Remarks on the λ_p -invariants of cyclic fields of degree p

Masato Kurihara

0 Introduction

We fix an odd prime number p throughout this paper. For a totally real field k, let k_{∞}/k denote the cyclotomic \mathbf{Z}_p -extension and $X_{k_{\infty}}$ denote the Galois group of the maximal unramified abelian pro-p extension of k_{∞} over k_{∞} . Greenberg's conjecture predicts that $X_{k_{\infty}}$ is finite. In a series of papers [4] [12] [16] [2] [3], T.Fukuda, K.Komatsu, M.Ozaki, H.Taya, and G.Yamamoto intensively studied the case that p=3 and k is a cyclic cubic field with prime conductor. In this paper, we consider a cyclic field k of degree p with prime conductor ℓ . First of all, we will see that for such a field k, $X_{k_{\infty}}$ has a simple form (Theorem 1.3), and we will see what the finiteness of $X_{k_{\infty}}$ means (Remark 1.5). Next, we will develop the idea of Ozaki and Yamamoto [16], and obtain more general conditions which imply the finiteness of $X_{k_{\infty}}$ (see Propositions 1.7, 1.8, 1.9, 1.10 in §1, cf. also Corollaries 1.4, 1.6). They are conditions on fields of degree p over \mathbf{Q} , so it is not difficult to check them for numerical examples. In fact, we see that these conditions are satisfied by many examples. (For p=3, these conditions are satisfied for all $\ell < 10,000$ except $\ell = 8677$ (cf. §4.1). For p = 5, these conditions are satisfied for all $\ell < 100,000$ except three ℓ 's (cf. §4.4).) (We do not use p-adic L-functions. For the relation with Tsuji's criterion, see Remark 1.11.)

I would like to express my hearty thanks to Manabu Ozaki for valuable discussion with him on the topic of this paper. I also thank Toru Komatsu and Ryohei Takeuchi heartily for helping me to compute the numerical examples.

1 Results

Let p be an odd prime number. Assume that ℓ is a rational prime such that $\ell \equiv 1 \pmod{p}$, and k denotes the cyclic field of degree p with conductor ℓ . For an integer $n \geq 0$, we denote by k_n (resp. \mathbf{Q}_n) the n-th layer of the cyclotomic \mathbf{Z}_p -extension k_{∞}/k (resp. $\mathbf{Q}_{\infty}/\mathbf{Q}$), namely k_n (resp. \mathbf{Q}_n) is the intermediate field such that $[k_n:k]=p^n$ (resp. $[\mathbf{Q}_n:\mathbf{Q}]=p^n$). Let A_{k_n} be the p-Sylow subgroup of the ideal class group of k_n , and

$$X_{k_{\infty}} = \lim_{\leftarrow} A_{k_n}$$

the projective limit of A_{k_n} with respect to the norm maps. So $X_{k_{\infty}}$ is isomorphic to the Galois group of the maximal unramified abelian pro-p extension of k_{∞} over k_{∞} . Since only one prime ℓ is ramified in k/\mathbf{Q} , by genus theory we have $A_k = 0$. But $X_{k_{\infty}}$ is nonzero, in general. By Ferrero-Washington's theorem [1], $X_{k_{\infty}}$ is a finitely generated \mathbf{Z}_p -module whose rank we denote by λ (the Iwasawa λ -invariant). A famous conjecture by Greenberg asserts that $X_{k_{\infty}}$ is finite, namely $\lambda = 0$.

By genus theory and a theorem of Iwasawa (cf. [8]), we know $X_{k_{\infty}} = 0$ if either $p \mod \ell \notin (\mathbf{F}_{\ell}^{\times})^p$ or $\ell \not\equiv 1 \pmod{p^2}$ holds (Theorem A in [16]). So in the following, we assume that $p \mod \ell \in (\mathbf{F}_{\ell}^{\times})^p$ and $\ell \equiv 1 \pmod{p^2}$. Namely, we assume that p splits in k/\mathbf{Q} , and that ℓ splits in \mathbf{Q}_1/\mathbf{Q} .

Let $O_{\mathbf{Q}_n}$ be the integer ring of \mathbf{Q}_n and $E'_{\mathbf{Q}_n} = (O_{\mathbf{Q}_n}[1/p])^{\times}$ be the group of p-units. For a prime v of \mathbf{Q}_n lying over ℓ , we denote by $\kappa(v) = O_{\mathbf{Q}_n}/v$ the residue field of v. Let $O_{\mathbf{Q}_n,(v)}$ be the localization of $O_{\mathbf{Q}_n}$ at v, and $\partial_v : O_{\mathbf{Q}_n,(v)} \longrightarrow O_{\mathbf{Q}_n,(v)}/v = \kappa(v)$ be the reduction map. Since v is prime to p, ∂_v induces a homomorphism

$$\partial_v: E'_{\mathbf{Q}_n} \longrightarrow \kappa(v)^{\times}$$

where $\kappa(v)^{\times}$ is the multiplicative group of nonzero elements in $\kappa(v)$. Since p divides the order of $\kappa(v)^{\times}$, $\kappa(v)^{\times}/(\kappa(v)^{\times})^p$ is cyclic of order p. We consider the map

$$\Phi'_n: E'_{\mathbf{Q}_n} \longrightarrow \bigoplus_{v \mid \ell} \kappa(v)^{\times} / (\kappa(v)^{\times})^p$$

which is induced by $x \mapsto (\partial_v x)$ where v ranges over all primes of \mathbf{Q}_n lying over ℓ .

Lemma 1.1 Suppose that Φ'_n is not the zero map. Then, for any $m \geq n$, the dimension of the cokernel of Φ'_m (as an \mathbf{F}_p -vector space) is equal to the dimension of the cokernel of Φ'_n (as an \mathbf{F}_p -vector space).

We will give a proof of this lemma in §2.

Definition 1.2 Assume that there is $n \geq 0$ such that the image of Φ'_n is not zero. We define

$$\kappa = \dim \operatorname{Cokernel}(\Phi'_n : E'_{\mathbf{Q}_n} \longrightarrow \bigoplus_{v | \ell} \kappa(v)^{\times} / (\kappa(v)^{\times})^p)$$

where v ranges over all primes of \mathbf{Q}_n lying over ℓ . If the image of Φ'_n is zero for all $n \geq 0$, we define $\kappa = \infty$.

By Lemma 1.1, this definition does not depend on the choice of n. Let q be the number of the primes of \mathbb{Q}_{∞} lying over ℓ . Then, $\kappa < \infty$ implies $\kappa < q$ by definition. In general, numerical calculation of κ is easy (cf. the proof of Lemma 1.1 in §2, and the examples in §4). We will define a similar map Φ_n in §2, and give a relation between κ and Φ_n . We believe this number κ and the maps Φ_n , Φ'_n play an important role in Iwasawa theory of k.

If $\kappa = 0$, Φ'_n s are surjective for all $n \geq 0$, so from the surjectivity of Φ'_0 and the fact that $E'_{\mathbf{Q}}/(E'_{\mathbf{Q}})^p$ is generated by the image of p, we have $p \mod \ell \notin (\mathbf{F}_{\ell}^{\times})^p$. So by our assumption, we always have $\kappa \geq 1$.

Let ζ_p be a primitive p-th root of unity, and put

$$R = \mathbf{Z}_p[\zeta_p].$$

We also define G and Γ by

$$G = \operatorname{Gal}(k_{\infty}/\mathbf{Q}_{\infty}) = \operatorname{Gal}(k/\mathbf{Q})$$
 and $\Gamma = \operatorname{Gal}(k_{\infty}/k) = \operatorname{Gal}(\mathbf{Q}_{\infty}/\mathbf{Q}).$

We take a generator σ of G and consider $N_G = 1 + \sigma + ... + \sigma^{p-1}$. Then, for $x \in X_{k_{\infty}}$, the map $N_G : X_{k_{\infty}} \longrightarrow X_{k_{\infty}} \ (x \mapsto N_G(x))$ factors through $X_{\mathbf{Q}_{\infty}} = \lim_{\leftarrow} A_{\mathbf{Q}_n} = 0$ (where $A_{\mathbf{Q}_n}$ is the p-Sylow subgroup of the ideal class group of \mathbf{Q}_n), so it is the zero map. Hence, by defining $\zeta_p x = \sigma x$, $X_{k_{\infty}}$ becomes an $R = \mathbf{Z}_p[\zeta_p]$ -module. Since Γ acts on $X_{k_{\infty}}$, $X_{k_{\infty}}$ is also a Λ -module where we put

$$\Lambda = R[[\Gamma]] = \mathbf{Z}_p[\zeta_p][[\Gamma]].$$

Throughout this paper, we identify Λ with the formal power series ring R[[T]] by identifying a generator γ of Γ with 1+T.

Let χ be a faithful character of $\operatorname{Gal}(k/\mathbf{Q})$, namely χ is an injective homomorphism from $\operatorname{Gal}(k/\mathbf{Q})$ to $\overline{\mathbf{Q}_p}^{\times}$. We consider the *p*-adic *L*-function

 $L_p(s,\chi)$ of Kubota-Leopoldt, and the associated power series $G_\chi(T) \in R[[T]]$ such that $G_\chi((1+p)^{1-s}-1)=L_p(s,\chi)$. By Ferrero-Washington's theorem [1], ζ_p-1 does not divide $G_\chi(T)$. Let $f_\chi(T) \in R[T]$ be the distinguished polynomial of $G_\chi(T)$, so $G_\chi(T)=u(T)f_\chi(T)$ for some unit power series $u(T) \in R[[T]]^\times$ (cf. [19] §7.1). By Kida's formula ([11], [10]), the degree of $f_\chi(T)$ is q-1 (recall that q is the number of the primes of \mathbf{Q}_∞ lying over ℓ).

