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Iwasawa theory and Fitting ideals

By Masato Kurihara at Tokyo

Abstract. By studying the Fitting ideals of the minus parts of the ideal class
groups of CM fields, we give a more precise relationship than the usual main conjec-
ture between the analytic side and the algebraic side. In particular, for the cyclotomic Z,-
extension F,, of an abelian field F, we determine the initial Fitting ideal of the minus part
of the Galois group of the maximal unramified abelian pro-p-extension of F,, over F,, as
a Z,[|Gal(F,/Q)]]-module. We also study the Fitting ideals of the Selmer groups of an
elliptic curve and certain Galois cohomology groups.

0. Introduction

Iwasawa theory studies a relationship between arithmetic objects and special
values of the zeta functions. Their relationship is usually stated as a main conjecture which
claims that the p-adic L-function defined p-adic analytically gives a characteristic power
series of the arithmetic object. In this paper, we show that we can get more information
on the arithmetic object than the characteristic power series by studying p-adic analytic
zeta functions, namely p-adic measures on the Galois groups of abelian extensions of the
ground field.

Our main tools are Fitting ideals (for the definition, cf. 1.1). In this paper, first of all,
we study the initial Fitting ideals of ideal class groups. Let F/Q be an imaginary abelian
extension of finite degree, and Clp the ideal class group of F. In this paper, we neglect the
2-primary part and only consider Cl. = Clr ® Z' where Z' = 7Z[1/2]. We regard CI}. as
a 7'|Gal(F/Q)]-module. Note that every Z'[Gal(F/Q)]-module M is decomposed into
M = M"@® M~ where M" (resp. M~) means the part on which the complex conjugation
acts as 1 (resp. —1). We will study the minus part of the initial Fitting ideal

Fitty 7/Gar/a)(Cly)” = Fitty 716ar/e) ((Clp)7) < Z'[Gal(F/Q)]".

In general, for an R-module M, the Fitting ideals Fitt; x(M) give information on
the structure of the R-module M (cf. 1.1). In §2 we will define the Stickelberger ideal
Op /o < Z'[Gal(F/Q)], which is essentially generated by the Stickelberger elements of abe-
lian fields. (For a cyclotomic field F = Q(u,,), our O g coincides with Sinnott’s Stick-
elberger ideal [39], but for an abelian field our ideal is slightly different from Sinnott’s
Stickelberger ideal [40], in general.) We first propose
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Conjecture 0.1. FittO,Z’[Gal(F/@)KCI}/?)i = ;/@

Remark 0.2. (1) The left hand side of Conjecture 0.1 is an algebraic object and the
right hand side is an analytic object (in the sense that the Stickelberger elements are related
to the zeta functions). So this conjecture gives a relationship between the algebraic side
and the analytic side. Conjecture 0.1’s for all n-th layers of the cyclotomic Z,-extension
F, /F formally imply the usual Iwasawa main conjecture for F,, and an odd Dirichlet
character (for an odd prime p). We will also see that this conjecture contains more infor-
mation than the usual Iwasawa main conjecture, so this is a refinement of the usual Iwa-
sawa main conjecture.

(2) Stickelberger’s theorem implies that ©pjq = Anng/Gayr/a)(Clr)  where
Anng/icarya)(Cly) is the annihilator of Z'[Gal(F/Q)]-module CIy. In general, the Fit-
ting ideal is contained in the annihilator, so the above conjecture may also be regarded as a
refinement of Stickelberger’s theorem for the minus part of the ideal class groups.

(3) The minus component C/; is usually defined to be the cokernel of the natural
map Clp+ — Clp where F* is the maximal real subfield of F. Mazur and Wiles in [26]
posed the problem to determine the initial Fitting ideal Fitty, 7(Gair/)(ClF) of Clp com-
pletely. If Conjecture 0.1 is true, it would give an answer to their problem except 2-primary
component because (Fitto ziGai(r/0)(Clr) ® Z') " = Fitty z/Gar/a)(ClE) -

(4) After the first version of this paper was circulated, I was informed of several
people’s works on the Fitting ideals of ideal class groups and some cohomology groups. I
would like to thank heartily D. Burns, C. Greither, T. Nguyen Quang Do, C. Popescu, J.
Ritter, V. Snaith, and A. Weiss for giving me some comments. In [13], Greither determined
the Fitting ideal of CI; under the assumption that F is ““admissible” in the sense of [13].
This condition “admissibility”” was improved in [14] to “‘niceness”. For a CM field F over a
totally real field k such that F/k is finite abelian and ‘“nice” in the sense of [14], Greither
determined the Fitting ideal of Cl}. (by using the Stickelberger element of F). For example,
Q(pt,n)/Q (with some prime p) is nice, and Greither’s result in [14] says that Conjecture 0.1
is true for F = Q(u,). A key point is that if F/k is nice, the Fitting ideal of (Clr ® Z,)"
over Z,|Gal(F/Q)] is locally principal for all odd p (cf. also Schoof [35]). But in Conjecture
0.1, we are dealing with general F, and one of our difficulties lies in treating the Fitting ideal
which is not principal. (In §8 we need essentially the general case to investigate the higher
Fitting ideals.) For the Fitting ideals of class groups of real abelian fields, see also Cor-
nacchia and Greither [§]. Ritter and Weiss established a refinement of the Iwasawa main
conjecture from a different point of view (cf. Remark 0.11 (2)).

Fitting ideals are elementary objects, and our conjecture has the advantage to get
information on ideal class groups more directly than other “main conjectures” which are
formulated by using some techniques of homological algebra (for example, equivariant
Tamagawa Number conjecture cf. [18] and [1]). It would be interesting to find beautiful
relations between natural objects rather than modifications of the objects. (We also remark
that Burns and Greither [2] recently determined the Fitting ideal of certain cohomology
groups, using the equivariant Tamagawa Number conjecture proved in [1].)

Note that the ideal Fitty ;/Ga(r/0)(Clr)" is determined if we determine the ideals
Fitto_’Z/[Gal(F/@)ﬁCI;;v)i ® Zp = FittO,Zl,[Gal(F/@)](ClF ® Zp)i < Zp[Gal(F/@)]f for all odd
prime numbers p. So Conjecture 0.1 is equivalent to the following Conjecture 0.3 for all
odd p.
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Conjecture 0.3. Let p be an odd prime. Then we have

Fitto, z,(Gai(r/0)) (ClF ® Z,)” = (Opj0 ® Z,)".

In several cases we can verify this conjecture easily. For example, suppose that p does
not divide the class number of F. Then, Conjecture 0.3 is trivial because both sides of the
formula are equal to Z,[Gal(F/Q)]. (For the right hand side, this follows from the analytic
class number formula, cf. [39], [40].)

Next, consider the case that the degree [F : Q] is prime to p. Then, Z,[Gal(F/Q)] is
a product of discrete valuation rings, and the conjecture just claims that every component
of the ideal class group has the right order. This was proved by Mazur and Wiles [26], §10,
Theorem 2 in Chap. 1 as a corollary of the Iwasawa main conjecture, so Conjecture 0.3
holds in this case.

Let us call the case p | [F : Q] “non-trivial” case. We proceed to the non-trivial cases.

Theorem 0.4. Assume that no prime of F* above p splits in F/F*. Then Conjecture
0.3 holds.

Theorem 0.5. Suppose that K is an abelian field such that the degree [K : Q)] is prime
to p, and K, is the n-th layer of the cyclotomic 7,-extension K., /K for some n > 0. Then
Conjecture 0.3 holds for F = K,,.

Theorem 0.6. Suppose that p is tamely ramified in F/Q, and F does not contain a
primitive p-th root of unity. Then Conjecture 0.3 holds.

Combining Theorems 0.5 and 0.6, we obtain

Corollary 0.7. Suppose that K/Q is a finite abelian extension such that every odd
prime dividing [K : Q)| is unramified in K/Q. We take an odd prime p which does not divide
(K : Q]. Then, for n =z 0, Conjecture 0.1 is true for F = K ().

This corollary is a generalization of a result of Greither that Conjecture 0.1 is true for
F= @(Iup”)‘

These theorems are obtained by consideration of cyclotomic Z,-extensions. We fix an
odd prime number p, and for a general number field F we denote by F,, /F the cyclotomic
Z,-extension. We consider the p-primary component Af, of Clg, for the n-th layer F,, and
define

Xp, = lim Ap,
where the projective limit is taken with respect to the norm maps.

Let k be a totally real number field, and F be a CM field such that F/k is a finite
abelian extension. We regard X, as a Z,[[Gal(F,, /k)]]-module and study its Fitting ideal.
We assume F' satisfies the conditions in the subsection 3.2 in §3, namely the existence of the
auxiliary field F’ as in 3.2 for F and the Leopoldt conjecture for k. In §3, we will define the
Stickelberger ideal ® /¢ of Z,[[Gal(F, /k)]].
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Conjecture 0.8. For F satisfying the conditions in 3.2, we have

Fitto, 7, (Gair, /o)) (X))~ = (O, ji) -

Theorem 0.9. For F satisfying the conditions in 3.2, we assume that the Iwasawa u
invariant of F,, vanishes, namely X, is a finitely generated Z,-module. Then, Conjecture 0.8
is true.

