(E∞/E) −→ AχE −→ 0
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which is obtained from Lemma 3.2, we have

(
∏
�|p

(ϕ� − 1))FittOχ[ΓE ](A
χ
E) ⊂ FittOχ[ΓE ]((X

χ
E∞)Gal(E∞/E)).

By our assumption that all the primes of k above p are unramified in E, for
any intermediate field F of E/k we have

cF∞/F (θF∞/k) = (
∏
�|p

(1 − ϕ−1
� ))θF/k.

Therefore, we have

cE∞/E(Θχ
E∞/k) ⊂ (

∏
�|p

(ϕ� − 1))(ΘE/k ⊗ Zp)χ.

Using Theorem 3.1 and the above two inclusions, we obtain

(
∏
�|p

(ϕ� − 1))FittOχ[ΓE ](A
χ
E) ⊂ (

∏
�|p

(ϕ� − 1))(ΘE/k ⊗ Zp)χ.

Let f� be the residue degree of p in k/Q. We denote by f the maximum
of all ordp(f�) for p above p. We take n and M sufficiently large such
that n −M ≥ f + ordp(#Gal(K/k)). Put ν = ΣpM−1

i=0 σip
n−M

where σ is a
generator of Gal(E/K) = Gal(kr,pn/Q). We then have

(
∏
�|p

(ϕ� − 1))FittOχ[ΓE ]/(ν)(A
χ
E/(ν)) ⊂ (

∏
�|p

(ϕ� − 1))(ΘE/k ⊗ Zp)χ mod (ν),

but the image of the element (
∏

�|p(ϕ�−1)) is not a zero divisor inOχ[ΓE ]/(ν).
Hence we have

FittOχ[ΓE ]/(ν)(A
χ
E/(ν)) ⊂ (ΘE/k ⊗ Zp)χ mod (ν).

Since every prime above r is inert in K/K+, we have χ(r) 
= 1 for any prime
r of k above r. Therefore, the above inclusion implies (cf. [8] page 68)

FittOχ[ΓK ]/pM (AχK/p
M ) ⊂ (ΘK/k ⊗ Zp)χ mod pM .

This holds for any M , so we obtain the conclusion.

We apply Proposition 3.4 to the following two theorems.

Theorem 3.5 Suppose that K/Q is an abelian extension satisfying the con-
dition (A). We assume that p is tamely ramified in K. Then

FittR−
K,p

(A−K) = Θ−K ⊗ Zp

holds.
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Proof. We will first prove the inclusion FittR−
K,p

(A−K) ⊂ Θ−K ⊗Zp. To prove

this inclusion, it suffices to prove FittR−
K,p

(A−K)χ ⊂ (Θ−K ⊗ Zp)χ for all odd
characters χ of ΔK .

Let χ be an odd character of ΔK . We denote by Kχ (resp. K(Δ),χ) the
fixed subfield of K (resp. K(Δ)) by Kerχ ⊂ ΔK . Hence Gal(Kχ/K(Δ),χ) =
ΓK and Gal(K(Δ),χ/Q) = Imageχ. Since [K : Kχ] is prime to p, the
norm map induces an isomorphism AχK

�−→ AχKχ . Hence FittR−
K,p

(A−K)χ =

FittOχ[ΓK ](A
χ
Kχ

). On the other hand, since [K : Kχ] is prime to p, we have
cK/Kχ((ΘK ⊗ Zp)χ) = (ΘKχ ⊗ Zp)χ by the usual norm argument. This
means that (ΘK ⊗Zp)χ = (ΘKχ ⊗Zp)χ in Oχ[ΓK ]. Hence, in order to prove
FittR−

K,p
(A−K) ⊂ Θ−K⊗Zp, it suffices to prove FittOχ[ΓK ](A

χ
Kχ

) ⊂ (ΘKχ⊗Zp)χ

for all odd χ.
Suppose at first that p is unramified in K(Δ),χ/Q. By our assumption of

the tameness, p is also unramified in Kχ. So we can apply Proposition 3.4
(note that μ = 0 by [2]) to obtain FittOχ[ΓK ](A

χ
Kχ

) ⊂ (ΘKχ ⊗ Zp)χ.
Next, suppose that p is ramified inK(Δ),χ/Q. If χ 
= ω, we have χ(p) = 0,

so obtain FittOχ[ΓK ](A
χ
Kχ

) = (ΘKχ ⊗ Zp)χ by Corollary 3.3. For χ = ω,
Proposition 2.4 (2) says that the same equality holds.