Theorem 1.3 Let \mathfrak{p} be a prime of k lying over p, and \mathfrak{p}_n be the prime of k_n lying over \mathfrak{p} . We denote by $\mathbf{c}_{\mathfrak{p}}$ the class of (\mathfrak{p}_n) in $X_{k_{\infty}}$. Then, there exist a polynomial $k(T) \in R[T]$ and an isomorphism

$$\Lambda/(f_{\chi}(T), Tk(T)) \xrightarrow{\simeq} X_{k_{\infty}}$$

of $\Lambda(=R[[\Gamma]]=R[[T]])$ -modules such that k(T) modulo $(f_{\chi}(T),Tk(T))$ corresponds to $\mathbf{c}_{\mathfrak{p}}$. If $\kappa<\infty$, we can take k(T) to be a distinguished polynomial of degree $\kappa-1$. If $\kappa=\infty$, we can take k(T) such that $\zeta_{\mathfrak{p}}-1$ divides k(T).

We will prove this theorem in §3. Suppose $\kappa < \infty$. Since T is prime to $f_{\chi}(T)$, the greatest common divisor of $f_{\chi}(T)$ and Tk(T) divides k(T), so its degree is smaller than or equal to $\kappa - 1$. This implies that the R-rank of $X_{k_{\infty}}$ is $\leq \kappa - 1$. Since λ is the \mathbb{Z}_p -rank of $X_{k_{\infty}}$, we have

Corollary 1.4
$$\lambda \leq (p-1)(\kappa-1)$$
.

Ozaki and Yamamoto ([16] Theorem 1) showed that if $\kappa = 1$, then $\lambda = 0$ in the case p = 3. The above Corollary is a generalization of their result. (They also quoted the case $\kappa = 2$ of the above Corollary as a theorem of the author in [16] Theorem 4.)

Remark 1.5 Theorem 1.3 tells us that $X_{k_{\infty}}$ is finite if and only if $f_{\chi}(T)$ is prime to k(T). (Note that k(T) is defined modulo $f_{\chi}(T)$.) By our experience of numerical computation (cf. §4), it seems to us that there is no relation between k(T) and $f_{\chi}(T)$. If this is true, the probability that a root of $f_{\chi}(T) = 0$ happens to be a root of k(T) = 0 in an algebraic closure of \mathbf{Q}_p which is a set of cardinality of the continuum would be very small, and almost zero.

Next, we will give some conditions which imply the finiteness of $X_{k_{\infty}}$, namely $\lambda = 0$. Ozaki and Yamamoto ([16] Theorem 2) proved (in the case p = 3) that if $\kappa = 2$ and $f_{\chi}(T)$ is irreducible, we have $\lambda = 0$. When $\kappa < \infty$, the degree of k(T) is $\kappa - 1$. Hence, Theorem 1.3 implies

Corollary 1.6 Suppose that $\kappa < \infty$. If $f_{\chi}(T)$ does not have a factor of degree $\leq \kappa - 1$, we have $\lambda = 0$.

As we mentioned before Theorem 1.3, the degree of $f_{\chi}(T)$ is q-1 where q is the number of the primes of \mathbf{Q}_{∞} lying over ℓ . On the other hand, by the definition of κ , we have $\kappa < q$, so $\kappa - 1$ is smaller than the degree of $f_{\chi}(T)$. Hence, if $f_{\chi}(T)$ is irreducible, $f_{\chi}(T)$ satisfies the condition in this corollary.

In this paper, we mainly study the case $\kappa = 2$. The following propositions will be proved in §3.

Proposition 1.7 Assume that $\kappa = 2$. If there is a subfield F of k_1 such that $F \neq \mathbf{Q}_1$, $F \neq k$, $[F : \mathbf{Q}] = p$, and such that the prime ideal of F lying over p is principal, then $\lambda = 0$.

A similar result with additional assumption $\ell \equiv 1 \pmod{p^3}$ (in the case p = 3) was proved in Ozaki and Yamamoto [16].

Let $R = \mathbf{Z}_p[\zeta_p]$ be as above, and v_R be the normalized additive valuation of R, namely $v_R(\zeta_p - 1) = 1$. Ozaki and Yamamoto gave a condition which implies $\lambda = 0$, using a generalized Bernoulli number ([16] Corollary 3). For the generalized Bernoulli number $B_{1,\chi\omega^{-1}}$, if $v_R(B_{1,\chi\omega^{-1}}) = 0$, then we have $X_{k_\infty} = 0$, and if $v_R(B_{1,\chi\omega^{-1}}) = 1$, then $f_\chi(T)$ is irreducible, and we also have $\lambda = 0$ ([16] Corollary 3). We proceed to the case $v_R(B_{1,\chi\omega^{-1}}) = 2$.

Proposition 1.8 Assume that $\kappa = 2$ and $v_R(B_{1,\chi\omega^{-1}}) = 2$. Furthermore, if p^4 does not divide the class numbers of all subfields of k_1 with degree p over \mathbf{Q} , then we have $\lambda = 0$.

In order to deal with the case $\kappa > 2$, we also need the following propositions.

Proposition 1.9 Suppose that $\kappa \leq p$ and $\ell \equiv 1 \pmod{p^3}$. We also assume there are subfields F and F' of k_1 such that

- (i) $F \neq \mathbf{Q}_1, F \neq k, F' \neq \mathbf{Q}_1, F' \neq k, \text{ and } [F : \mathbf{Q}] = [F' : \mathbf{Q}] = p,$
- (ii) the prime of F over ℓ is principal, and the prime of F' over ℓ is not principal, and
- (iii) p^4 does not divide the class number of F. Then, we have $\lambda = 0$.

Proposition 1.10 Suppose that $\kappa = \infty$. Furthermore, we assume that there is a subfield $F \subset k_1$ with $F \neq k$ and $[F : \mathbf{Q}] = p$ such that p^4 does not divide the class number of F and the prime over p is not principal. Then, we have $\lambda = 0$.

Remark 1.11 (Remark on Tsuji's criterion) Kraft and Schoof [13] and Ichimura and Sumida [7] gave efficient criteria independently for Greenberg's conjecture when the degree $[k:\mathbf{Q}]$ of the ground field k is prime to p. After the work of Fukuda and Komatsu [3], recently T.Tsuji gave a good criterion [18] where she removed the assumption on $[k:\mathbf{Q}]$ in the criterion of Ichimura and Sumida. In the above notation, for each irreducible factor $P_i(T)$ of $f_{\chi}(T)$, her criterion presents a necessary and sufficient condition that $P_i(T)$ does not divide the characteristic power series $F_k(T)$ of $X_{k_{\infty}}$. Theorem 1.3 says that if $\kappa < \infty$ and deg $P_i(T) > \kappa - 1$, $P_i(T)$ does not divide $F_k(T)$. So we have only to check the factors $P_i(T)$ with degree $\leq \kappa - 1$. For example, if $\kappa = 2$, we have only to check the factors of degree 1. Further, it happens that some factors need not be checked (cf. Proposition 3.4). Numerical examples will be given in §4.

2 A homomorphism Φ_n and the invariant κ

In this section, we first prove Lemma 1.1.

We define M_n by $M_n = \bigoplus_{v \mid \ell, v \in P_{\mathbf{Q}_n}} \kappa(v)^{\times}/(\kappa(v)^{\times})^p$ where v ranges over all primes of \mathbf{Q}_n over ℓ , and define M_m similarly. Put $\Gamma = \operatorname{Gal}(\mathbf{Q}_{\infty}/\mathbf{Q})$. Then, both M_n and M_m are $\mathbf{F}_p[[\Gamma]]$ -modules. We take a generator γ of Γ and identify $\mathbf{F}_p[[\Gamma]]$ with the formal power series ring $\mathbf{F}_p[[T]]$ by the correspondence $\gamma \leftrightarrow 1+T$. Since M_m is isomorphic to $\mathbf{F}_p[\operatorname{Gal}(\mathbf{Q}_m/\mathbf{Q})/D]$ where D is the decomposition group of ℓ , it is generated by one element as an $\mathbf{F}_p[[T]]$ -module. Taking a generator x_m , we write

$$M_m = \mathbf{F}_p[[T]]x_m \simeq \mathbf{F}_p[[T]]/(T^{q_m})$$

where q_m is the number of the primes of \mathbf{Q}_m lying over ℓ . Note that for any $i \geq 0$, we have a canonical isomorphism $O_{\mathbf{Q}_i}/\ell O_{\mathbf{Q}_i} \simeq \bigoplus_{v|\ell,v\in P_{\mathbf{Q}_i}} \kappa(v)$. Hence, the norm map from \mathbf{Q}_m to \mathbf{Q}_n induces a map $N: M_m \longrightarrow M_n$. Put $x_n = N(x_m)$. Since $N: M_m \longrightarrow M_n$ is surjective, M_n is generated by x_n and we can write $M_n = \mathbf{F}_p[[T]]x_n \simeq \mathbf{F}_p[[T]]/(T^{q_n})$ where q_n is the number of the primes of \mathbf{Q}_n lying over ℓ .