If kK = Q, the conditions in 3.2 are satisfied (F' always exists for F), hence, from
Theorem 0.9 we obtain (we give the proof in §6)

Corollary 0.10.  For any finite abelian extension F /Q and any odd p, we have
Fitty, 7,(Gai(r, 0 (XF.)” = OF, jq-

Remark 0.11. (1) The Leopoldt conjecture is needed only for studying the
Teichmiiller character component of Xz, in the proof of Theorem 0.9 (more precisely, see
Remark 6.1 in §6). In this paper, our interest is mainly in the abelian fields over @, and we
assumed in Conjecture 0.8 and Theorem 0.9 the strong conditions in 3.2. In our forth-
coming paper [24], we study general CM fields without assuming the existence of F’ (but
study the dual of the ideal class groups). In a very recent preprint [15], Greither studied the
Fitting ideals of the Iwasawa modules of CM fields satisfying a weak assumption without
assuming the existence of F’.

(2) Theorem 0.9 may also be regarded as a refinement of the usual Iwasawa main
conjecture (cf. Remark 3.6). We remark that Ritter and Weiss also obtained a different re-
finement of the usual Iwasawa main conjecture, which they call “equivariant Iwasawa
theory” [30], [31]. An essential difference is that they consider the plus part 2§ of the
Galois group of the maximal abelian pro-p-extension of F,, which is unramified outside S
over F,, where S is a set of primes which contains ramifying primes in F,, /k. On the other
hand, our interest is in Xz, which is the Galois group of the maximal unramified abelian
pro-p-extension of F,,. Nguyen Quang Do informed me that he recently succeeded to
compute the Fitting ideal of a certain module related to 2 by using the result of Ritter
and Weiss [27].

(3) C. Popescu found an example of a finite abelian extension of function fields such
that the Stickelberger element (times an annihilator of the group of roots of unity) does not
belong to the Fitting ideal of the class group [29]. For cyclotomic Z,-extensions of number
fields, we can also construct a finite abelian field F/k such that the Stickelberger element of
F,, (times an annihilator of the group of roots of unity) does not belong to the Fitting ideal
of Xp, if we remove the assumption in Conjecture 0.8 (if F.,/k,, is wildly ramified at a
prime above p). We hope to come back to this point in our forthcoming paper.

These results on the initial Fitting ideals yield information on the higher Fitting
ideals. In §8 we study the higher Fitting ideals of ideal class groups. From the Stickelberger
elements we can define some elements J;, __; (x) which we will show belong to the higher
Fitting ideal (Theorem 8.1). We propose Conjecture 8.2 which claims that under certain
hypotheses, the higher Fitting ideals of X; would be generated by the Stickelberger ideal
and these elements o;, _; (x). These elements have relation with the argument of the Euler
system for number fields of finite degree. For example, for F = Q(u,) Rubin and Kolyva-
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gin determined the structure of Ad( ) by using the Euler system of Gauss sums [32], and if
P

we state their theorem by using Fitting ideals, it says that the higher Fitting ideals of Ad( )
are generated by the Stickelberger ideal and the elements 6;  (x). In Theorem 8.4, we
prove Conjecture 8.2 for the 1-st Fitting ideal Fitty, 7, Gai(r, /o)) (XF, ). The argument of this
section will be used in [24] to determine the structure of the ideal class groups of certain
CM fields.

In §9 we study the case 4 =2. More precisely, for an odd Dirichlet char-
acter y of Gal(F/Q), we consider the y-quotient X (cf. 1.3) which we assume to be a free
Z,[Image y]-module of rank 2. Then, we show that the isomorphism class of X, 5; as a
Z,[x)[|Gal(F, /F)]-module is determined completely by the Stickelberger elements, by
using the initial Fitting ideal and the 1-st Fitting ideal (see the explanation after Corollary
9.3). This also means that the isomorphism class can be determined easily by numerical
computation.

Our method can be applied for more general arithmetic objects. In §10 we study
the Selmer group of an elliptic curve. For an elliptic curve E defined over @, Mazur and
Tate [25] defined the modular element Hf for an abelian field F. They conjectured the
modular element is in the Fitting ideal of the Pontrjagin dual of the Selmer group ([25],
Conjecture 3). We take a prime p at which E has good ordinary reduction, and consider the
Pontrjagin dual Sel(E/F,,)" of the p-primary part of the Selmer group over the cyclotomic
Z,-extension F,,. We define an ideal O, z of Z,[[Gal(F,,/Q)]] which is essentially gen-
erated by the modular elements. We conjecture that it is equal to the Fitting ideal of
Sel(E/F,,)" under certain hypotheses (Conjecture 10.1). Using Kato’s theorem [19], we
will show ©p, £ is in the Fitting ideal of Sel(E/F,)" (see Theorem 10.2 and Corollary
10.3). Theorem 10.2 implies some results on the higher Fitting ideals (cf. Corollary 10.4
and Remark 10.5) which are similar to Theorem 8.1.

Even if E has supersingular reduction at p, we conjecture that the Fitting ideal
of Sel(E/F)’ is essentially generated by the modular elements (cf. [23], Conjecture 0.3).
This is related to the asymptotic behaviour of the order of the p-primary torsion part of
Sel(E/F,)” asn — 0.

In §12, for a totally real number field F and a positive even integer r, we consider
the etale cohomology group H?(Of[1/p], Z,(r)) (which is isomorphic to H?*(Gr.p, Z,(r))
where Gr ) is the Galois group of the maximal extension of F unramified outside p over F).
We will show under a certain assumption that the twisted Stickelberger elements are not
only in the annihilator of the cohomology group, but also in its Fitting ideal. (By a well-
known and easily proved fact, the Fitting ideal is in the annihilator, in general.) If F/Q is a
finite abelian extension and F' is real, we will determine Fittz Gai(r/a) (H 2(0r[1/p), Zp(r))
completely. We will show that it is essentially generated by twisted Stickelberger
elements (Corollary 12.4). In particular, we will show an element S,(b) € Z|Gal(F/Q)]
defined by Coates and Sinnott [5] is in the Fitting ideal of H*(Of[l1/p], Z,(r)) (Corollary
12.5). This is a refinement of Conjecture 1 of Coates and Sinnott [5]. More generally,
for a totally real number field F and a subfield k such that F/k is abelian and sat-
isfies the conditions in the subsection 3.2, we will define the twisted Stickelberger ideal
(©F, (1 — r))(p ) Z,||Gal(F, /k)]] for the cyclotomic Z,-extension F,,, and will show
that it is equal to the Fitting ideal of H*(Op, [1/p], Z,(r)) = lim H?(Op,[1/p], Z,(r)) under
certain hypotheses (see Theorem 12.2 and Corollary 12.3).
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For the Fitting ideals of cohomology groups, many results have been obtained
by various authors. Cornacchia and Ostver determined in [7] the Fitting ideal of
H?*(Or[1/p),Z,(r)) for F with prime power conductor, and proved a refinement of Coates
and Sinnott conjecture for such a special F. V. Snaith [41] recently proved an interesting
relation between the Fitting ideal of H?(OF[1/S],Z,(r)) and the twisted Stickelberger ele-
ments where S is a set of primes which contains ramifying primes in F' and primes above
p, and Op[1/S] denotes the ring of S-integers. Snaith’s approach is completely different
from ours, and interesting. After that, Burns and Greither proved in [2] a very beautiful
result, using the equivariant Tamagawa number conjecture (cf. [1]). Their result is more
precise than the above relation by Snaith. Especially, they determined the Fitting ideal
of H?(OF[1/S], Z,(r)) completely. Their result also implies Corollary 12.5 in the case F/Q
in cyclic by a different method from that in this paper. An essential difference is that we are
dealing with the Fitting ideal of H?(Of[1/p], Z,(r)) directly, which is generated by several
(twisted) Stickelberger elements not only of F but also of some abelian fields (cf. Theorem
12.2 and Corollary 12.4), while Burns and Greither studied the Fitting ideal of
H?*(OF[1/S],Z,(r)) which they showed is generated by the (twisted) Stickelberger element
of F (times the annihilators of H'). Nguyen Quang Do also announced to compute the
Fitting ideal of H?(OF[1/S],Z,(r)) recently [27], using the result of Ritter and Weiss.