Therefore, for any odd character χ of ΔK we have got FittOχ[ΓK ](A
χ
Kχ

) ⊂
(ΘKχ ⊗ Zp)χ. This completes the proof of FittR−

K,p
(A−K) ⊂ Θ−K ⊗ Zp.

On the other hand, by Lemma 6.3 in [8] we have (R−K,p : FittR−
K,p

(A−K)) ≤
#A−K . Since we know (R−K,p : Θ−K ⊗ Zp) = #A−K by Sinnott’s theorem ([13]
Theorems 2.1 and 5.4), we obtain

FittR−
K,p

(A−K) = Θ−K ⊗ Zp.

Theorem 3.6 We assume the same conditions as Proposition 3.4, and also
that a primitive p-th root of unity is not in K. We put RK,p = Zp[Gal(K/k)].
Then we have

FittR−
K,p

(A−K) = Θ−K/k ⊗ Zp.

Proof. Proposition 3.4 implies FittR−
K,p

(A−K) ⊂ Θ−K/k ⊗ Zp. Since (R−K,p :

FittR−
K,p

(A−K)) ≤ #A−K can be proved by the same method as Lemma 6.3 in

[8], as in the proof of Theorem 3.5, it is enough to prove

(R−K,p : Θ−
K/k

⊗ Zp) = #A−K .

This equality can be proved by the same method as Sinnott [12]. It is easy to
check that Sinnott’s argument works if we assume the condition (A). Now,
we are assuming (Ap), and only interested in the p-component AK , so the
same argument as Sinnott’s works, as we will explain next.
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For any group H, we denote by NH =
∑

σ∈H σ the norm of H in group
algebras. For an intermediate field M of K/k, we define RM to be the set
of all the ramifying primes of k in M , HM = Gal(K/M), and

u(M) = NHM

∏
�∈RM

(1 − ϕ−1
�

NI�

#I�
) ∈ Qp[Gal(K/k)]

where I� is the inertia group of l in Gal(K/k), and ϕ� is the Frobenius of l
in Gal(K/k). We also define U to be the RK,p-submodule in Qp[Gal(K/k)]
generated by all u(M)’s where M runs over all intermediate fields of K/k.

Lemma 3.7 ([12] Proposition 2.2) U is a free Zp-submodule in Qp[Gal(K/k)]
of rank [K : k].

Proof. Since U is a finitely generated free Zp-module, it suffices to show
U ⊗ Qp = Qp[Gal(K/k)]. For a character ψ : Gal(K/k) −→ Q×p , we write
the induced ring homomorphism Qp[Gal(K/k)] −→ Qp(Imageψ) by the
same letter ψ. In order to obtain U ⊗ Qp = Qp[Gal(K/k)], it suffices to
show ψ(U) 
= 0 for all characters ψ. Let Kψ be the fixed field by Kerψ in
K, then we have

ψ(u(Kψ)) = [K : Kψ]
∏

�∈RKψ
(1 − ψ(ϕ−1

� )
ψ(NI�)

#I�
).

In the above product, all ψ(NI�)’s are zero since I� 
⊂ HKψ for any l ∈ RKψ .
Therefore, ψ(u(Kψ)) does not vanish for any character ψ. Q.E.D.