On the other hand, as an $\mathbf{F}_p[[T]]$ -module, $E'_{\mathbf{Q}_n}/(E'_{\mathbf{Q}_n})^p$ is generated by the class of $N_{\mathbf{Q}(\zeta_{p^{n+1}})/\mathbf{Q}_n}(1-\zeta_{p^{n+1}})$ where $\zeta_{p^{n+1}}$ is a primitive p^{n+1} -st root of unity, and $N_{\mathbf{Q}(\zeta_{p^{n+1}})/\mathbf{Q}_n}$ is the norm map from $\mathbf{Q}(\zeta_{p^{n+1}})$ to \mathbf{Q}_n . So the map $E'_{\mathbf{Q}_m}/(E'_{\mathbf{Q}_m})^p \longrightarrow E'_{\mathbf{Q}_n}/(E'_{\mathbf{Q}_n})^p$ which is induced by the norm map is surjective. Hence, if the image of Φ'_m is $T^i\mathbf{F}_p[[T]]x_m$, then the image of Φ'_n is $T^i\mathbf{F}_p[[T]]x_n$. Note that $i < q_n$ by our assumption. We have

 $\dim \operatorname{Cokernel}(\Phi'_n: E'_{\mathbf{Q}_n} \longrightarrow M_n) = \dim \operatorname{Cokernel}(\Phi'_m: E'_{\mathbf{Q}_m} \longrightarrow M_m) = i.$

This completes the proof of the lemma.

Next, we will define a homomorphism Φ_n . Let $E_{\mathbf{Q}_n}$ be the unit group of $O_{\mathbf{Q}_n}$. Then, Φ'_n induces a homomorphism

$$E_{\mathbf{Q}_n} \longrightarrow \bigoplus_{v \mid \ell} \kappa(v)^{\times} / (\kappa(v)^{\times})^p.$$

The norm map from \mathbf{Q}_n to \mathbf{Q} induces a map $O_{\mathbf{Q}_n}/\ell O_{\mathbf{Q}_n} = \bigoplus_{v|\ell} \kappa(v) \longrightarrow \mathbf{F}_{\ell}$. So we have a natural homomorphism

$$\bigoplus_{v|\ell} \kappa(v)^{\times}/(\kappa(v)^{\times})^p \longrightarrow \mathbf{F}_{\ell}^{\times}/(\mathbf{F}_{\ell}^{\times})^p$$

whose kernel we denote by $(\bigoplus_{v|\ell} \kappa(v)^{\times}/(\kappa(v)^{\times})^p)^0$. Since the diagram

$$E_{\mathbf{Q}_n} \xrightarrow{\Phi'_n|_{E_{\mathbf{Q}_n}}} \bigoplus_{v|\ell} \kappa(v)^{\times}/(\kappa(v)^{\times})^p$$

$$\downarrow \qquad \qquad \downarrow$$

$$E_{\mathbf{Q}}/(E_{\mathbf{Q}})^p \longrightarrow F_{\ell}^{\times}/(F_{\ell}^{\times})^p$$

is commutative (where $E_{\mathbf{Q}}$ is the unit group of \mathbf{Z} and the vertical arrows are induced by the norm maps) and $E_{\mathbf{Q}}/E_{\mathbf{Q}}^p = 0$, the image of the upper horizontal map is contained in $(\bigoplus_{v|\ell} \kappa(v)^{\times}/(\kappa(v)^{\times})^p)^0$. We denote this map by

$$\Phi_n: E_{\mathbf{Q}_n} \longrightarrow (\bigoplus_{v|\ell} \kappa(v)^{\times}/(\kappa(v)^{\times})^p)^0.$$

Lemma 2.1 Suppose that Φ'_n is not the zero map. Then, the dimension of the cokernel of Φ_n as an \mathbf{F}_p -vector space is equal to κ .

Proof. We use the same notation as in the proof of Lemma 1.1. The above map $\bigoplus_{v|\ell} \kappa(v)^{\times}/(\kappa(v)^{\times})^p \longrightarrow \mathbf{F}_{\ell}^{\times}/(\mathbf{F}_{\ell}^{\times})^p$ is induced by the norm map $M_n \longrightarrow M_0$. Using $M_n = \mathbf{F}_p[[T]]x_n (\simeq (\mathbf{F}_p[[T]]/(T^{q_n})))$ and $M_0 = \mathbf{F}_p x_0$ where x_0 is the image of x_n under the norm map, we see the above map is induced by $T \mapsto 0$. Hence, $(\bigoplus_{v|\ell} \kappa(v)^{\times}/(\kappa(v)^{\times})^p)^0 = T\mathbf{F}_p[[T]]x_n$. Suppose $\Phi'_n(E'_{\mathbf{Q}_n}) = T^i\mathbf{F}_p[[T]]x_n$. Since $E_{\mathbf{Q}_n}/E^p_{\mathbf{Q}_n}$ is generated by cyclotomic units, $T(E'_{\mathbf{Q}_n}/(E'_{\mathbf{Q}_n})^p) = E_{\mathbf{Q}_n}/E^p_{\mathbf{Q}_n}$, and we have $\Phi_n(E_{\mathbf{Q}_n}) = T^{i+1}\mathbf{F}_p[[T]]x_n$. Note that $i+1 \leq q_n$ by our assumption. Hence, we obtain

$$\dim \operatorname{Cokernel}(\Phi_n) = (i+1) - 1 = i = \dim \operatorname{Cokernel}(\Phi'_n) = \kappa.$$

This completes the proof of the lemma.

3 Proof of Theorem 1.3 and Propositions in §1

We use the following lemma (cf. Lemma 2.1 in [14]).

Lemma 3.1 Let L/K be a cyclic extension of degree p of totally real number fields, which is not unramified. Then, we have an exact sequence

Here, the notation is as follows. $P_{ram}(K)$ is the set of all ramified (finite) primes of K in L/K. For $v \in P_{ram}(K)$, we denote by w the unique prime of L lying over K. For a prime w of L (resp. v of K), L_w (resp. K_v) is the completion of L at w (resp. K at v). We denote by E_L (resp. E_{L_w}) the unit group of the integer ring of L (resp. L_w). A_L is the p-Sylow subgroup of the ideal class group of L, and $\hat{H}^0(*,*)$ is the Tate cohomology. We define an isomorphism $\hat{H}^0(L_w/K_v, E_{L_w}) \simeq \mathbf{Z}/p\mathbf{Z}$ by

$$\hat{H}^0(L_w/K_v, E_{L_w}) \simeq \hat{H}^0(L_w/K_v, L_w^{\times}) \simeq H^2(L_w/K_v, L_w^{\times}) \simeq \mathbf{Z}/p\mathbf{Z}$$

where the last map is the invariant map of local class field theory. (The first two groups are isomorphic because L_w/K_v is totally ramified.) The group $(\bigoplus_{v \in P_{ram}(K)} \hat{H}^0(L_w/K_v, E_{L_w}))^0$ denotes the kernel of

$$\bigoplus_{v \in P_{ram}(K)} \hat{H}^0(L_w/K_v, E_{L_w}) \simeq \bigoplus_{v \in P_{ram}(K)} \mathbf{Z}/p \xrightarrow{\Sigma} \mathbf{Z}/p$$

where Σ is the map defined by the sum.

Proof of Theorem 1.3. Let $\mathcal{M}_{\infty}/k_{\infty}$ be the maximal abelian pro-p extension of k_{∞} unramified outside p, and $\mathcal{X}_{k_{\infty}} = \operatorname{Gal}(\mathcal{M}_{\infty}/k_{\infty})$ be its Galois group. We denote by $\mathcal{U}_{k_{\infty}}$ the group of semi-local units, namely

$$\mathcal{U}_{k_{\infty}} = \lim_{\leftarrow} \bigoplus_{\mathfrak{p}|p} U^{1}_{k_{n,\mathfrak{p}_{n}}}$$

where \mathfrak{p} ranges over all primes of k over p, and \mathfrak{p}_n is the prime of k_n over \mathfrak{p} , and $U^1_{k_n,\mathfrak{p}_n}$ is the principal units of k_{n,\mathfrak{p}_n} . By class field theory, we have an exact sequence

$$\mathcal{U}_{k_{\infty}} \longrightarrow \mathcal{X}_{k_{\infty}} \longrightarrow X_{k_{\infty}} \longrightarrow 0.$$

Put $G = \operatorname{Gal}(k_{\infty}/\mathbf{Q}_{\infty}) = <\sigma>$ and $N_G = 1 + \sigma + ... + \sigma^{p-1}$. If we denote by $\mathcal{X}_{\mathbf{Q}_{\infty}}$ the Galois group of the maximal abelian pro-p extension of \mathbf{Q}_{∞} unramified outside p over \mathbf{Q}_{∞} , we have $\mathcal{X}_{\mathbf{Q}_{\infty}} = 0$. So the multiplication by N_G is zero on $\mathcal{X}_{k_{\infty}}$, and we can regard $\mathcal{X}_{k_{\infty}}$ as a $\Lambda = \mathbf{Z}_p[\zeta_p][[\Gamma]]$ -module. Hence, we have an exact sequence

$$\mathcal{U}_{k_{\infty}}/N_G\mathcal{U}_{k_{\infty}}\longrightarrow \mathcal{X}_{k_{\infty}}\longrightarrow X_{k_{\infty}}\longrightarrow 0$$

of Λ -modules.