I would like to express my sincere gratitude to late Professor Iwasawa for his interest
in this work. A part of this work was done during my stay in Harvard University in 1992. 1
would like to thank B. Mazur heartily for valuable discussion. I would also like to thank
J. Coates heartily for giving me a comment on the Stickelberger ideal of Iwasawa and
Sinnott. I also thank very much D. Burns, C. Greither, T. Nguyen Quang Do, C. Popescu,
J. Ritter, V. Snaith, and A. Weiss who gave me some information and helpful comments
after the first version of this paper was circulated. I especially thank C. Greither for sending
me his recent preprint [2] with Burns, and also for his paper [14] from which I learned the
argument avoiding the trivial zeros.

Notation. For an abelian group A4 and an integer n, A[n| (resp. A/n) denotes the
kernel (resp. cokernel) of the multiplication by n. For a positive integer n, u, denotes the
group of all n-th roots of unity. For a number field or a local field F, Or denotes the ring
of integers. For a group G and a G-module M, we denote by M ¢ the G-invariant part of
M (the maximal subgroup of M on which G acts trivially), and by M the G-coinvariant
of M (the maximal quotient of M on which G acts trivially).

1. Preliminaries
1.1. For a commutative ring R and an R-module M such that
Rm i) Rl’l N M N 0

is an exact sequence of R-modules (where m and n are positive integers), Fitting ideals are
defined as follows. For an integer i = 0 the i-th Fitting ideal of M is defined to be the ideal
of R generated by all (n — i) x (n — i) minors of the matrix corresponding to f. (If i = n, it
is defined to be R.) This definition depends only on M and does not depend on the choice
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of the above exact sequence. We denote the i-th Fitting ideal of M over R by Fitt; z(M).
So we have a sequence of ideals

Fittg, (M) < Fitty g(M) < --- < Fitt, g(M) = Fitt, . g(M) =--- = R.

These ideals reflect the structure of M as an R-module. For example, assume that R
is a principal ideal domain and M is a finitely generated torsion R-module. Suppose

M ~R/(a))® - - ®R/(a,)
with (a1) o (a2) o --- 2 (a,). Then we have Fitt; (M) = (a;-...-a,—;). So determin-
ing the Fitting ideals of M is equivalent to determining the structure of M in this case.
Another example is A = R[[T']] where R is a complete discrete valuation ring. Let M be a
finitely generated torsion A-module such that M does not contain a nonzero A-submodule
with finite length as an R-module. (For example, suppose M is free of finite rank as an R-

module.) Then, Fitty (M) is equal to the characteristic ideal of M, namely the ideal gen-
erated by a characteristic power series (cf. [26], Appendix).

1.2. Let k be a base field. For a finite abelian extension F/k and an inter-
mediate field M such that k <« M < F, we consider the canonical homomorphism
Gal(F /k) — Gal(M /k) defined by ¢ +— o). For a ring R, we denote by

cr/m - R[Gal(F /k)] — R[Gal(M /k)]
the induced homomorphism on the group rings. In this situation,

Ve RIGal(M k)] — RGal(F/k)
denotes the homomorphism defined by

og— > T

crym(v)=0

for o € Gal(M /k) where 7 ranges over elements of Gal(F /k) such that cx/y (1) = 0. (cr/m
(resp. ve/ar) is sometimes called the restriction (resp. corestriction) map.)

1.3. Let G be a finite abelian group, and p be a prime number. We consider a (p-
adic) character (homomorphism)

1:G— Q"
We define Z,[y] = Z,[Image(y)], and define Z,[x] g to be the Z,[G]-module which is Z,y]

as a Z,-module, and on which G acts via y, namely ¢ - x = y(o)xforce Gand x € Z, [;{](@.
For any Z,[G]-module M, we define the y-quotient of M by

MG =M ®z,6 2,6

We simply write M* for M IG in the case no confusion arises. For an element x of M, the
image of x ® 1 in M~Z is denoted by x~.
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Suppose that G is an abelian group such that G = H x H', and M is a Z,[G]-module.
For a character y of H, we often regard M@) as a Z,[y|[H']-module. If we regard y as a
character of G, M(X@ is also defined, but it is not equal to M. (XH).

1.4. Suppose that A is a finite abelian group whose order is prime to p. Then, the
group ring Z,[A] is semi-local, and isomorphic to a product of discrete valuation rings.
More explicitly, it is described as follows. Let A be the group of ©,*-valued characters of
A. We say two characters y; and y, are Q,-conjugate if oy; = x, for some ¢ € Gal(Q,/Q,).
We consider this equivalence relation on A. Then,

Zy[A] ~ @ Zp[%](A)

where the sum is taken over the equivalence classes of A, and we choose a character y from
each equivalence class.

Let G be a finite abelian group. We write G = A x P where P is a p-group and the
order of A is prime to p. By using the above decomposition of Z,[A], we have

2,[G] = Z,[A][P] ~ ? Zp[x) a1

2. Stickelberger ideals

In this section, we consider the analytic side. We study the Stickelberger elements,
and define the Stickelberger ideal for a certain CM field.

Let k be a totally real number field, and F/k be a finite abelian extension. We define
in the usual way the partial zeta function for o € Gal(F/k) by

{s,0)= > N(a)”

(a,F/k)=c

for Re(s) > 1 where the sum is taken over integral ideals a of k which are prime to the
conductor ideal f . such that the Artin symbol (a, F'/k) is equal to o (N(a) is the norm of
a). The partial zeta functions are meromorphically continued to the whole complex plane,
and holomorphic except s = 1. We define

Op/(s) = > (s, o) L.
oeGal(F/k)

So for s € C\{1}, Op i (s) € C[Gal(F /k)] can be defined. We have

Or(s) = TI (1 - (p;lN(v)f‘v)*l for Re(s) > 1
A Tr/k

where v ranges over prime ideals of k& which are prime to f ., and ¢, is the Frobenius at v
in Gal(F/k) (Tate [45], Proposition 1.6, p. 86). By Klingen and Siegel, we know that
Or/k(0) is in Q[Gal(F /k)]. We simply write 0 for 0, (0).

By the Euler product of 0 as above, we have (cf. Tate [45], p. 86)
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Lemma 2.1.  Assume that F/k is a finite abelian extension and M is a field such that
k < M < F. We denote by Sg (resp. Syr) the set of finite primes of k ramifying in F [k (resp.
M/k). Let
cr/m - Q[Gal(F/k)] — Q[Gal(M /k)]

denote the natural homomorphism. Then we have

crp(@r) =TT (1=9."))0n

TJESF\SM
where ¢, is the Frobenius of v in Gal(M /k).
Next, we define the Stickelberger ideal under a certain hypothesis. Let 4,..., %,

be all finite primes of k ramifying in F/k. We denote by Iy the inertia subgroup of %;
in Gal(F/k). We assume that

(A) Gal(F/k) =14 x --- x Ig.
A typical example is k = Q and F = Q(g,,). In fact, when we write m = /" - ... -/, we

have
Gal(Q(u,,)/Q) = (Z/mZ)* = (Z/(0'2)" x - x (Z/47)".
We define a set #7; of certain subgroups of Gal(F /k) by
Hry = {Hy x -~ x H,| H;is a subgroup of Ig, for all i such that 1 <7 <r}.
We also define
M = {M |k = M = F, M is the fixed field of some H € #%}.
For an intermediate field M of F/k, let
e+ QIGal(F k)] — Q[Gal(M k)]
and
vy + QGal(M /)] — Q[Gal(F/k)
be as in 1.2. In this paper, we neglect the 2-primary component of ideal class groups.

We put 7' = 7[1/2]. We define a Z'[Gal(F/k)]-module ©, in Q[Gal(F/k)] to be the
Z'|Gal(F /k)]-module generated by vy (0a) for all M € Mg, namely

Op . = {vryu(Om) | M € My}

We remark we can check that for any intermediate field M of F/k, v y(0p) is in 08 Jkes
though we do not use this fact in this paper.
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We define our Stickelberger ideal by
Opjk = O} N Z'[Gal(F [k)).

Suppose M € .#ri. Then, M also satisfies the condition (A), and @, /i and @y are
defined.

Lemma 2.2. For M € M i, we have

crm(OF k) < Onpie and  vp/p(Onr ) < Op .

Proof. By the definition of @/, and @, it is enough to show

CF/M(GI/?/k) < 1/\4/k

and

VF/M(®1/V1/1¢) = 1/V/k'

The first inclusion follows from Lemma 2.1, and the second inclusion follows from the
definition of @ Ik

Next, we consider a field F which does not necessarily satisfy the assumption (A).
Instead of (A), we assume that there is a finite abelian extension F'/k such that F < F', F’
satisfies (A), and that F’/F is unramified at all finite primes. If ¥ = Q, for any abelian field
F of finite degree, such F’ exists uniquely for F by the next lemma. In this situation, we
define the Stickelberger ideal O, by

O/ = cpryr(OF k).

Lemma 2.3. Let F/Q be a finite abelian extension. Then, there exists uniquely an
abelian extension F'/Q such that F < F', F'/F is unramified at all finite primes, and that
F'/Q satisfies the condition (A).