Put
w =

∑
ψ

L(0, ψ−1)eψ ∈ Q[Gal(K/k)]

where ψ runs over all characters of Gal(K/k) and eψ is the idempotent
associated to ψ. (It is well-known that w ∈ Q[Gal(K/k)] (cf. Tate [16]
Chap. IV).)

Lemma 3.8 We have ΘK/k ⊗ Zp = Θ′K/k ⊗ Zp = wU .

Proof. The first equality follows from our assumption that μp 
⊂ K. For the
second equality, it is enough to show that for any intermediate field M in
K/k,

νK/M (θM/k) = wNHM

∏
�∈RM

(1 − ϕ−1
�

NI�

#I�
)
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holds. Let ψ be any character of Gal(K/k). It is easy to show that if ψ is
odd and Kerψ ⊃ HM , then the image of the both sides under ψ are

[K : M ]L(0, ψ−1)
∏

�∈RM\RKψ
(1 − ψ(ϕ−1

� )),

and otherwise are zero. Q.E.D.

Recall that ΘK/k ⊗ Qp = (ΘK/k ⊗ Qp)− = Qp[Gal(K/k)]−. Therefore,
it follows from Lemmas 3.7 and 3.8 that U− and wU− are free Zp-modules
of rank 1

2 [K : k] in Qp[Gal(K/k)]−. So we can define (R−K,p : U−) and
(U− : wU−) as in Sinnott [12] §1; namely if L and L′ are free Zp[Gal(K/k)]−-
modules of rank 1

2 [K : k] contained in Qp[Gal(K/k)]− and T : L −→ L′ is a
surjective linear translation, (L : L′) is defined by

(L : L′) = pordp(detT ).

By Lemma 3.8, we obtain

(R−K,p : (ΘK/k ⊗ Zp)−) = (R−K,p : U−)(U− : wU−) .

We will successively determine the indices (R−K,p : U−) and (U− : wU−).

Lemma 3.9 ([12] (3) in page 118) (U− : wU−) = #A−K .

Proof. Let Tw be the linear translation on Qp[Gal(K/k)]− defined by
Tw(x) = wx. From the facts that Tw is extended to the linear translation
on Qp[Gal(K/k)]−, {eψ}ψ:odd is a basis of Qp[Gal(K/k)]−, and Tw(eψ) =
L(0, ψ−1)eψ , we have

detTw =
∏
ψ:odd

L(0, ψ−1) = (2-power)
h−K
wK

by the class number formula, where h−K = # Coker(ClK+ −→ ClK) is the
relative class number of K and wK is the number of roots of unity in K.
Lemma 3.9 follows from our assumption that p is odd and μp 
⊂ K. Q.E.D.

Lemma 3.10 (cf. [13] Theorem 5.4) (R−K,p : U−) = 1.

Proof. For an odd character χ of ΔK , we consider the χ-component Uχ. To
prove Lemma 3.10, it is enough to prove (RχK,p : Uχ) = 1 for any odd char-
acter χ of ΔK . We first describe Uχ in a different way from the definition,
using the condition (Ap).
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We decompose the inertia group I� of a ramifying prime l in Gal(K/k)
into I� = Δ� × P� where Δ� ⊂ ΔK and P� ⊂ ΓK . The character χ induces
the ring homomorphism RK,p = Zp[Gal(K/k)] −→ Oχ[ΓK ] which we write
by the same letter χ. We define an RχK,p-module V χ(l) ⊂ (RK,p ⊗ Q)χ by

V χ(l) = NP�
RχK,p +

(
1 − χ(ϕ−1

� )
NP�

#P�

)
RχK,p .

Recall that ΓK = P�1 × · · · × P�r and P�i 
= 1 for all i ∈ {1, ..., r}. Define
Xχ = {li | i ∈ {1, ..., r}, Δ�i ⊂ Kerχ}.

We will prove

(3.10.1) Uχ =
∏
�∈Xχ

V χ(l) .