We will show that $\mathcal{X}_{k_{\infty}}$ is generated by one element as a Λ -module. To see this, it is enough to see that the Γ -coinvariant $(\mathcal{X}_{k_{\infty}})_{\Gamma}$ is generated by one element as an $R = \mathbf{Z}_p[\zeta_p]$ -module. Let $G_{k,p}$ (resp. $G_{k_{\infty},p}$) be the Galois group of the maximal extension of k (resp. k_{∞}) unramified outside p over k (resp. k_{∞}), and \mathcal{X}_k be the Galois group of the maximal abelian pro-p extension of k unramified outside p over k. From the inflation-restriction exact sequence $0 \longrightarrow H^1(\Gamma, \mathbf{Q}_p/\mathbf{Z}_p) \longrightarrow H^1(G_{k_{\infty},p}, \mathbf{Q}_p/\mathbf{Z}_p) \longrightarrow H^1(G_{k_{\infty},p}, \mathbf{Q}_p/\mathbf{Z}_p)^{\Gamma} \longrightarrow 0$, taking the Pontrjagin dual, we have $(\mathcal{X}_{k_{\infty}})_{\Gamma} = \mathrm{Ker}(\mathcal{X}_k \longrightarrow \Gamma)$. By class field theory (and $A_k = 0$ as we mentioned in §1), \mathcal{X}_k is isomorphic to $(\bigoplus_{\mathfrak{p}|p} U_{k_{\mathfrak{p}}}^1)/(\mathrm{the\ image\ of\ } E_k \otimes \mathbf{Z}_p)$ and $\mathcal{X}_{\mathbf{Q}}$ is isomorphic to $\Gamma = U_{\mathbf{Q}_p}^1 \simeq \mathbf{Z}_p$. Hence, $\mathrm{Ker}(\mathcal{X}_k \longrightarrow \Gamma)$ is isomorphic to $\mathrm{Ker}(\mathrm{Norm}: \bigoplus_{\mathfrak{p}|p} U_{k_{\mathfrak{p}}}^1 \longrightarrow U_{\mathbf{Q}_p}^1))/(\mathrm{the\ image\ of\ } E_k \otimes \mathbf{Z}_p)$. Recall that p splits in k/\mathbf{Q} and $U_{k_{\mathfrak{p}}}^1 = U_{\mathbf{Q}_p}^1 \simeq \mathbf{Z}_p$. Since $\mathrm{Ker}(\mathrm{Norm}: \bigoplus_{\mathfrak{p}|p} U_{k_{\mathfrak{p}}}^1 \longrightarrow U_{\mathbf{Q}_p}^1)$ is a free R-module of rank 1, $(\mathcal{X}_{k_{\infty}})_{\Gamma} = \mathrm{Ker}(\mathcal{X}_k \longrightarrow \Gamma)$ is generated by one element as an R-module. By Nakayama's lemma, $\mathcal{X}_{k_{\infty}}$ is generated by one element as a R-module.

We write $\mathcal{X}_{k_{\infty}} \simeq \Lambda/I$. Since $\mathcal{X}_{k_{\infty}}$ does not have a nontrivial finite Λ -submodule ([9] Theorem 18), I is principal. By Iwasawa Main Conjecture proved by Mazur and Wiles [15], the characteristic ideal of $\mathcal{X}_{k_{\infty}}$ is generated by $f_{\chi}(T)$. Hence, we have an isomorphism

$$\mathcal{X}_{k_{\infty}} \simeq \Lambda/(f_{\chi}(T)).$$

Let $\mathbf{Q}_{p,\infty}/\mathbf{Q}_p$ be the cyclotomic \mathbf{Z}_p -extension of the p-adic field \mathbf{Q}_p and $\mathbf{Q}_{p,n}$ be the n-th layer. For any $n \geq 1$, we denote by ζ_{p^n} a primitive p^n -th root of unity such that $\zeta_{p^{n+1}}^p = \zeta_{p^n}$ for all n. Put $\pi_n = N_{\mathbf{Q}_p(\zeta_{p^{n+1}})/\mathbf{Q}_{p,n}}(1 - \zeta_{p^{n+1}})$ where $N_{\mathbf{Q}_p(\zeta_{p^{n+1}})/\mathbf{Q}_{p,n}}$ is the norm map from $\mathbf{Q}_p(\zeta_{p^{n+1}})$ to $\mathbf{Q}_{p,n}$. Let $\pi = (\pi_n)$ be the projective system with respect to the norm maps. It is well-known that the group of the local units $\mathcal{U}_{\mathbf{Q}_{p,\infty}} = \lim_{\leftarrow} \mathcal{U}_{\mathbf{Q}_{p,n}}^1$ is a free $\mathbf{Z}_p[[T]]$ -module of rank 1, and generated by $T\pi$ (where $T = \gamma - 1$ and γ is the fixed generator of Γ).

We take a prime \mathfrak{p} of k lying over p, and fix it. Since p splits in k/\mathbf{Q} , we have $k_{\mathfrak{p}} = \mathbf{Q}_p$, hence by the above remark, $\mathcal{U}_{k_{\infty}}/N_G\mathcal{U}_{k_{\infty}}$ is a free Λ -module of rank 1, and generated by the class of $(T\pi, 1, ..., 1)$ (where we suppose the first component corresponds to \mathfrak{p}). On the other hand, if we identify $\mathcal{X}_{k_{\infty}}$ with a quotient of the projective limit of the idele groups of k_n by class field theory, the class of the idele $(\pi, 1, 1, ...)$ (where we again suppose the first component corresponds to \mathfrak{p}) clearly maps to $\mathbf{c}_{\mathfrak{p}}$ by the natural map $\mathcal{X}_{k_{\infty}} \longrightarrow X_{k_{\infty}}$. Hence, $X_{k_{\infty}}$ can be written as

$$X_{k_{\infty}} \xrightarrow{\simeq} \Lambda/(f_{\chi}(T), Tk(T))$$

where $k(T) \in \Lambda$ corresponds to $\mathbf{c}_{\mathfrak{p}}$. Next, we will see that

(1)
$$\kappa < \infty \iff \text{ the class of } \mathfrak{p}_n \text{ in } (A_{k_n})_G \text{ is nonzero for sufficiently large } n.$$

Let M/\mathbf{Q}_n be the maximal abelian extension which is unramified outside ℓ and whose Galois group has exponent p. Then, by class field theory, $\mathrm{Gal}(M/\mathbf{Q}_n)$ is isomorphic to $(\bigoplus_{v|\ell} \kappa(v)^\times/(\kappa(v)^\times)^p)/\Phi'_n(E_{\mathbf{Q}_n})$, and the prime \mathfrak{p}_n of \mathbf{Q}_n above p splits in M if and only if $\Phi'_n(\pi_n) = 0$ in the above group, namely $\Phi'_n(\pi_n) \in \Phi'_n(E_{\mathbf{Q}_n})$. As we showed in the proof of Lemma 2.1, we have $\Phi'_n(E_{\mathbf{Q}_n}) = T\Phi'_n(E'_{\mathbf{Q}_n}) = T\Phi'_n(\pi_n) > 0$, hence $\Phi'_n(\pi_n) \in \Phi'_n(E_{\mathbf{Q}_n})$ is equivalent to $\Phi'_n(\pi_n) = 0$. So, \mathfrak{p}_n splits in M if and only if $\Phi'_n(\pi_n) = 0$.

On the other hand, M is the maximal subfield of the p-Hilbert class field of k_n such that M/\mathbb{Q}_n is abelian. (Note that the inertia group of a prime above ℓ in $\mathrm{Gal}(M/k_n)$ is cyclic, so M/k_n is unramified everywhere.) We have an isomorphism $(A_{k_n})_G \simeq \mathrm{Gal}(M/k_n)$. Hence, \mathfrak{p}_n splits in M if and only if the class of \mathfrak{p}_n in $(A_{k_n})_G$ is zero. We saw in the last paragraph that this is equivalent to $\Phi'_n(\pi_n) = 0$, hence we obtain the equivalence (1) (recall that the image of π_n in $E'_{\mathbb{Q}_n}/(E'_{\mathbb{Q}_n})^p$ is a generator). For a general number field K, let A_K denote the p-Sylow subgroup of

For a general number field K, let A_K denote the p-Sylow subgroup of the ideal class group of K, and A'_K denote the quotient of A_K by the subgroup generated by the classes of the primes lying over p. Namely, $A'_K = \text{Pic}(O_K[1/p])$.

We assume $\kappa < \infty$. Then, we have $(A'_{k_n})_G \simeq (\mathbf{F}_p)^{\kappa-1}$. In fact, by the above equivalence (1), for sufficiently large n, the class of \mathfrak{p}_n in $(A_{k_n})_G$ is nonzero. Since $\operatorname{Gal}(k_n/k)$ acts trivially on \mathfrak{p}_n , the Λ -submodule $< c(\mathfrak{p}_n) >$ of $(A_{k_n})_G$ generated by $c(\mathfrak{p}_n)$ has order p (note again that $p((A_{k_n})_G) = 0$). Therefore, it follows from $\operatorname{Gal}(M/\mathbf{Q}_n) \simeq (\mathbf{F}_p)^{\kappa+1}$ that we have $(A_{k_n})_G \simeq \operatorname{Gal}(M/k_n) \simeq (\mathbf{F}_p)^{\kappa}$, and $(A'_{k_n})_G \simeq (\mathbf{F}_p)^{\kappa-1}$.