Proof. This seems to be well known, for example, by genus theory, but we will
give here a proof. Let m be the conductor of F, and m =/ -...-/% be its prime
decomposition. We denote by I, the inertia group of /; in Gal(Q(y,,)/Q). We have
Gal(Q(u,,)/Q) =1, x -+~ x I. Let v; be a prime of F lying over /. We consider the
extension @(u,,)/F, and denote by 1,, the inertia group of v; in Gal(Q(g,,)/F). Since F/Q
and Q(g,,)/Q are abelian, 7, does not depend on the choice of v; but only on ¢;. Consider
the subgroup H = I, x - - x I, of Gal(Q(,,)/Q) and the subfield F’ which is fixed by H.
Clearly, F < F’ and F’'/F is unramified. Further, we have

Gal(F’/@) = 1/1 /Ivl X - X I/r/lyr,
so F'/Q satisfies the condition (A).

Next, we show the uniqueness. Suppose that F” also satisfies the
conditions. Put F = F'F”. Since F/F' is unramified, the inertia group I,(F/Q)
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of ¢4 in Gal(F/Q) is isomorphic to the inertia group of /4 in Gal(F'/Q). Put
G =1,(F/Q) x --- x I (F/Q) = Gal(F/Q). The natural map Gal(F/Q) — Gal(F’/Q)
induces an isomorphism % = Gal(F'/Q). On the other hand, @ has no unramified
extension, so we must have ¥ = Gal(F/Q). This shows that F = F’. Similarly, we have

F=F" soF"=F'

Suppose further that F is a CM field. We have the usual decomposi-
tion Z'[Gal(F/k)] = Z'|Gal(F/k)|" ® Z'[Gal(F/k)]” where Z'[Gal(F/k)]* is the +-
eigenspace of the complex conjugation. Any Z'[Gal(F /k)]-module M is decomposed into
M = M* @ M~ by the above decomposition of Z'[Gal(F/k)]. In this paper, we are inter-
ested in (@) in Z'[Gal(F/k)]".

Remark 2.4. For a finite abelian extension F/Q, Sinnott defined the Stickelberger
ideal S ([39], [40]) which is an ideal of Z[Gal(F/Q)]. If F/Q satisfies the condition (A), our
(®F)q)~ coincides with (S ® Z')™ (cf. [39], Proposition 2.1 and [40], Theorem 5.4). So for
example in the case F = Q(u,,), our O g is obtained from Sinnott’s ideal. But for a gen-
eral abelian field F, our O /g slightly differs from the ideal obtained from the Sinnott’s
ideal in [40] (cf. [40], Theorem 5.4).

In the rest of this section, we fix an odd prime number p, and assume F/k satisfies
the condition (A). Since O sk is a free Z'-module of finite rank, the following lemma is
immediate.

Lemma 2.5. In Q,[Gal(F/k)], we have
(®Il7/k ® Zp) (@ Zp[Gal(F/k)] = ®F/k ® Zp.

We consider a character y:Gal(F/k) — @Q,“. We denote by F, the subfield
fixed by the kernel of y in F, and by Z,[y] (resp. Q,(x)) the ring generated by

L

the image of y over Z, (resp. Q,). We extend y to the ring homomorphism
Q,[Gal(F/k)] — Q,[Gal(F,/k)] — Q,(x) which we also denote by y.

Lemma 2.6. (1) x(© ® Z,) is contained in Z,(y]0f, where 0f is the image of O,
by the map . ‘ '

(2) Let Sr (resp. Sk,) be the set of finite primes of k ramifying in F [k (resp. F,/k). We
assume at least one of the following conditions.

(i) Sr = Sk,
(ii) [F : k] is prime to p.
Then, we have X(®1/V/k ®7Z,) =12, [X]gl”{;/

Proof. (1) Let M be a field in .#F ;. Suppose that M does not contain F,. Then
Ker y does not contain Gal(F /M), and we have x(vru(x)) = 0 for any x € Q,[Gal(M /k)]

because x(Nr/y) =0 where Npjy = >. 0. So it is enough to consider M € ./
oeGal(F/M) )
such that F, = M. For such M, it is clear that y(vp/y0y) € Z, [Imagex]%y by Lemma 2.1.
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(2) We first assume (i). Then, cg/r, (0r) = Or, by Lemma 2.1, so we get the conclu-
sion. Next, we assume (ii). Let M € ./, be a field such that F, = M and Sy = SF, (Su
is the set of primes of k ramifying in M /k). Then, we have )((VF/M(QM)) [F : M]@’y.
our assumption, [F : M| is prime to p. So we get the conclusion. ”

3. Stickelberger ideals—cyclotomic Z,-extensions

In this section, we fix an odd prime number p, and define the Stickelberger ideals for
cyclotomic Z,-extensions.

3.1. For a number field F, we denote by F,,/F the cyclotomic Z,-extension. As
in the previous section, we assume that k is a totally real number field, and that F is a
CM field such that F/k is a finite abelian extension. Let F, denote the n-th layer of
F,,/F, namely the intermediate field such that [F, : F] = p". By Lemma 2.1, 05 ’s satisfy
¢F,.,/F,(0F,.,) = OF, for sufficiently large n, so become a projective system. More precisely,
Deligne and Ribet [9] proved the existence of an element 0, of the total quotient ring of
the completed group ring Z,[[Gal(F., /k)]], which satisfies the following properties (cf. [38],
Theorem 1.15).

(i) The canonical map cg, /5, : Z,[[Gal(F,/k)]| — Z,[Gal(F,/k)] extends to
Z,|[Gal(F, /k)|)0F, — Q,[Gal(F,/k)], and for a sufficiently large »n, we have
¢, /r,(OF,) = OF,.

(i) Suppose w, = F. For any g € Gal(F, /k), O, satisfies
(1 —x(a)'0)0r, € Z,[[Gal(F,, /k)]]
where x : Gal(F., /k) — Z, is the cyclotomic character.

(iii) Suppose that u, = F and Fnk, =k. Let y be a generator of Gal(F,/F)
and define NGdl(F/k S w(e) 'e where w: Gal(F/k) — Gal(k(u,)/k) — Z, is
aeGal(F/k)
the Teichmiiller character. Then, 0, can be written as

—1
0 ENGar i)
F =

oK) =y
for some c € Z, and p € 7,[[Gal(F,, /k)]].

We assume the Leopoldt conjecture for k. So, in the above property (iii), ¢ & 0 ([38]
and [6]). Let 4, ...,.%, be all finite primes of k£ ramifying in F/k. We denote by Py, the p-
Sylow subgroup of the inertia subgroup I¢, of %; in Gal(F/k), and by Gal(F /k){p} the p-
Sylow subgroup of Gal(F/k). Instead of the condition (A) in §2, we assume that
F Nk, =k, every prime of k above p is tamely ramified in F/k, and

(A) Gal(F/k){p} = Py x - x Py,

i
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We write G = Gal(F/k){p} and Gal(F/k) = A x G where A is of order prime to p. We
define

(%/k) ={Hy x Hy x --- x H,| Hy is a subgroup of A and H, is a subgroup

of Py forallisuch that1 <i <r}.
We also define
(,%F/k)(p) ={M < F | M is the fixed field of some H € (,%F/k)(”)}.

For a field M e(ﬂp/k)(p), Oy, can be defined by the same method. Let
¢r,/m, be the natural map from the total quotient ring Q(Z,[[Gal(Fy/k)]]) of
Z,[[Gal(F, /k)]] to the total quotient ring Q(Z,[[Gal(M. /k)]]) of Z,[[Gal(M. /k)]],
and vg, u, : Q(Z,[[Gal(M.. /k)]]) — O(Z,[[Gal(F../k)]]) be the map induced by
g— >, 1. Wedefine a Z,[|Gal(F /k)]]-module (@ék/k)(p) by

CFy /Mo (t)=0
(OF, 0" = v o, (One, ) | M € (M) "'}
which is contained in Q(Z,[[Gal(F, /k)]]).

We define the Stickelberger ideal (@, /k)(” ) for F,, /k by

(Or, 1) = (O, 4)" N Z,[[Gal(F.. k)]
We simply write O, /i (resp. O ) for (G)Fw/k)(p) (resp. (®1/%/k)(p)) if no confusion arises.

This notation (@, /k)(p ) is justified by the following lemma. We define (@}/k)(}’ )
to be the sub Z,[Gal(F/k)]-module of Q,[Gal(F/k)] generated by vg/y(0h) for all

M e (Mpy)”, and define (8)” by (O )" = (8} )" N Z,[Gal(F /k)].

Lemma 3.1. Assume that there is an abelian extension F'/k satisfying the condi-
tion (A) in §2 such that F' > F, F'/F is unramified, and of degree prime to p. Then,

O )" = Op i ® Z,.