This can be proved by the same method as Proposition 5.1 in [12]. The
generators of the right hand side have the form

v(S) = NPS

∏
�∈Xχ\S

(
1 − χ(ϕ−1

� )
NP�

#P�

)

where PS =
∏

�∈S P� and S runs over all subsets of Xχ. Suppose that M
is an intermediate field of K/k. We write HM = Gal(K/M) = Δ(K/M) ×
P (K/M) where Δ(K/M) ⊂ ΔK and P (K/M) ⊂ ΓK . We take S = {l ∈
Xχ | l 
∈ RM}, and

T = {l ∈ RM | #I� is prime to p and Δ� ⊂ Kerχ}.
Then we have

χ(
∏

�∈RM

(
1 − ϕ−1

�

NI�

#I�

)
) =

∏
�∈RM , Δ�⊂Kerχ

(
1 − χ(ϕ−1

� )
NP�

#P�

)

=
∏

�∈Xχ\S

(
1 − χ(ϕ−1

� )
NP�

#P�

) ∏
�∈T

(1 − χ(ϕ−1
� )) .

The first equality follows from the fact that if Δ� 
⊂ Kerχ then χ(NI�) = 0.
The second equality follows from {l ∈ RM | Δ� ⊂ Kerχ} = (Xχ \ S) ∪ T .
Since P (K/M) ⊃ PS , NP (K/M) is a multiple of NPS . Therefore, χ(u(M)) is
a multiple of the above v(S). This shows that Uχ ⊂ ∏

�∈Xχ V
χ(l).

Conversely, if S is a subset of Xχ, we take the subfield M of K fixed by
the subgroup Kerχ × PS of Gal(K/k). In this case, the above T is empty
and P (K/M) = PS . So we have

χ(u(M)) = #(Kerχ)NPS

∏
�∈Xχ\S

(
1 − χ(ϕ−1

� )
NP�

#P�

)
= #(Kerχ)v(S) .
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Since #(Kerχ) is invertible in RχK,p, v(S) is a multiple of χ(u(M)). This
implies the other inclusion. Thus, we have proved (3.10.1).

Changing the subscripts of li’s, we may write Xχ = {l1, ..., lt}. For
j ∈ {1, ..., t}, we put

W χ
j =

j∏
i=1

V χ(li) .

We know W χ
t = Uχ by (3.10.1). Hence we have

(RχK,p : Uχ) =
t∏

j=1

(Wχ
j−1 : W χ

j )

where we are using the convention that W χ
0 = RχK,p. Therefore, in order to

prove Lemma 3.10, it is enough to prove

(3.10.2) (Wχ
j−1 : W χ

j ) = 1

for all j such that 1 ≤ j ≤ t. We will prove (3.10.2). Let Kχ (resp. K(Δ),χ)
be the fixed subfield by Kerχ ⊂ ΔK in K (resp. K(Δ)). Now, we are dealing
with the extension Kχ/K(Δ),χ whose Galois group is ΓK and which satisfies
(A), so the same method as Sinnott §5 in [12] can be applied.

Put ej = NP�j
/#P�j . We will prove

(3.10.3) (1 − ej)W
χ
j = (1 − ej)W

χ
j−1 and (Wχ

j )P�j = (Wχ
j−1)

P�j .

From two exact sequences

0 −→ (Wχ
j )P�j −→W χ

j

1−ej−→ (1 − ej)W
χ
j −→ 0

0 −→ (Wχ
j−1)

P�j −→ W χ
j−1

1−ej−→ (1 − ej)W
χ
j−1 −→ 0,

it is clear that (3.10.3) implies (3.10.2). Hence our goal is to prove (3.10.3).
Since (1 − ej)NP�j

= 0, we have (1 − ej)V χ(lj) = (1 − ej)R
χ
K,p. There-

fore, we have (1 − ej)W
χ
j = (1 − ej)W

χ
j−1. Next, we will prove the sec-

ond equality in (3.10.3). By definition, W χ
j is generated by NP�j

W χ
j−1 and

(1 − χ(ϕ−1
�j

)
NP�j
#P�j

)Wχ
j−1. Therefore, we have

(Wχ
j )P�j = NP�j

W χ
j−1 + (1 − χ(ϕ−1

�j
))(Wχ

j−1)
P�j .