We define

$$X'_{k_{\infty}} = \lim_{\longleftarrow} A'_{k_n}$$

where the projective limit is taken with respect to the norm maps. Since $\mathbf{c}_{\mathfrak{p}}$ corresponds to k(T), we have

$$X'_{k_{\infty}} \xrightarrow{\simeq} \Lambda/(f_{\chi}(T), k(T)).$$

On the other hand, $(A'_{k_n})_G \simeq (\mathbf{F}_p)^{\kappa-1}$ for all sufficiently large n implies $(X'_{k_\infty})_G = X'_{k_\infty}/(\zeta_p - 1)X'_{k_\infty} \simeq (\mathbf{F}_p)^{\kappa-1}$. Since $\kappa - 1 < q - 1 = \deg(f_\chi(T))$, k(T) can be written as $k(T) \equiv uT^{\kappa-1} \pmod{(\zeta_p - 1, T^{\kappa})}$ for some unit $u \in \mathbf{F}_p^{\kappa}$. So, by Weierstrass preparation theorem, we can write k(T) = u(T)h(T) where u(T) is a unit power series and h(T) is a distinguished polynomial of degree $\kappa - 1$. By changing the isomorphism $\Lambda/(f_\chi(T), Tk(T)) \simeq X_{k_\infty}$ suitably, we may assume k(T) is a distinguished polynomial of degree $\kappa - 1$.

Next, suppose that $\kappa = \infty$. By the equivalence (1), the classes of \mathfrak{p}_n in $(A_{k_n})_G$ are zero for all n. Hence, the image of $\mathbf{c}_{\mathfrak{p}}$ is zero in $(X_{k_{\infty}})_G = X_{k_{\infty}}/(\zeta_p-1)X_{k_{\infty}}$. Hence, k(T) can be taken such that ζ_p-1 divides k(T). This completes the proof of Theorem 1.3.

Before proceeding to the proofs of Propositions, we will prepare some fundamental facts.

For a general number field K, we denote by $G_{K,p}$ the Galois group of the maximal extension of K which is unramified outside p over K, and consider the Galois cohomology group

$$H_K^2 = H^2(G_{K,p}, \mathbf{Z}_p(1))$$

where $\mathbf{Z}_p(1) = \lim_{\leftarrow} \mu_{p^n}$ (μ_{p^n} is the group of p^n -th roots of unity). Since H_K^2 is the same as the etale cohomology $H^2(\operatorname{Spec} O_K[1/p]_{et}, \mathbf{Z}_p(1))$, by Kummer sequence we obtain

Lemma 3.2 We have an exact sequence

$$0 \longrightarrow A_K' \longrightarrow H_K^2 \longrightarrow B(O_K[1/p]) \longrightarrow 0$$

where $B(O_K[1/p]) = \lim_{\leftarrow} \operatorname{Br}(O_K[1/p])[p^n] = (\bigoplus_{v|p} \mathbf{Z}_p)^0$ is the Tate module of the Brauer group of $O_K[1/p]$.

Since p is decomposed in k/\mathbf{Q} , and every prime of k over p is totally ramified in k_n/k , $B(O_{k_n}[1/p]) = (\bigoplus_{\mathfrak{p}|p} \mathbf{Z}_p)^0$ is a free R-module of rank 1 for all $n \geq 0$. So by Lemma 3.2 we have an exact sequence

$$0 \longrightarrow A'_{k_n} \longrightarrow H^2_{k_n} \longrightarrow R \longrightarrow 0$$

for all $n \geq 0$ where $(\bigoplus_{\mathfrak{p}\mid p} \mathbf{Z}_p)^0$ was denoted by R. We define $\mathbf{H}_{k_{\infty}}^2$ to be the projective limit of $H_{k_n}^2$ with respect to the corestriction maps. Put $\Gamma_n = \operatorname{Gal}(k_{\infty}/k_n)$. Since the p-cohomological dimension of $G_{k_n,p}$ is 2, the corestriction map induces an isomorphism $(\mathbf{H}_{k_{\infty}}^2)_{\Gamma_n} \simeq H_{k_n}^2$ ([17] Chap.I Prop.18). Taking the projective limits of the above exact sequence, we have an exact sequence

$$0 \longrightarrow X'_{k_{\infty}} \longrightarrow \mathbf{H}^{2}_{k_{\infty}} \longrightarrow R \longrightarrow 0$$

(note that the norm map is surjective on each term). From $(\mathbf{H}_{k_{\infty}}^2)_{\Gamma} \simeq H_k^2 \simeq R$ (note that $A_k' = 0$), we know that $\mathbf{H}_{k_{\infty}}^2$ is generated by one element as a Λ -module. We write $\mathbf{H}_{k_{\infty}}^2 \simeq \Lambda/I$. If we use this isomorphism, $\mathbf{H}_{k_{\infty}}^2 \longrightarrow R$ is induced by $T \mapsto 0$. Further, by Theorem 1.3 we have $X_{k_{\infty}}' \simeq \Lambda/(f_{\chi}(T), k(T))$, hence the above exact sequence implies that $I = (Tf_{\chi}(T), Tk(T))$. Namely, we have

$$\mathbf{H}_{k_{\infty}}^2 \simeq \Lambda/(Tf_{\chi}(T), Tk(T)).$$

We consider the subfield k_1 which is the first layer of k_{∞}/k . From the exact sequence

$$0 \longrightarrow A'_{k_1} \longrightarrow H^2_{k_1} \longrightarrow R \longrightarrow 0,$$

 A'_{k_1} is isomorphic to the kernel of

$$(\mathbf{H}_{k_{\infty}}^2)_{\Gamma_1} = \Lambda/(Tf_{\chi}(T), Tk(T), (1+T)^p - 1) \longrightarrow R.$$

Hence, if we put $\varphi(T) = ((1+T)^p - 1)/T$, we have an isomorphism

(2)
$$A'_{k_1} \simeq \Lambda/(f_{\chi}(T), k(T), \varphi(T)).$$

Suppose that F is a subfield of k_1 such that $F \neq \mathbf{Q}_1$, $F \neq k$, and $[F : \mathbf{Q}] = p$. Then, both p and ℓ ramify in F/\mathbf{Q} . Put $\mathcal{G} = \operatorname{Gal}(k_{\infty}/F)$. Taking \mathcal{G} -coinvariants, we have an exact sequence

$$0 \longrightarrow (X'_{k_{\infty}})_{\mathcal{G}} \longrightarrow (\mathbf{H}^2_{k_{\infty}})_{\mathcal{G}} \longrightarrow R_{\mathcal{G}} \longrightarrow 0.$$

(Recall that in the above exact sequence $R = (\bigoplus_{\mathfrak{p}|p} \mathbf{Z}_p)^0$ on which \mathcal{G} acts naturally. Since p is ramified in F, the \mathcal{G} -invariant part $R^{\mathcal{G}}$ is trivial.) Since $G_{F,p}$ is also of p-cohomological dimension 2, the \mathcal{G} -coinvariant of $\mathbf{H}^2_{k\infty}$ is isomorphic to H^2_F . Since $B(O_F[1/p]) = 0$, we have

$$(\mathbf{H}_{k_{\infty}}^2)_{\mathcal{G}} \simeq H_F^2 \simeq A_F'.$$

It is easy to see $R_{\mathcal{G}} \simeq \mathbf{Z}/p\mathbf{Z}$. Hence, the above exact sequence and the isomorphism $(\mathbf{H}_{k_{\infty}}^2)_{\mathcal{G}} \simeq A_F'$ imply the exact sequence

$$(3) 0 \longrightarrow (X'_{k_{\infty}})_{\mathcal{G}} \longrightarrow A'_{F} \longrightarrow \mathbf{Z}/p\mathbf{Z} \longrightarrow 0.$$

For F, we also need the following. Let \mathfrak{p}_F (resp. \mathcal{L}_F) the prime of F lying over p (resp. ℓ), and $[\mathfrak{p}_F]$ (resp. $[\mathcal{L}_F]$) the class of \mathfrak{p}_F (resp. \mathcal{L}_F) in A_F .

Lemma 3.3 At least either $[\mathfrak{p}_F] \neq 0$ or $[\mathcal{L}_F] \neq 0$.