Proof At first, we assume that F satlsﬁes the condition (A). In order to show
(@F/k) ) — = Op/x ® Z,, it suffices to show (O F/k) (P) — F/k ® Z, which we can check easily.

Next, we consider the general case. It follows from what we showed above that
®F‘/k ® Zp = CF//F(®F///€ ® Zp) = CF’/F((G)F’/k)(p))' Since [F/ . F] 1s pl‘ime to P, by the
norm argument, we get cF,/F((CT)F,/k)(")) = (@F/k)(p). This completes the proof of this
lemma.

Lemma 3.2. Put (ﬂF/k)E)p):{ME(ﬂF/k)<p)|th€r€ is a przme of k above p
which is unramified in M /k}. We can extend c, jr to ¢,/ : (O /k) (@' ) , and

(@}/k) is generated by cp, /F((G)F /k)p)) and {vp/p(Om) | M € (M) p>}
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Proof. By Lemma 2.1, we have ¢y, y(0u,,) = Or for M ¢ (%F/k) . So we obtain
this lemma from the definitions of (@, /k)“’) and (O, /k) 25

By the same method as the proof of Lemma 2.2, we have

Lemma 3.3. For M e (%p/k)(p), we have

ce, ot (O, 1)) < @ar, i) and v, jar, (Or, j0)”) = (Op, )7

3.2. Next, we consider a finite abelian extension F/k with the following prop-
erty. There is a finite abelian extension F'/k such that F < F’, F'/F is an unramified p-
extension, and F'/k satisfies the above conditions of F/k (namely F' Nk, =k, every
prime of k above p is tamely ramified in F’/k, and the extension F'/k satisfies the con-

dition (A,) in the previous subsection). For such F, we define (O, /k)(” )

(@)Fx/k)(p) = CE!/F, ((GFI{/k)(p))-

This (O, /k) does not depend on the choice of F’. We will show this. Suppose that F”
also satisfies the conditions. Put F = F'F". Let Py (F/k) be the p-Sylow subgroup of the
inertia group of .%; in Gal(F /k), and put 4 = Py (F/k) x - -- x Py (F/k) = Gal(F/k). The
natural map Gal(F/k) — Gal(F’/k) induces an isomorphism 4 = Gal(F'/k){p}. Using
this isomorphism, we regard H € (A7 /k)( 2 as a subgroup of Gal(F/k). We define
/%F/k = {M | M is the fixed field of H € (#F//k) in F}, and

<®/L/k) = <{Vﬁy/Mo (Om,) | M e %F/k})

Since F/F’ is unram1ﬁed by Lemma 2.1 we have ¢z ((@’ D7) = ( F,/k) . We define

(©5, /k) (@’ O A Z,[[Gal(F., [k)]). We will see Cp. /F/((GF /k)( ) = (@ )", We
may assume /i, c F Suppose that x e (@ /k)( ?) By the property (iii) in 3.1, x can be
written as x = NG AR /(zc(y) y) +u for some ceZ, and pe Z,[[Gal(F,/k))]. If

¢, g () isin Z [[Gal(F’ /k)]] then [F., F "le =0, s0 ¢ =0 and x is in Z,[[Gal(F., /k)]].
Hence, we get ¢/ ((®f /k) ) (@F//k) . Thus, we have (@Fx/k)(p) =051, (O I/k)(p)),
and it does not depend on the choice of F’.

We simply write O,/ for (O, /k) when no confusion arises. We call this ideal
Op, /i the Stickelberger ideal for F, /k.

3.3. In this subsection, we assume F satisfies the conditions in 3.1, so @ , is
defined. In the usual Iwasawa theory, we consider a character of Gal(F /k) and study
the character-component of ideal class groups. Since we assumed F Nk, =k, we have
Gal(F,, /k) = Gal(F /k) x Gal(F.,,/F). Let x be a character of Gal(F/k) as in Lemma 2.6.
We denote by F, the fixed field of Kery in F. We extend y to the ring homomorphism

0(2,([Gal(Fy. /k)]]) — (2, [A[[Gal(Fy /F)]]) = Q(Z,[x][[Gal(F,. / Fy)]])

which we also denote by y. By abuse of notation, the homomorphism

Q(Zp[[Gal(Fx, OC/k)H) - Q(me [[Gal(F,, OO/F}{)]])

which is induced by y is also denoted by y. We use the same notation as Lemma 2.6.



Kurihara, Iwasawa theory and Fitting ideals 53

Lemma 3.4. We assume Sg, = Sk, . (S7 is the set of primes of k ramifying in F |k
Sfor an algebraic extension F /k.)

(1) x( é/k) = Zp[X][[Gal(Fz,oo/Fz)Heé% where Hz;v{lvm :X(HFMC)-

(2) We further assume y + @ where w is the Teichmiiller character. Then,
X(®Fx/k) = X(®1,r,,/k)-

Proof. (1) This can be proved by the same method as the proof of Lemma
2.6. We can easily see that (@ ;) < Z,(7)([Gal(F,, . /F,)]]0F, . On the other hand,
0%, , € x(®, ;) follows from ¢z, /r, , (OF,) = OF, ...

(2) By (1) and x(0f,) = x(0F, ), it is enough to show x(0r, )€ x(Of ). If a
primitive p-th root of unity is not in F, F, does not contain u, either, and we have
0r, € Z,[Gal(F,/k)], so Of, € Z,[[Gal(F, /k)]]. Thus, x(0F,) € x(O, /k)-

So we may assume u, = F. We write Gal(F/k) = A x G where the order of A is
prime to p and G is a p-group. Suppose at first the order of y is prime to p. Then, putting
e, = (#A)"" S x(o)o!, by the property (iii) in 3.1 and y + w, we have e,0r, € Op .

geA

This implies y(0r, ) € x(OF, /k)-

Next, suppose the order of y is divisible by p. Take M:k(up)e(%F/k)(p>.
Note that 11\4 + F by our assumption that p divides the order of y. We write
O, = crN&ur o/ (K(y) = 7) +pp with cpeZ, and py € Z,[[Gal(F./k)]] as in the
property (iii) in 3.1. We define cys € Z, similarly. Let %, .., %, be the ramifying primes

N

in F/k, which are unramified in M /k. By Lemma 2.1, ¢z, /u, (0r,) = [1(1 — 03! )0u, . We
have i=1

CE, /M, (Néo;ll(F/k)/(K(V) —-7) =I[F: M]Néo;ll(M/k)/(K(y) -7)

and

-1

T1(1 = 02 )NGuna i/ (6(7) = 7)

1

= T1(1 = %(0s) ") N&uaa s/ () = 7) mod Z,[[Gal(M.,. /)]
Thus, we have |
IF: Mler = iljl(l — x(py) e
Since

ord,([F : M]) = ord,([F : k]) = éordp(#Pgi) = ;Slordp(#Pgi)

lIA
-

ord, (N(#) - 1) = gordp(l —xlpy) )

1

(note that by our assumption the primes above p are tamely ramified in F/k), ¢, divides
cr in Z,. Hence, there is ¢ € Z, such that 0, — cvp, /. (Om, ) € Z,[[Gal(F,, /k)]]. So we
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have 0p, — cvp, /u, (Ou,) € O, s Since the order of y is divisible by p, x is non trivial
on Gal(F/M). Thus, x(ve, /a, (Om,)) =0, and we get x(0p,) € x(®F, /). This completes
the proof.

Lemma 3.5. Suppose that [F : k| is prime to p.

(1) 2O, ) = Z,[1[[Gal(Fy . /F)NI0F, , where 0 = x(0F, ).

(2) We further assume y + w. Then, y(®Of, /i) = X(@A(/k).

Proof. (1) As in Lemma 3.4, it is enough to show 0% € x(®, ;). Since F, is in

(ﬂF/k)(p) and y(ver,(0r, ) = [F : FX}Hém, we have (91{:1'% é){(@}m/k) because [F : F,| is
prime to p.

(2) Let e, be as above (note that A= Gal(F/k) in our -case). Since
e,visr,(OF, ) € O, i, we have 0F = y([F : F,)™ e,vr/r, (0, ) € 1(OF, k).

Remark 3.6. Let y be an odd character. The element y(6F, ) is essentially the p-adic
L-function. We have the following interpolation property. Suppose p, = F and
Kk : Gal(F,, /k) — Z, is the cyclotomic character. For any positive integer r > 0, we have

K (0, k) = Lipy(=r,0")

where Ly, (s, %~ 1) is the L-function obtained by removing the Euler factors of primes
above p. Hence, by Lemma 3.4 we know that the usual main conjecture is obtained by
taking the y-quotient of Conjecture 0.8.

4. A preliminary lemma

The aim of this section is to prove Lemma 4.1 below. Let R be a complete discrete
valuation ring of mixed characteristics (0, p), and Ag = R[[T]] be the ring of formal power
series in one variable over R. In this section, we consider a finite abelian p-group G, and
study a group ring Ag[G].