By the completely same method as Sinnott [12] Proposition 5.2, we can show
that W χ

j−1 is a free Oχ[P�j ]-module, which implies NP�j
W χ
j−1 = (Wχ

j−1)
P�j .
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Thus, we have (Wχ
j )P�j = (Wχ

j−1)
P�j , and we have obtained (3.10.3). This

completes the proof of Lemma 3.10 and of Theorem 3.6. Q.E.D.

Proof of Theorem 0.3: Since we assumed μ = 0 for K∞/K and K ′/K is
a p-extension, we have μ = 0 for K ′∞/K ′. So we can apply Theorem 3.6
for K ′ to obtain θK ′/k ∈ FittRK′,p(AK ′) (note that the plus part of θK ′/k

is zero). Since K ′/K is unramified, (A−K ′)Gal(K′/K)
�−→ A−K is bijective and

cK ′/K(θK ′/k) = θK/k. Therefore, we obtain θK/k ∈ FittRK,p(AK). Q.E.D.

4 The case p is wildly ramified

We use the same notation as in the previous section. In this section, we
assume that p is inert in k. Suppose that L/k is a finite abelian extension
satisfying the condition (Ap) in §3. We also assume that the prime p = (p)
of k is tamely ramified in L/k. We consider the cyclotomic Zp-extension
L∞/L, and take the m-th layer Lm with some m ≥ 0. Though this might
cause slight confusion, we take K = Lm in this section. Namely, K is the
intermediate field of L∞/L such that [K : L] = pm. The cyclotomic Zp-
extension of K is also denoted by K∞, so K∞ = L∞. We use the notation
ΔK , ΓK , ΔL, ΓL as in §3. Therefore, ΔK = ΔL and ΓK = ΓL ×Gal(K/L).
We note that K/k also satisfies the condition (Ap). In fact, if m > 0, we
know

ΓK = P� × P�1 × ...× P�r

where p, l1,...,lr are all the ramifying primes of k in K/K(Δ). We define
ΘK/k by the same method as in §3.

Theorem 4.1 Assume that p is inert in k, and p = (p) is tamely ramified
in L. Suppose that L/k satisfies the assumption (Ap), and the μ-invariant of
the cyclotomic Zp-extension L∞/L is zero. Consider the m-th layer K = Lm
for some m ≥ 0. Then, for any odd character χ of ΔK which is different
from the Teichmüller character ω, we have

FittOχ[ΓK ](A
χ
K) = (ΘK/k ⊗ Zp)χ.

Proof. We defineKχ (resp. Lχ) to be the fixed subfield of Kerχ ⊂ ΔK = ΔL

in K (resp. L). Note that Lχ/k also satisfies (Ap), and that AχK
�−→ AχKχ

and (ΘK/k ⊗ Zp)χ = (ΘKχ/k ⊗ Zp)χ in Oχ[ΓK ] as we saw in the proof of
Theorem 3.5. Hence we may assume K = Kχ and L = Lχ. Namely, we may
assume K(Δ)/k is cyclic and χ : ΔK −→ Q×p is faithful.

If χ(p) 
= 1, the same argument as the proof of Corollary 3.3 (the stan-
dard descent method) implies Theorem 4.1. Thus, we may assume χ(p) = 1,
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so p is unramified in L. Suppose that ϕ� is the Frobenius of p in Gal(L/k).
Since p splits completely in L(Δ), ϕ� is in ΓL. We put Γ′ = ΓL/〈ϕ�〉 where
〈ϕ�〉 is the subgroup generated by ϕ�. We put Γm = Gal(K∞/K) and
Γ0 = Gal(K∞/L). By Lemma 3.2, we have a commutative diagram of exact
sequences of Oχ[ΓK ]-modules