Proof. We apply Lemma 3.1 to F/\mathbf{Q} . The primes ramified in F/\mathbf{Q} are p and ℓ . By Lemma 3.1 we have an exact sequence

$$H^1(F_{\mathfrak{p}_F}/\mathbf{Q}_p, E_{F_{\mathfrak{p}_F}}) \oplus H^1(F_{\mathcal{L}_F}/\mathbf{Q}_\ell, E_{F_{\mathcal{L}_F}}) \longrightarrow \hat{H}^0(F/\mathbf{Q}, A_F) \longrightarrow \hat{H}^0(F/\mathbf{Q}, E_F).$$

The exact sequence $0 \longrightarrow E_{\mathfrak{p}_F} \longrightarrow F_{\mathfrak{p}_F}^{\times} \longrightarrow \mathbf{Z} \longrightarrow 0$ yields a natural isomorphism $H^1(F_{\mathfrak{p}_F}/\mathbf{Q}_p, E_{F_{\mathfrak{p}_F}}) \simeq \mathbf{Z}/p\mathbf{Z}$ by Hilbert Theorem 90. By the definition of the homomorphisms in Lemma 3.1, $H^1(F_{\mathfrak{p}_F}/\mathbf{Q}_p, E_{F_{\mathfrak{p}_F}}) \longrightarrow \hat{H}^0(F/\mathbf{Q}, A_F)$ is induced by the reciprocity map $F_{\mathfrak{p}_F}^{\times} \longrightarrow D_{\mathfrak{p}_F} \subset A_F$ ($D_{\mathfrak{p}_F}$ is the decomposition group where we identified A_F with the Galois group of the p-Hilbert class field of F), so the image of $1 \in \mathbf{Z}/p\mathbf{Z} \simeq H^1(F_{\mathfrak{p}_F}/\mathbf{Q}_p, E_{F_{\mathfrak{p}_F}})$ in $\hat{H}^0(F/\mathbf{Q}, A_F) = A_F^{\mathrm{Gal}(F/\mathbf{Q})}$ is $[\mathfrak{p}_F]$. Similarly, the image of 1 in $H^1(F_{\mathcal{L}_F}/\mathbf{Q}_\ell, E_{F_F}) \simeq \mathbf{Z}/p\mathbf{Z}$ is $[\mathcal{L}_F]$. Since $\hat{H}^0(F/\mathbf{Q}, E_F) = E_{\mathbf{Q}}/N_{F/\mathbf{Q}}E_F = 0$, the above exact sequence tells us that $A_F^{\mathrm{Gal}(F/\mathbf{Q})}$ is generated by $[\mathfrak{p}_F]$ and $[\mathcal{L}_F]$. As in the proof of Theorem 1.3, we have $(A_F)_{\mathrm{Gal}(F/\mathbf{Q})} = \mathbf{Z}/p\mathbf{Z}$, so $(A_F)^{\mathrm{Gal}(F/\mathbf{Q})}$ is also of order p. Hence, at least one of $[\mathfrak{p}_F]$ and $[\mathcal{L}_F]$ is nonzero in A_F .

Proof of Proposition 1.7. Suppose that $\kappa = 2$. So we may assume $k(T) = T - \alpha$, and $v_R(\alpha) > 0$. Assume further that X_{k_∞} is infinite. Then, we must have $f_{\chi}(\alpha) = 0$, and by the isomorphism (2) we have

$$A'_{k_1} \simeq R/\varphi(\alpha).$$

Recall that $Gal(k_1/k)$ is generated by γ and $Gal(k_1/\mathbf{Q}_1)$ is generated by σ . We suppose that F corresponds to the subgroup $\langle \gamma \sigma^i \rangle$ of $Gal(k_1/\mathbf{Q}) = Gal(k_1/k) \times Gal(k_1/\mathbf{Q}_1)$ for some i such that 0 < i < p. We have

$$(X'_{k_{\infty}})_{\mathcal{G}} = \Lambda/(T - \alpha, (1+T) - \zeta_p^{-i}) = R/(\zeta_p^{-i} - 1 - \alpha).$$

Hence, the exact sequence (3) yields an exact sequence

$$0 \longrightarrow R/(\zeta_p^{-i} - 1 - \alpha) \longrightarrow A_F' \longrightarrow \mathbf{Z}/p\mathbf{Z} \longrightarrow 0.$$

Put $c_F = v_R(\zeta_p^{-i} - 1 - \alpha)$. Since the norm map $X'_{k_\infty} \longrightarrow A'_{k_1}$ is surjective, the image of the norm map $A'_{k_1} \longrightarrow A'_F$ coincides with the image of $(X'_{k_\infty})_{\mathcal{G}} = R/(\zeta_p^{-i} - 1 - \alpha) \longrightarrow A'_F$, hence it is of order p^{c_F} .

We take a prime \mathcal{L} of k_1 lying over ℓ . Since \mathcal{L} is totally ramified in k_1/\mathbf{Q}_1 , σ acts on \mathcal{L} trivially. Writing $[\mathcal{L}]_{A'_{k_1}}$ for the class of \mathcal{L} in A'_{k_1} , we have $(\zeta_p - 1)[\mathcal{L}]_{A'_{k_1}} = 0$. Hence, if we fix an isomorphism

$$A'_{k_1} \simeq R/(\varphi(\alpha)) = R/((\zeta_p - 1)^c)$$

where $c = v_R(\varphi(\alpha))$, $[\mathcal{L}]_{A'_{k_1}}$ corresponds to $a(\zeta_p - 1)^{c-1}$ for some $a \in R$. Since $c = v_R(\varphi(\alpha)) = v_R(\Pi_{j=1}^{p-1}(1 + \alpha - \zeta_p^j))$, we have $c > c_F$. This shows that the norm of $[\mathcal{L}]_{A'_{k_1}}$ in A'_F is trivial. Since \mathcal{L}_F is decomposed in k_1/F , $N_{k_1/F}(\mathcal{L}) = \mathcal{L}_F$ and the class of \mathcal{L}_F in A'_F is zero.

Note that by our assumption $[\mathfrak{p}_F] = 0$ in A_F , we have $A_F = A_F'$. So we have $[\mathcal{L}_F] = [\mathfrak{p}_F] = 0$ in A_F , which contradicts Lemma 3.3. Hence, $X_{k_{\infty}}'$ is finite, and we have $\lambda = 0$. This completes the proof of Proposition 1.7.

For the proof of Proposition 1.8, we need the following.

Proposition 3.4 We assume $\kappa = 2$. Suppose that $\alpha \in R$ is an element with $v_R(\alpha) = 1$. If p^4 does not divide the class numbers of all subfields of k_1 with degree p over \mathbf{Q} , $T - \alpha$ does not divide a generator of the characteristic ideal $\operatorname{char}_{\Lambda}(X_{k_{\infty}})$.

Proof of Proposition 3.4. Assume that $T - \alpha$ divides a generator of the characteristic ideal of $X_{k_{\infty}}$. Then, $X_{k_{\infty}}$ is infinite, and $T - \alpha$ divides both $f_{\chi}(T)$ and k(T). So k(T) which we take to be distinguished should be $k(T) = T - \alpha$ because $\kappa = 2$.

Since $v_R(\alpha) = 1$, there is an integer i such that 0 < i < p and $\alpha/(\zeta_p-1) \equiv -i \pmod{\zeta_p-1}$. Hence, we have $v_R(\alpha-(\zeta_p^{-i}-1)) > 1$. Let F be the subfield of k_1 corresponding to the subgroup $< \gamma \sigma^i >$ as in the proof of Proposition 1.7. Then, the exact sequence (3) yields an exact sequence

$$0 \longrightarrow R/(\zeta_p^{-i}-1-\alpha) \longrightarrow A_F' \longrightarrow \mathbf{Z}/p\mathbf{Z} \longrightarrow 0.$$

By our assumption on i, we have $\#R/(\alpha-(\zeta_p^{-i}-1)) \geq p^2$, hence $\#A_F' \geq p^3$. On the other hand, since p^4 does not divide $\#A_F$, we must have $\#A_F = \#A_F' = p^3$. This shows that the prime \mathfrak{p}_F of F lying over p is principal. This contradicts Proposition 1.7. This completes the proof of Proposition 3.4.

Proof of Proposition 1.8. We may assume $k(T) = T - \alpha$. At first, suppose $v_R(\alpha) \geq 2$, namely $v_R(k(0)) \geq 2$. Since $v_R(f_{\chi}(p)) = v_R(B_{1,\chi\omega^{-1}}) = 2$, it follows from deg $f_{\chi}(T) = q - 1 \geq 2$ and $v_R(p) = p - 1 \geq 2$ that $v_R(f_{\chi}(0)) = 1$

 $v_R(f_\chi(p)) = 2$. Hence, $v_R(k(0)) \ge v_R(f_\chi(0)) = 2$. Since both k(T) and $f_\chi(T)$ are distinguished polynomials and $\deg f_\chi(T) > \deg k(T)$, k(T) does not divide $f_\chi(T)$. Thus, we obtain $\lambda = 0$.

If $v_R(\alpha) < 2$, we have $v_R(\alpha) = 1$. Then, by Proposition 3.4 k(T) does not divide a characteristic power series of $X_{k_{\infty}}$. Hence, we have $\lambda = 0$. This completes the proof.

Proof of Proposition 1.9. Suppose that F corresponds to the subgroup $\langle \gamma \sigma^i \rangle$ as in the proof of Proposition 1.7. Let \mathcal{L}_F (resp. \mathfrak{p}_F) be the prime of F lying over ℓ (resp. p). By our assumption (ii) and Lemma 3.3, \mathfrak{p}_F is not principal. So by our assumption (iii), we have $\#A'_F \leq p^2$. By the exact sequence (3), this implies that $\min(v_R(f_\chi(\zeta_p^{-i}-1)), v_R(k(\zeta_p^{-i}-1))) \leq 1$. We may assume this value is 1.

First, suppose $v_R(f_\chi(\zeta_p^{-i}-1))=1$. Then, $f_\chi(T-(\zeta_p^{-i}-1))$ is an Eisenstein polynomial, so $f_\chi(T)$ is irreducible. Since $\deg k(T)=\kappa-1<\deg f_\chi(T)=q-1$, we get the finiteness of $X_{k_\infty}\simeq \Lambda/(f_\chi(T),Tk(T))$.