Let yy be a (p-adic) character of G, namely a homomorphism from G to the multi-
plicative group of an algebraic closure of the fraction field of R. We define

lPAR[G] : AR[G] — Agr[Image ] = A Riimage y]
to be the ring homomorphism induced by ¢ — (o) for g € G.

Suppose that
G:Gl X"-XG,‘

where G1, ..., G, are cyclic groups. We define a set # of certain subgroups of G by
H ={H, x --- x H,| H; is a subgroup of G; for all i such that 1 <i <r}.
For any subgroup H = H; x --- x H, € #, we define a set of certain characters of G/H by
WYo/m = {¥ - ... ¥, |, is a faithful character of G;/H, for all i such that 1 <i < r}.

Foryy =y, -... -y, € Yg/u, ¥; is a faithful character of G;/H; by definition, but v itself is
not a faithful character of G/H in general.
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Lemma 4.1. Let R, Ag, ... be as above. Suppose that for any subgroup H € H#, an
ideal 1,y of Ar|G/H] and an element xg i of Ag[G/H]| are given and satisfy the following
properties.

(i) For any subgroup H e H, Xg/y is the image of xc by the canonical map
AR[G] — Ar[G/H].

(ii) For any subgroup H € # and any character \y € ¥g,y,

Wi i) (X6 1) € Yo/ (Lo )

(i) For any  subgroup HeH and any  character § of Yg/u,
Ar[Image ] /Yp 6/ (Lo ) is a free RImage y]-module of finite rank.

(iv) For any subgroups H and H' in A such that H < H', we have

CH,H' (IG/H) < IG/H’

where cy p 2 AR[G/H| — ARr|G/H'] is the canonical homomorphism induced by the natural
map G/H — G/H'.

(v) For any subgroups H and H' in A such that H < H', we have

v w(U/a) < Io/n

where vy g« AR[G/H'] — Ar|G/H] is the map induced by c — > 1 foroce G/H'.

e (1)=0

Then, ARr[G]/I¢ is a free R-module of finite rank, and xg is in Ig.

Proof. We prove this lemma by induction on the order of G. If #G =1, the
conclusion is clear from the properties (ii) and (iii) by taking » = 1. Suppose #G > 1 and
G # {1}. We denote by p” the order of Gj.

Let ¥, : G — R[Image,|” be an injective homomorphism. Set ¥ = G, x --- x G,
and R’ = R[Imagey,]. So, G = G| x 4. We consider a homomorphism

(W )AR[G].G] : AR[G] = Ar|9][G1] — Ar[9][Image ] = Ar[¥]

which is the ring homomorphism induced by o +— (o) for o € G;. Let #' be the set of
the subgroups of ¢ of the form H, x --- x H, « % where H; is a subgroup of G;. For
a subgroup H' in ', we define an ideal Iy of Ar/[%/H'] by Iy = W)axia), 6 Lom)s
and an element x5 by Xg/5 = (Y )AR[G],G (xg/u) where H = {1} x H' € # . Then, these
ideals I/ and elements xy/p satisfy the properties (i)—(v) for Ag/[%]. Since #% < #G,
by the hypothesis of the induction, Ar/[9]/Iy = (Y)p (61, 6,(ARIG])/ (¥1)Au6),6,(TG) s @
free R’-module of finite rank, and (Y1)s ,6), 6, (X6) € (V1)a4(6), 6, (L6)-

We consider

16119(% )AR[G].GI  AR[G] — %9(% )AR[G],G1 (Ar[G])
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where ; ranges over all R[l/p]-conjugate classes of the faithful characters of G
whose values are in an algebraic closure of R[1/p]. The kernel of the above map is

p-l ‘
( > sl’"kl’)AR[G] where s is a generator of Gy. Hence, if we define the subgroup N by
i=0

m—1

N =Gl x{l}x---x {1} = G (so the order of N is p), then the kernel of the above
map coincides with the image of vy (1} : Ar[G/N]| — Ar[G] where vy ;1 is the map
defined in the property (v) in Lemma 4.1. So we have an exact sequence

AR[G/N]/1g/x — Ar[G) /1 — ?(wl)AR[G],GI (AR[G])/(¥1)ax6). 6, (T6)-

By the hypothesis of the induction, we can apply the lemma for the group G/N
instead of G, and know that Ag[G/N]/Ig,y is a free R-module of finite rank, and x/y is in
I n. We claim that the first map in the above sequence is injective. In order to show this,
since Ag[G/N]/Igy is a free R-module of finite rank, it suffices to show the injectivity of

vy (1) (AR[G/N]/Ig/n) ® Q — (AR[G]/I6) ® Q.

But vy gives an injection from Ag[G/N]® Q into a direct summand of
AR[G]® Q. In fact, if cpy n: Ar[G]® Q — AR[G/N]® Q is the canonical map,
p ey vovn gy is the identity map on Ag[G/N]® Q. So by the property (iv),
vy (13 (AR[G/N]/Ig/n) @ Q — (AR[G]/I6) ® Q@ is injective. Thus, we get an exact
sequence

0— AR[G/N]/IG/N — AR[G]/IG
- %9(% )AR[G],Gl (AR[G])/ (¥ )AR[G],Gl ({g)-

Since both Agr[G/N]/Is/ny and @(lﬁl)AR 61,6, (AR[G]) /(Y1 )pq6),6,(Ig) are free R-

modules of finite rank, it follows from this exact sequence that Ag[G]/Is is free of
finite rank as an R-module. By the hypothesis of the induction, (Y)s,(g) g (¥c) is in
(Y, )AR[G]’ 6,(Ic), so the above exact sequence tells us that there is y € Ag/y such that
X6 = vy, 113(¥) (mod Ig). Taking the projection to Agr[G/N] of this equation, by the
properties (i) and (iv) we obtain xg/y = py (mod I/y). By the hypothesis of the induc-
tion, xg/y is in Ig/y, so this implies that py e Igy. But AR[G/N]/Igy is a free R-
module again by the hypothesis of the induction, so we get y € Ig/y. This implies that
x6 = vy, 113(¥) =0 (mod /) by the property (v). Thus, we get x¢ € Ig. This completes the
proof of Lemma 4.1.

From Lemma 4.1, we obtain

Corollary 4.2.  Suppose that for any subgroup H € J, two ideals Iy and Jo i of
ARr[G/H] are given and satisfy the following properties.

(i) For any subgroup H € A and any character  of Yg /g,

Yaria/m U ) = Yago/m (e m)-
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(ii) For any  subgroup HeH and any  character Y of Yg/u,
Ar[Image | /Yip ,j6/m (I 1) is a free R[Image y|-module of finite rank.

(iii) For any subgroups H and H' in A such that H = H', we have

canUgu) < lg and ey p(Jo/u) < Jomr-

(iv) For any subgroups H and H' in # such that H = H', we have
v u(Ug/ar) < Igp and vy y(Jg/u) < Jon-

Then, we have I = Jg.

5. Ideal class groups

In this section we study the minus parts of ideal class groups of CM fields. We fix an
odd prime number p.

Let k be a totally real number field, and L and K be two CM fields such that
k< K < L, L/k is a finite abelian extension, and that L/K is a p-extension. We denote by
Ak (resp. A;) the p-Sylow subgroup of the ideal class group of K (resp. L). We consider
their minus parts Ax and 4; on which the complex conjugation acts as —1. We put
G = Gal(L/K).

Lemma 5.1. (1) The norm map A; — Ay is surjective.

(2) Let H(G,x) be the Tate cohomology (cf. [36], Chap. 8). We denote by Py the set
of all finite primes of L. Then, we have an exact sequence

HG,E)” — FIO(G, 11 EL,‘,>_ — HNG, AL)”

wePp

~ H'(G,E)) — Hl(G, 11 ELW)_ — HY(G, A1)

we Py,

— HZ(G, E)) — HZ(G, 11 EL”,)_

we Py,
where Ey, (resp. Er) is the unit group of L (resp. the local field L,,).

Proof. (1) Let K'/K be the unramified extension of K corresponding to Ay by
class field theory. Then the complex conjugation acts on Gal(K'/K) as —1, and acts on
Gal(L/K) trivially because L/k is abelian. So, K’ n L = K. Hence, A; — Ay is surjective.

(2) Let ¢, be the idele class group of L. We consider the Tate cohomology
groups H*(G,%.). By Tate-Nakayama’s theorem ([36], Chap. 9, §8), we have
H'(G,%,)=H*G,2)=H\(G,Z)=G,and H (G,%,)=H (G, Z) = H,(G,Z) = \ G.

So, H(G,%,)” = H'(G,%;)” = 0. Note also that H'(G,%.) = 0 by class field theory.