0 −→ (
⊕

v|� Iv(K∞/K))χ
fm−→ (Xχ

K∞)Γm
gm−→ AχK −→ 0⏐⏐�ρ1 ⏐⏐�ρ2 ⏐⏐�ρ3

0 −→ (
⊕

v|� Iv(K∞/L))χ
f0−→ (Xχ

K∞)Γ0

g0−→ AχL −→ 0

where v runs over all primes of K∞ above p, Iv(K∞/K) (resp. Iv(K∞/L))
is the inertia group of v in Gal(K∞/K) (resp. Gal(K∞/L)), ρ1 and ρ2 are
natural maps, and ρ3 is the norm map.

As Oχ[ΓK ]-modules, both (
⊕

v|� Iv(K∞/K))χ and (
⊕

v|� Iv(K∞/L))χ

are isomorphic to Oχ[ΓL]/(ϕ� − 1) � Oχ[Γ′]. We take a generator u of
(
⊕

v|� Iv(K∞/L))χ and define e1 = f0(u). We also take e2,..., en ∈ (Xχ
K∞)Γ0

such that g0(e2),..., g0(en) generate AχL as an Oχ[ΓL]-module. Next, we take
e1,...,en ∈ Xχ

K∞ such that ei = ei mod Γ0 (1 ≤ i ≤ n). Nakayama’s lemma
implies that e1,...,en generate Xχ

K∞ . Put Λ = Oχ[[Gal(K∞/K(Δ))]]. We
consider an exact sequence of Λ-modules

Λs Φ−→ Λn −→ Xχ
K∞ −→ 0,

using the generators e1,...,en. We denote by B = (bij)1≤i≤n,1≤j≤s the n× s
matrix corresponding to Φ (we regard the elements of Λs and Λn as column
vectors).

We denote by e1,...,en the images of e1,...,en in (Xχ
K∞)Γm . Put

N = NGal(K/L) = Σσ∈Gal(K/L)σ ∈ Oχ[ΓK ]

(so N = 1 if m = 0, namely if K = L). We will show that Ne1 generates
Image fm. Since p is tamely ramified in L, every prime v above p is totally
ramified in K∞/L. In the above commutative diagram, ρ1 is the natural
inclusion map. Hence, when we regard (

⊕
v|� Iv(K∞/K))χ as a subgroup of

(
⊕

v|� Iv(K∞/L))χ, pmu generates (
⊕

v|� Iv(K∞/K))χ. Let iK/L : AχL −→
AχK be the natural homomorphism. Since

gm(Ne1) = Ngm(e1) = iK/L(g0(e1)) = iK/L(0) = 0,

Ne1 is in the kernel of gm, and hence in the image of fm. Since the image
of fm is isomorphic to Oχ[Γ′], we can write Ne1 = αfm(pmu) for some
α ∈ Oχ[Γ′]. Taking the image of ρ2 of both sides, we have

ρ2(Ne1) = pme1 = ρ2(αfm(pmu)) = pmαf0(u) = pmα e1.
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Since the image of f0 is a free Oχ[Γ′]-module generated by e1, this implies
that α = 1. Hence, Ne1 generates Image fm as an Oχ[ΓK ]-module.

We denote by B = (bij) ∈ Mns(Oχ[ΓK ]) the matrix which is the image
of B ∈ Mns(Λ), namely bij = bij mod Γm. From the upper exact sequence
of the commutative diagram, we know that the n× (s+ 1) matrix

A =

⎛
⎜⎜⎝

N
0
.. B
0

⎞
⎟⎟⎠

corresponds to the Oχ[ΓK ]-module AχK . Namely, if Φ′ : Oχ[ΓK ]s+1 −→
Oχ[ΓK ]n is the homomorphism corresponding to A, the cokernel of Φ′ is
isomorphic to AχK .