Next, suppose $v_R(k(\zeta_p^{-i}-1))=1$. Then, by the same reason, k(T) is irreducible. Assume that X_{k_∞} is infinite. Then, k(T) must divide $f_\chi(T)$, and we have $X'_{k_\infty} \simeq \Lambda/(k(T))$. Put $\varphi(T) = ((1+T)^p-1)/T$ and $\varphi_2(T) = ((1+T)^{p^2}-1)/T$. By the isomorphism (2), we have $A'_{k_1} = \Lambda/(k(T), \varphi(T))$, and by the same method, we have $A'_{k_2} = \Lambda/(k(T), \varphi_2(T))$. The natural map $A'_{k_1} \longrightarrow A'_{k_2}$ corresponds to the multiplication by $\varphi_2(T)/\varphi(T)$. So it is injective because k(T) is irreducible and prime to $\varphi_2(T)$.

Let \mathcal{L}_{k_1} (resp. \mathfrak{p}_{k_1}) be a prime of k_1 lying over ℓ (resp. p). We denote by $[\mathcal{L}_{k_1}]_{A_{k_1}}$ (resp. $[\mathfrak{p}_{k_1}]_{A_{k_1}}$) the class of \mathcal{L}_{k_1} (resp. $[\mathfrak{p}_{k_1}]_{A_{k_1}}$) and by $[\mathcal{L}_{k_1}]_{A'_{k_1}}$ the class of \mathcal{L}_{k_1} in A'_{k_1} . We will show that $[\mathcal{L}_{k_1}]_{A'_{k_1}} \neq 0$.

We denote by $\mathfrak{p}_{F'}$ (resp. $\mathcal{L}_{F'}$) the prime of F' over p (resp. ℓ). Suppose at first $[\mathfrak{p}_{F'}]_{A_{F'}} = 0$. Then, by Lemma 3.3, $[\mathcal{L}_{F'}]_{A_{F'}} \neq 0$ and $[\mathcal{L}_{F'}]_{A'_{F'}} \neq 0$ because $A_{F'} = A'_{F'}$. Since $\mathcal{L}_{F'}$ splits in k_1 , $N_{k_1/F'}([\mathcal{L}_{k_1}]_{A'_{k_1}}) = [\mathcal{L}_{F'}]_{A'_{F'}} \neq 0$ implies $[\mathcal{L}_{k_1}]_{A'_{k_1}} \neq 0$. Next, suppose $[\mathfrak{p}_{F'}]_{A_{F'}} \neq 0$. As we saw before, $A_{F'}$ is cyclic as an R-module. It follows from $[\mathfrak{p}_{F'}]_{A_{F'}} \neq 0$, $[\mathcal{L}_{F'}]_{A_{F'}} \neq 0$, and $(\zeta_p - 1)[\mathfrak{p}_{F'}]_{A_{F'}} = (\zeta_p - 1)[\mathcal{L}_{F'}]_{A_{F'}} = 0$ that we can write $[\mathcal{L}_{F'}]_{A_{F'}} = u[\mathfrak{p}_{F'}]_{A_{F'}}$ for some unit $u \in R^{\times}$. Assume that we can write $[\mathcal{L}_{k_1}]_{A_{k_1}} = a[\mathfrak{p}_{k_1}]_{A_{k_1}}$ for some $a \in \Lambda$. Then, the above implies that a is a unit (note that both $\mathfrak{p}_{F'}$ and $\mathcal{L}_{F'}$ split in k_1/F'). Hence, the Λ -submodule $(\mathfrak{p}_{k_1})_{A_{k_1}} > \mathfrak{p}_{k_1}$ generated by $[\mathfrak{p}_{k_1}]_{A_{k_1}}$ is equal to the Λ -submodule $(\mathfrak{L}_{k_1})_{A_{k_1}} > \mathfrak{p}_{k_1}$ generated by $[\mathfrak{p}_{k_1}]_{A_{k_1}} > \mathfrak{p}_{k_1} > \mathfrak{p}_{k_1}$. This implies $(\mathfrak{p}_{F})_{A_{F}} > \mathfrak{p}_{k_1} > \mathfrak{p}_{k_1} > \mathfrak{p}_{k_1} > \mathfrak{p}_{k_1}$ cannot be written as $[\mathcal{L}_{k_1}]_{A_{k_1}} = a[\mathfrak{p}_{k_1}]_{A_{k_1}}$, namely $[\mathcal{L}_{k_1}]_{A_{k_1}} = \mathfrak{p}_{k_1}]_{A_{k_1}} > \mathfrak{p}_{k_1} > \mathfrak{p}_{k_1}$. This

implies $[\mathcal{L}_{k_1}]_{A'_{k_1}} \neq 0$ in A'_{k_1} .

By Lemma 7 in Ozaki and Yamamoto [16] and $\kappa \leq p$, we know that the image of $[\mathcal{L}_{k_1}]_{A'_{k_1}}$ in A'_{k_2} is zero. This contradicts the injectivity of $A'_{k_1} \longrightarrow A'_{k_2}$. This completes the proof of Proposition 1.9.

Proof of Proposition 1.10. Let F correspond to the subgroup $<\gamma\sigma^i>$ as in the above proof. Since p^4 does not divide $\#A_F$ and the prime of F lying over p is not principal, we have $\#A'_F \leq p^2$, and we may assume $\min(v_R(f_\chi(\zeta_p^{-i}-1)),v_R(k(\zeta_p^{-i}-1)))=1$ as in the proof of Proposition 1.9.

First, suppose $v_R(f_\chi(\zeta_p^{-i}-1))=1$. Then, $f_\chi(T)$ is irreducible. By our assumption $[\mathfrak{p}_F]_{A_F}\neq 0$, we have $[\mathfrak{p}_{k_1}]_{A_{k_1}}\neq 0$. This together with Theorem 1.3 implies that k(T) is nonzero in $\Lambda/(f_\chi(T),Tk(T))$. In particular, $f_\chi(T)$ does not divide k(T). This shows that $X_{k_\infty}\simeq \Lambda/(f_\chi(T),Tk(T))$ is finite.

Next, suppose that $v_R(k(\zeta_p^{-i}-1))=1$. Since ζ_p-1 divides k(T) by Theorem 1.3, k(T) can be written as $k(T)=(\zeta_p-1)u(T)$ for some $u(T)\in \Lambda^{\times}$. By Ferrero-Washington's theorem [1], ζ_p-1 does not divide $f_{\chi}(T)$, so again we obtain the finiteness of $X_{k_{\infty}} \simeq \Lambda/(f_{\chi}(T), Tk(T)) = \Lambda/(f_{\chi}(T), (\zeta_p-1)T)$.

4 Numerical Examples

4.1. We first consider the case p=3 for $\ell<10,000$. By a result of Fukuda and Komatsu [3] together with a result of Ozaki and Yamamoto [16], we already know $\lambda=0$ in this case (Example 4.4 in [3]). In the method of Fukuda and Komatsu [3], the computation of the zeros of $f_{\chi}(T)$ which is associated to the p-adic L-function $L_p(s,\chi)$ plays an essential role. We will see that our conditions can be applied for $\ell<10,000$ except for $\ell=8677$, namely we will see that we can verify $\lambda=0$ without computing $f_{\chi}(T)$ for these ℓ 's.

There are 611 ℓ 's which satisfy $\ell \equiv 1 \pmod{3}$ and $\ell < 10,000$. Among them 589 primes satisfy either $\ell \not\equiv 1 \pmod{9}$, or $3 \not\in (\mathbf{F}_{\ell}^{\times})^3$, or $\kappa = 1$. For these ℓ 's, we know $\lambda = 0$ by Theorem A and Theorem 1 in Ozaki and Yamamoto [16]. For the remaining 22 primes, 10 primes satisfy $v_R(B_{1,\chi\omega^{-1}}) = 1$ (note: $B_{2,\chi}$ is more easily computed because the conductor of χ is smaller than that of $\chi\omega^{-1}$. It is easy to see that $v_R(B_{1,\chi\omega^{-1}}) = 1$ is equivalent to $v_R(f_{\chi}(0)) = 1$ which is equivalent to $v_R(B_{2,\chi}) = 1$, and for them Corollary 3 in [16] can be applied. The remaining primes are

2269,3907,4933,5527,6247,6481,7219,7687,8011,8677,9001,9901.

Ozaki and Yamamoto calculated $f_\chi(T)$ for these 12 primes, and found that $f_\chi(T)$ is irreducible at least for 8 primes, more precisely unless $\ell=2269,6481,7219,8677$. They obtained $\lambda=0$ for these 8 primes by Theorem 2 [16] and some extra argument. For $\ell=2269,6481$, Ozaki and Yamamoto proved $\lambda=0$ by using the argument which is similar to Proposition 1.7, but with additional condition $\ell\equiv 1\pmod{27}$. In conclusion, Ozaki and Yamamoto proved $\lambda=0$ for all $\ell<10,000$ except $\ell=7219,8677$. For many ℓ 's, Fukuda and Komatsu checked $\lambda=0$ by using generalized Ichimura-Sumida criterion [3], and their theorem can be applied for the above remaining 2 primes.