58 Kurihara, Iwasawa theory and Fitting ideals

Consider an exact sequence

0—E,—][]EL, —%.— ClL—0
where w ranges over all primes of L (if w is an infinite place, it is a complex place, and
we define E7, = L), and C/y is the ideal class group of L. Define M to be the kernel
of % — Cl. Then, by the above calculation, H9(G, Cl;)” = HY(G,A;)” = HI"Y(G, M)~
for ¢ = 0 and —1. Hence, taking the Tate cohomology of the exact sequence
0—EL—][]EL, = M—0,

we obtain the conclusion of Lemma 5.1 (2).

Proposition 5.2. Let L/K be as above. For a prime v € Pk, I, denotes the inertia

group of vin G. Let p,. (K) be the p-primary component of the group of roots of unity in K.
Then, we have an exact sequence

o (K) = (D L) = (Ap)g = Ax =0

ve Py
where (A7) is the G-coinvariant of Ay, and N is the map induced by the norm map.
Proof. First of all, we note that there is an exact sequence
0 — Ker((4L); — Ak) — HY(G,4;) — Ker(dg — Apr).
This follows from the following commutative diagram

0 —— HYGA) —— (AL)g —2s 4,

| P

0 ——b KCI'(AK—>AL) E— AK —_— AL

where Ng = Y. o and N is the map induced by the norm map of ideal class groups.
ce@G

It is well known that the kernel of H'(G,E;) — H 1(G, II EL) coincides with

we Py,
Ker(Ax — Ar) (cf. [22], Remark 2.2). Hence, the kernel of (4, ), — A coincides with
Ker(H'(G,A4.)” — H'(G,EL)”) which is the cokernel of

A%(G,Er)” — A°(G, T] Ev)

we Pr

by Lemma 5.1 (2).

By local class field theory, we have

fIO<G, I1 EL,,.) = @ Ex,/NEL, = @D 1.

we Py ve Pk ve Pk
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Since K is a CM field, HYG,E) ®7,= My« (K). Hence, we have
Ker((4;)s — Ag) = Coker(u,.(K) — (@ 1,)”). Since 4] — Ay is surjective by Lemma
5.1 (1), we get the conclusion.

Let K,,/K and L, /L be the cyclotomic Z,-extensions, and consider Xx, = lim Ag,
and XLx = 1&1 AL,,-

Corollary 5.3. Let K, L, K., and L., be as above. We denote by Pk the set of finite
primes of K., and by I, the inertia group of v in Gal(L,,/K,) for v e Pk, . The norm map
from X to Xk, induces an exact sequence of Z,[[Gal(K, /k)]]-modules

T— ( S 1v> — (X2 )Ga, /x,) — Xg, =0

UEPKCL
where T = 7,(1) = lim w,. if p, = K, and T = 0 otherwise.

Proof- This is obtained by taking the projective limit of the exact sequence in
Proposition 5.2.

Lemma 5.4. Suppose that Gal(L,,/K,) is cyclic, and that the p-invariant of K,
vanishes (Xg, is a finitely generated 7,-module). We further assume that the primes above
p are unramified in L., /K, and there is a totally ramified prime in L., /K. Then, the
canonical map induces an isomorphism

X, = (X, )oK,

Proof.  First of all, since X; does not have a non-trivial finite Z,[[Gal(K.,/K)]]-

submodule ([46], Proposition 13.28), 1 = 0 implies that Xy is a free Z,-module. So the
norm argument implies the injectivity.

Put G =Gal(L,/K,) and #G = p™. Let vy be a prime of K, which is totally
ramified in L, /K, and wy be the prime of L lying over vyp. We may change K and L
to sufficiently large number fields, and suppose that Gal(L/K) = Gal(L.,/K,) and
Hye (K) = g, (Ky,) where K, is the completion of K at the prime below vg. Then, we

have H(G,EL)” = pt,. (K) /1, (K)pf, and H'(G, Ep, ) = e (Kyy)/ (Ky,)"", so the
map H(G,E.)” — H(G, T] EL> is injective. Since this injectivity holds for all inter-

we Pp,

mediate fields L, and G is cyclic, the map lim H*(G,E.,)” — lim H 2(G, I EL”‘”_)_ is
injective. we P,

On the other hand, H' (G, I E(Ln)w) = @ Z/e,Z where e, is the ramification

wePp, ve Py,
index of v in L,/K,. For a sufficiently large n, the norm map from L, to L, induces the

multiplication by p on the right hand side, so lim H 1<G, 11 E(L,z),‘) = 0. Hence, by

R wePp,
Lemma 5.1 (2) we get H(G, X, 1..) = 0, which implies the conclusion of the lemma.

By this lemma, we obtain
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Lemma 5.5. In the situation of Lemma 5.4, for a faithful character  of
G = Gal(L,./K.), we define (X )V by (X)) = X ®z,16) Zp[W]q) where Z,[] g, is the
G-module on which G acts via  (cf. 1.3). Then (X, )‘p does not have a non- trlvzal finite
Z,y][|Gal(Ly, /L)])-submodule.

Proof. Suppose that the order of G is p”, and o is a generator. Since

7, ~Z,[G]/(1 +a?" "+ 4" (071 if we denote by C the subgroup of order p
of G and put N¢ = Zs, we have Z,[y] ~ 7Z,[G]/Nc. So ( L:,) = X; /NcX; . We
seC : ) Ler

denote by K’ the fixed field of C in L. Put sy = o?""" which is a generator of C. We will
show that sy — 1 induces an injection

so—1: XL;/NcXL; <—>XL;.

In fact, if (s — 1)(x) = 0 for some xe€ X, , then xe (X, )€, so x can be written as
x =i(y) for some y € Xg;, by Lemma 5.4 where i: X, — X ~is the natural map. Since
the norm map X, — X , 1s surjective by Lemma 5. 1 (1), we have x = N¢(z) for some
ze X, . This 1mp11es X /NCX — X, is injective. Hence, we get the conclusion of

Lemma 5.5 because X, “does not have ‘a non-trivial finite Z,[[Gal(L,/L)]]-submodule
([46], Proposition 13. 28)

6. Proof of the theorems I

We will prove Theorem 0.9 at first. We may assume that F satisfies the
condition (A,). In fact, suppose that F'/F is the unramified extension in 3.2, and
¢ = cp1 )k, 2p[[Gal(Fy [k)]] — Z,[[Gal(F, /k)]] is the natural map. By Corollary 5.3, we
have an isomorphism (Xp/) g,/ — X . Hence, we have

¢(Fitto 7, (Gaicrw) (X)) = Fitto 7, (Gaice, /i) (Xr) ™

On the other hand, by definition, we have ¢(®g /) = O, /. Hence, Conjecture 0.8 for F’
implies Conjecture 0.8 for F.

We write Gal(F/k) = A x G where the order of A is prime to p, and G is a p-
group. Let K be the fixed field of G in F (so Gal(F/K) = G). We have the decomposition
Z,|A] = @ Z,[y] as in 1.4, and have

x

Z,([Gal(F., /k)]] = 679 Zy[x)[[Gal(F / K)].

So in order to prove this theorem, it suffices to show the equality
(Fitto, 7, Gae. /00X, ) )a) = (O 1))
as ideals of Z,[y|[[Gal(F., /K)]] for each odd character y of A.
We take an odd character y of A. We denote by A, the kernel of y, and by K, (resp.

F,) the fixed field of A, in K (resp. F). So Gal(K,/k) = Image y and Gal(F,/K,) = G.
Recall that we assumed F/k satisfies the condition (A,), so

G:Png‘”XPﬂ_
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where Py is the p-Sylow subgroup of the inertia group of .%;. We define
H ={H; x --- x H,| H; is a subgroup of Py for all i such that 1 <i <r}

and

M={M|K <M < F, M is the fixed field of some H € # in F}.

We note that Py is cyclic since we assumed a prime over p is tamely ramified in F/k.
Asin §4, for H = Hy X --- X H, € A we define

Wo/u = {¥ - ... - ¥, | Y is a faithful character of Py, /H; for all i such that 1 < i < r}.

For He #, let M be the subfield in F fixed by H (so M e ). We write
M, the fixed field of A, in M. Put A:Zp[[Gal(KOO/K)]]E‘A) 7y x[[Gal(K,, ./ K,)]].
Then, Z,[[Gal(M/K)]](y, = Z,[x][[Gal(M,, .. /K,)||* = A[G/H]. We regard (O, /)"
(:(®Mn/k)(lA>) as a A[G/H]-module. We define two ideals I/ and Jg/ of A[G/H] by

I/ = O, jk)*
and

Jon = (Fitto ajg/m(Xyy ) .