We define an (n − 1) × s matrix C by C = (bij)2≤i≤n,1≤j≤s, and C by
C = (bij)2≤i≤n,1≤j≤s where bij = bij mod Gal(K/L). For any matrixM with
entries in a commutative ring R, we will temporarily denote by F (n)(M) the
ideal of R generated by all n× n minors of M . Then we have

(4.1.1)
FittOχ[ΓK ](A

χ
K) = F (n)(A) = NF (n−1)(C) + F (n)(B)

= νK/L(F (n−1)(C)) + F (n)(B).

Put B = (bij)1≤i≤n,1≤j≤s (where bij = bij mod Γ0). Since the matrix
⎛
⎜⎜⎝

1
0
.. B
0

⎞
⎟⎟⎠

is a relation matrix of the Oχ[ΓL]-module AχL by the lower exact sequence
of the above commutative diagram, C is also a relation matrix of AχL. This
implies

F (n−1)(C) = FittOχ[ΓL](A
χ
L).

Note that μp 
⊂ L because we are studying the case where p = (p) is unram-
ified in L. Hence we can apply Theorem 3.6 to L/k, and obtain

(4.1.2) F (n−1)(C) = (ΘL/k ⊗ Zp)χ.

By Theorem 3.1, we have Θχ
K∞/k = FittΛ(Xχ

K∞) = F (n)(B). Therefore, we
obtain

(4.1.3) F (n)(B) = cK∞/K(Θχ
K∞/k).

Thus, it follows from (4.1.1), (4.1.2), (4.1.3) that

(4.1.4) FittOχ[ΓK ](A
χ
K) = νK/L((ΘL/k ⊗ Zp)χ) + cK∞/K(Θχ

K∞/k).
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If m = 0 (namely if K = L), we have obtained the conclusion, so we may
assume m 
= 0. By the argument of subsection 1.2, we can show that
(Θ′K/k ⊗ Zp)χ is generated by all νK/M (θχM/k)’s where M runs over fixed
subfields of K by subgroups of ΓK of the form P� × P�i1

× ... × P�is
and

P�i1
× ... × P�is

for some s. Note that (ΘK/k ⊗ Zp)χ = (Θ′K/k ⊗ Zp)χ since
χ 
= ω. If M is the fixed subfield of P� × P�i1

× ...× P�is
, M is a subfield of

L. Hence νK/M(θχM/k) is in νK/L((ΘL/k ⊗ Zp)χ). If M is the fixed subfield
of P�i1

× ...× P�is
, νK/M(θχM/k) is in cK∞/K(Θχ

K∞/k). Therefore, we have

(4.1.5) νK/L((ΘL/k ⊗ Zp)χ) + cK∞/K(Θχ
K∞/k) = (ΘK/k ⊗ Zp)χ.

Combining (4.1.4) and (4.1.5), we obtain

FittOχ[ΓK ](A
χ
K) = (ΘK/k ⊗ Zp)χ.

Corollary 4.2 We assume the same conditions as in Theorem 4.1, and also
that no primitive p-th root of unity is in K. Then we have

FittR−
K,p

(A−K) = Θ−K/k ⊗ Zp.

Proof. We know FittOχ[ΓK ](A
χ
K) = (ΘK/k⊗Zp)χ for any odd character χ of

ΔK because μp is not in K. This implies the conclusion. Q.E.D.

Proof of Theorem 1.1: We may assume that K satisfies the condition (A).
If p is tamely ramified in K, Theorem 3.5 implies the conclusion, so we may
assume that p is wildly ramified in K. Let Pp be the Sylow p-subgroup of
the inertia subgroup of p in Gal(K/Q), and let L be the fixed subfield of Pp
in K. Then K is an intermediate field of the cyclotomic Zp-extension L∞/L,
and (K,L) satisfies all the assumptions of Theorem 4.1 (note that μ = 0
by [2]). Therefore, we obtain the conclusion by Theorem 4.1 for χ 
= ω. If
χ = ω, the conclusion was already proved in Proposition 2.4 (2). Q.E.D.