We will study the above 12 primes without computing $f_{\chi}(T)$. First of all, we remark that $\kappa = 1$ is equivalent to the condition

$$\left(\frac{(z^2-1)(z^{-2}-1)}{(z-1)(z^{-1}-1)}\right)^{\frac{\ell-1}{3}} \not\equiv 1 \pmod{\ell}$$

in Theorem 1 in Ozaki and Yamamoto [16] when we take a primitive root g of ℓ , and put $z = g^{(\ell-1)/9}$. Similarly, $\kappa = 2$ is equivalent to the condition

$$\left(\frac{(z^2-1)(z^{-2}-1)}{(z-1)(z^{-1}-1)}\right)^{\frac{\ell-1}{3}} \equiv 1 \pmod{\ell} \text{ and } ((z-1)(z^{-1}-1))^{\frac{\ell-1}{3}} \not\equiv 1 \pmod{\ell}$$

in Theorem 2 in Ozaki and Yamamoto [16]. Since p=3, k_1 has two cubic subfields which are different from \mathbf{Q}_1 and k. Their equations are obtained by the following method. Let (a,b) be a solution of $a^2+27b^2=36\ell$ such that $a,b\in\mathbf{Z}_{>0}$ and $b\not\equiv 0\pmod 3$. There are exactly 2 such solutions. For these 2 solutions (a,b), the equations

$$X^3 - 27\ell X - 9a\ell = 0$$

give two cubic subfields of k_1 which are different from \mathbf{Q}_1 and k (cf. [5]).

We checked the class numbers and the primes lying over 3, using PARI-GP. The conditions of Proposition 1.8 are satisfied for 6 primes

$$\ell = 2269, 4933, 6247, 7687, 9001, 9901$$

among the above 12 primes. (We note again that $B_{2,\chi}$ is more easily computed. From $v_R(B_{1,\chi\omega^{-1}}) = v_R(L_p(0,\chi))$, $v_R(B_{2,\chi}) = v_R(L_p(-1,\chi))$, $\deg f_{\chi}(T) = q-1 \geq 2$ and $v_R(p) = 2$, we know that $v_R(B_{1,\chi\omega^{-1}}) = 2$ is equivalent to $v_R(f_{\chi}(0)) = 2$ which is equivalent to $v_R(B_{2,\chi}) = 2$.) So we conclude $\lambda = 0$ for them.

The conditions of Proposition 1.7 hold for the following 6 primes among the above 12 primes with the subfields F which correspond to the following values of a.

ℓ	2269	4933	5527	6481	7219	9001
a	246	375	435	246	24	462

For each ℓ above, we checked that the other subfield of degree p does not satisfy the conditions of Proposition 1.7. For example, for $\ell=7219$, the subfield corresponding to a=24 satisfies the conditions of Proposition 1.7, but the subfield corresponding to a=429 does not satisfy the conditions of Proposition 1.7.

For $\ell = 3907, 8011$, we have $\kappa = \infty$. Since 27 does not divide $\ell - 1$ for these ℓ , we have q = 3, and $\kappa = \infty$ can be checked by the congruences

$$\left(\frac{(z^2-1)(z^{-2}-1)}{(z-1)(z^{-1}-1)}\right)^{\frac{\ell-1}{3}} \equiv 1 \pmod{\ell} \text{ and } ((z-1)(z^{-1}-1))^{\frac{\ell-1}{3}} \equiv 1 \pmod{\ell}$$

where z is the element in \mathbf{F}_{ℓ} as above. We obtain $\lambda=0$ by applying Proposition 1.10. For each ℓ , two cubic subfields which are different from \mathbf{Q}_1 and k both satisfy the conditions of Proposition 1.10. For example, for $\ell=3907$, the two subfields corresponding to a=192 and a=375 both satisfy the conditions of Proposition 1.10.

Consequently, our criteria could be applied for all primes $\ell < 10,000$ except $\ell = 8677$. Namely, we could verify $\lambda = 0$ without using the computation of $f_{\chi}(T)$ for all $\ell < 10,000$ except $\ell = 8677$.

4.2. Suppose that $\ell \equiv 1 \pmod{p^c}$ and c is very big. Then, the degree of $f_{\chi}(T)$ is $\geq p^{c-1} - 1$ by Kida's formula ([11], [10]), and it is very difficult to calculate the irreducible factors of $f_{\chi}(T)$.

Suppose p=3 and take ℓ which satisfies $\ell < 100,000$ and $\ell \equiv 1 \pmod{p^7}$. Then, either $3 \notin (\mathbf{F}_{\ell}^{\times})^3$ or $\kappa = 1$ is satisfied except for $\ell = 17497$ and 52489. We study these 2 remaining primes by using our Propositions. The conditions of Proposition 1.8 are satisfied for $\ell = 52489$. Proposition 1.7 can be applied both for $\ell = 17497$ and 52489. The conditions are satisfied for the subfield F which corresponds to a = 645 (resp. a = 1374) for $\ell = 17497$ (resp. $\ell = 52489$). (For the value a, see 4.1.)

4.3. As we explained in 4.1, in the case p=3 and $\ell<10,000$, if ℓ satisfies both $\ell\equiv 1\pmod 9$ and $3\in (\mathbf{F}_{\ell}^{\times})^3$, then we have $\kappa=1$, or $\kappa=2$, or $\kappa=\infty$. But theoretically, by Chebotarev's density theorem, κ can be any positive integer.

The smallest ℓ such that $\kappa = 3$ is $\ell = 11719$. (To see this, we have to calculate the map $\Phi'_2 : E'_{\mathbf{Q}_2} \longrightarrow \bigoplus_{v|\ell} \kappa(v)^{\times}/(\kappa(v)^{\times})^p$. Since $E'_{\mathbf{Q}_2}/(E'_{\mathbf{Q}_2})^p$ is generated by the cyclotomic p-unit as we explained in the proof of Lemma 1.1, the computation of dim Coker Φ'_2 is easy.)

For $\ell = 11719$, if we take F to be the subfield corresponding to a = 3 and F' to be the subfield corresponding to a = 564, the conditions of Proposition 1.9 are satisfied. Thus, we get $\lambda = 0$ for $\ell = 11719$.

4.4. Next, we consider the case p=5. The computation in this subsection was done by Masahiro Kato whom we thank very much. For p=5, in the range $\ell < 100,000$, there are 99 ℓ 's which satisfy both $\ell \equiv 1 \pmod{25}$ and $5 \in (\mathbf{F}_{\ell}^{\times})^5$. Among them, 76 primes satisfy $\kappa = 1$, 21 primes satisfy $\kappa = 2$, $\ell = 84551$ satisfies $\kappa = 3$, and $\ell = 59951$ satisfies $\kappa = 4$. For the primes with $\kappa = 1$, we have $\lambda = 0$ by Corollary 1.4. Among the 23 primes with $\kappa \geq 2$, 16 primes satisfy $v_R(B_{1,\chi\omega^{-1}}) = 1$. We have $\lambda = 0$ for these primes by Corollary 1.6. The remaining primes are

7151,7901,21001,38851,41201,67651,84551.

We checked that the conditions of Proposition 1.8 are satisfied for $\ell = 7151$, 7901, 21001, 67651. Consequently, for p = 5 we verified $\lambda = 0$ for all $\ell < 100,000$ except $\ell = 38851, 41201, 84551$.

References

- [1] Ferrero B. and Washington L., The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. Math. 109 (1979), 377-395.
- [2] Fukuda, T. and Komatsu, K., On Iwasawa λ_3 -invariants of cyclic cubic fields of prime conductor, Math. Comp. 70 (2001), no. 236, 1707-1712.
- [3] Fukuda, T. and Komatsu, K., Ichimura-Sumida criterion for Iwasawa λ-invariants, Proc. Japan Acad. 76 A (2000), 111-115.
- [4] Fukuda, T., Komatsu, K., Ozaki, M., and Taya H., On Iwasawa λ_p -invariants of relative real cyclic extensions of degree p, Tokyo J. Math. 20 (1997), 475-480.
- [5] Gras, Marie Nicole, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de Q, J. Reine Angew. Math. 277 (1975), 89-116.
- [6] Greenberg, R., On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.

- [7] Ichimura, H. and Sumida, H., On the Iwasawa invariants of certain real abelian fields II, Inter. J. Math. 7 (1996), 721-744.
- [8] Iwasawa, K., A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
- [9] Iwasawa, K., On \mathbf{Z}_{ℓ} -extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
- [10] Iwasawa, K., Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Math. J. 33 (1981), 263-288.
- [11] Kida, Y., ℓ-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528.
- [12] Komatsu, K., On the \mathbb{Z}_3 -extension of a certain cubic cyclic field, Proc. Japan. Acad. 74 A (1998), 165-166.
- [13] Kraft, J.S. and Schoof, R., Computing Iwasawa modules of real quadratic number fields, Compos. Math. 97 (1995), 135-155.
- [14] Kurihara, M., On the ideal class groups of the maximal real subfields of number fields with all roots of unity, Journal European Math. Soc. 1 (1999), 35-49.
- [15] Mazur, B. and Wiles, A., Class fields of abelian extensions of Q, Invent. math. 76 (1984), 179-330.
- [16] Ozaki, M. and Yamamoto, G., Iwasawa λ_3 -invariants of certain cubic fields, Acta Arith. 97 (2001), no. 4, 387-398.
- [17] Serre, J.-P., Cohomologie galoisienne, Lecture Notes in Math. 5, Springer-Verlag (1964).
- [18] Tsuji, T., On the Iwasawa λ -invariants of real abelian fields, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3699-3714.
- [19] Washington, L., *Introduction to cyclotomic fields*, Graduate Texts in Math. 83, Springer-Verlag (1982).

Department of Mathematics, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan m-kuri@comp.metro-u.ac.jp