As we mentioned in §1, Theorem 1.1 implies Theorem 0.1, so we have
also proved Theorem 0.1.

We finally prove the following Corollary 4.3. Let p be an odd prime
number, and let ψ : Gal(Q/Q) −→ Q

×
p be any odd Dirichlet character.

(Note that p may divide the order of ψ.) Let K be the imaginary abelian
field corresponding to Kerψ. We extend ψ to a ring homomorphism ψ :

25



Zp[Gal(K/Q)] −→ Qp, and put Oψ = Zp[Gal(K/Q)]/(Kerψ), which we
identify with Zp[Imageψ]. We define the ψ-quotient of AK by

AψK = AK ⊗RK,p Oψ.

If K = Q(μpm) for some m > 0 and ψ|ΔK
= ω, we know AψK = 0. We

exclude this case, and assume that if K = Q(μpm) for some m > 0 then
ψ|ΔK


= ω.

Corollary 4.3 (D. Solomon [14]) Let B1,ψ−1 be the generalized Bernoulli
number which we regard as an element in Oψ = Zp[Imageψ]. Then we have

#AψK = #Oψ/(B1,ψ−1).

Precisely speaking, Solomon proved in [14] the above statement for the
ψ-part AK(ψ) which is defined by

AK(ψ) = {x ∈ AK | αx = 0 for all α ∈ Kerψ ⊂ Zp[Gal(K/Q)]}

though we prove it for the ψ-quotient AψK . Since K/Q is a cyclic extension,
it is easy to check that #AK(ψ) = #AψK .

Proof of Corollary 4.3. First of all, we have B1,ψ−1 ∈ Oψ = Zp[Imageψ]
by our assumption that ψ|ΔK


= ω in the case K = Q(μpm). We extend
ψ to a ring homomorphism ψ : Qp[Gal(K/Q)] −→ Qp. Let K ′ be the
abelian field satisfying (A) such that K ′/K is unramified everywhere as in
§1. For a subfield F of K ′, if K 
⊂ F , we have ψ(cK ′/K(νK ′/F (θF ))) = 0.
If K ⊂ F , ψ(cK ′/K(νK ′/F (θF ))) is a multiple of ψ(θK). Therefore, we have
ψ(ΘK ⊗ Zp) ⊂ (ψ(θK)).

We will show the other inclusion. If μp 
⊂ K ′, we know θK ∈ ΘK ⊗ Zp.
If μp ⊂ K ′, let N be the conductor of K and ordp(N) = m. Suppose at
first N 
= pm. Since μp ⊂ K ′ and ordp(N) = m, we know μpm ⊂ K ′.
Since N 
= pm, we also have K ′ � Q(μpm). We use the notation of §2. By
Proposition 2.3, we have

θK ′ − cNνK ′/Q(μpm )(θQ(μpm )) ∈ ΘK ′ ⊗ Zp.

Since cK ′/K(θK ′) = θK and ψ(cK ′/K(νK ′/Q(μpm )(θQ(μpm )))) = 0, ψ(θK) is in
ψ(ΘK ⊗ Zp). If N = pm, our assumption μp ⊂ K ′ implies K ′ = Q(μpm).
Since ψ|ΔK


= ω by our assumption, putting χ = ψ|ΔK
, we know θχK ∈

(ΘK ⊗ Zp)χ. This implies ψ(θK) ∈ ψ(ΘK ⊗ Zp). In any case, we have

ψ(θK) ∈ ψ(ΘK ⊗ Zp).
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Therefore, we have ψ(ΘK ⊗ Zp) = (ψ(θK)). It is well-known (for example,
[17] Theorem 4.2) that ψ(θK) = −B1,ψ−1 . Hence, it follows from Theorem
0.1 that

FittOψ(AψK) = (ψ(θK)) = (B1,ψ−1).

Since Oψ is a discrete valuation ring, this is equivalent to #AψK = #Oψ/(B1,ψ−1).
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