Since [M : M,] is prime to p, we easily see ¢y, /(m,), (Our,./x) = Oar,), /& by the norm
argument. Hence, we have I/ = (@Mx}/k) (®(Mz>m/k)x'

Let ¢ be a character in Wg/y. We regard yy as a character of Gal(M /k), and
denote by M,, the fixed field of the kernel of yy in M. So K, = M,;, = M,, and
Gal(M,y/K,) = Imagey. Since y is a product of faithful characters lpl of some quotient
of Py, (Y € ¥g/i), we have Sy, . = Sy, (where Sz is the set of primes of k ramifying
in # /k as in Lemma 2.6). So we can apply Lemma 3.4 to the field M, which satisfies the
condition (A,) and to a character yy of Gal(M, /k). If y # w or  + 1, by Lemma 3.4, we
have

Vnia/m (Ten) = Yaerm (@, )*) = 10Oy, i) = (0341, )

in Z,[;p][[Gal(Myy, oo / Myy )] where Yip Gy s as in §4.

On the other hand, for J;/y, we have (Xy, )Gdl(M M, X, , by the norm argu-
ment since [M M,] is prime to p. Further, by the definition of ‘PG/H, Ve ‘P(;/H implies
that M, /M,y is unramified. So by Corollary 5.3, (Xy ), /u,, ) = Xu,, . 18 bijective.

o)
Hence, we obtain

W
Vnig/m Jarn) = Fitto, 2, ican,, . /v (X, )

We note that y is a faithful character of Gal(M,,/K,). Since we assumed the u-invariant

vanishes, the extension M,y ../K, o, and the character y satlsfy the conditions of Lemma

5.5, and we can apply this lemma. Thus, we know that X;; o ., 1s a free Z, [x¥]-module of

finite rank. Hence, Yai6/m)(Jo/u) = Fitto 7, y1(Gal(M,y. ./ M. /{'//)H(X]éfw.cc) is the characteristic
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ideal of X, A’% .If y £ w or  # 1, by the Iwasawa main conjecture proved by Wiles [47],
we have

)= (01, .)-

Hence, we get Y 6/u)(I6/1) = Yaj6/m)(Jo/u) in this case.

Fitto, 2, [[Gal(M,y, ./ M .M](

/d"

Suppose y = w and i = 1. Then, by the definition of ¥g/y, we have G = H, M = K,
and M, = K, = k(u,). By Lemma 3.5, (@} /k) is generated by 0¢ . Since we assumed

the Leopoldt conjecture holds for k, 0 is not in A, and @ , = (@  ,)“NA is
generated by the numerator of ¢ Therefore the Iwasawa main conjecture proved by

Wiles also implies that YiziG, (I(;/H) Yaio/m(Jo/m)-

So we have checked the properties (i) and (ii) of Corollary 4.2. The properties (iii)
and (iv) of Corollary 4.2 for I, follow from Lemma 3.3. We will show the properties (iii)
and (iv) for Jg 5. We denote by M and M’ the subfields of F corresponding to H and H',
respectively. By induction we may assume that Gal(M/M’) is cyclic, and that there is a
prime ¢ of k such that only primes above ¥ are ramified in M /M’. Corollary 5.3 yields
an exact sequence

(@I) i( X7 )Gal< V/M,)i M, =0

v| ¥

where 7, is the inertia group of v in Gal(M,, /M) for a prime v above #. The surjectivity
of b implies CH,H’(JG/H) c Jg/H/.

Since [, is cyclic and only primes above ¥ are ramified, the image of a
is cyclic as a A[G/H']-module. We take generators ej,...,e; of Xj; as a A[G/H]-
module such that the image of ey in (X )gam, /a) generates the image of a. Put

N = > o. Since b is induced by the norm map, by the above exact sequence, we
oeGal(M, /M)
have Ne; = 0. Let é3,. .., e, denote the image of e,..., ¢, in XA’},‘ by the map b. Suppose

N S
S aze; =0 (j=2,3,...) are relations of X}, . We may suppose Y a;e; =0 (j=1,2,...)
i=2 * i=1
such that ¢y g(a;) =a; for i,j =2, a;y =N, and dy =--- = dy =0, are relations of
X{; . Hence, if x is an (s — 1) x (s — 1) minor of the relation matrix of X}, , we have
Nx € Jo/u = Fitto ajg/m)(Xy7, ) for some X with cx, 5(X) = x. But NX = v (). Hence,
v u(Je m) < Jo/m-

Therefore, we can apply Corollary 4.2 to obtain I = J¢. This completes the proof of
Theorem 0.9.

Remark 6.1. We remark that we did not use the Leopoldt conjecture to prove
(Fitto,z,;1Gai(E. /7] (XZ,))(a) = (OF, 1K)y, for 1 * .

Next, we will prove Corollary 0.10. Put k = Q. The Leopoldt conjecture of course
holds for @. For any abelian extension F/Q, we can take an abelian extension F”/Q
such that F,, = F, p is tamely ramified in F”, and F” n Q,, = Q. So we may assume F
satisfies the above conditions. Using (a variant of ) Lemma 2.3, we can take F’ as in the
subsection 3.2 in §3. Hence, F satisfies all conditions in the subsection 3.2. Further, by
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Ferrero and Washington [10], we know g = 0 for any abelian field, so Theorem 0.9 implies
Corollary 0.10.

Corollary 6.2. Let F be an arbitrary abelian number field such that p is ramified in
F/Q. Suppose that Gal(F/Q) = A x G where #A is prime to p, and G is a p-group. Then
for a character y of A such that y + w, we have

0% € Fitto, 7, (6] ((AF)(ZAQ'

This follows from Theorem 0.9, the surjectivity of X7 — A%, and 07 € cr, /r(®F ).

Next, we will prove Theorem 0.4. Using (a variant of) Lemma 2.3, we can take
an abelian field F' such that F’/F is an unramified p-extension and F' satisfies (A,). Since
F'/F is a p-extension, no prime above p splits in F’/(F’)". Hence, as in the proof of
Theorem 0.9, it is enough to show this theorem for F’. So we may assume F satisfies
the assumption (A,). Let I,(F,, /F) be the inertia group of v in Gal(F,, /F). Our assump-
tion that no prime of F* over p splits in F/F* implies that the complex conjugation

acts trivially on @ [,(F,,/F) where the sum is taken over the primes of F above p.
vp - N
Hence, (G} IL(FOC/F)) = 0. By Proposition 5.2, this implies that (Xg )Gy, /5y — 4F is
vlp “ :
an isomorphism. Let ¢, /r : Z,[[Gal(F,/Q)]| — Z,[Gal(F/Q)] be the natural map. By

Theorem 0.9 and the above isomorphism, we have

Fitty, 7 Gai(r/0))(Ar) = cr, jr (Fitto 7, jcair, /o)y (XE,))
= ¢r,/F(OF, jg)-
Hence, Fitt, 7,(Gai(r/a) (AF)” < r/a ® Z, by Lemmas 3.1 and 3.2.
It follows from the following Lemma 6.3 that
$4; 2 (2,Gal(F /)] : Fitto 2, a0 (A7) ) 2 (Z,[Gal(F/Q)] : 04 ©7,).

On the other hand, by Sinnott’s theorem ([40], Theorems 2.1 and 5.4), we have
(Z,[Gal(F/Q)]” : O /g ® Z,) = #A5. (Let F' be the abelian field satisfying the condi-
tion (A) such that F’/F is unramified and of degree prime to p. In the notation of [40],
Rpr = Up: by Theorem 5.4 in [40], which implies Rr ® Z, = Ur ® Z,, hence by Theorem
2.1 in [40] we get the above equality.) Thus, we get

Fitto, z,(Gal(F/)(AF) = OF /g ® Z,.
Lemma 6.3.
(2,[Gal(F/Q)]" : Fitto z,(Gair/a) (AF) ) < #AF.

To prove Lemma 6.3, we need the following lemma.

Lemma 6.4. Let G= G| X --- X G, be a finite abelian p-group such that G;s are
cyclic for all i. Put ¢ = #G. Let R be a semi-local ring such that R = Ry x --- X R, where



64 Kurihara, Iwasawa theory and Fitting ideals

Ry’s are rings of integers of local fields of mixed characteristics (0, p), and u, R forall j.
We use the notation # and ¥y in §4. For y € Y/, the ring homomorphism R|G/H] — R
induced by W is also denoted by . Suppose that for any subgroup H € #, an ideal I,y of
R[G/H] is given, and for any H € A and y € Wg,p, an element x,, € R is given, and that they
satisfy the following properties.

(i) For any subgroup H € A and any character \y € gy, we have

(R:y(Igm)) < (R: (xy)).

(i) For any subgroups H and H' in A such that H = H', we have

CH,H’(IG/H) c IG/H’ and VH’J—](IG/H/) [ IG/H

where ¢y 2 R(G/H| — R|G/H'] and vy g : R|G/H') — R|G/H| are defined as in
Lemma 4.1.

Then, we have

(RG] : Ig) < (R: (Hgmelgwxw)) - (R: (H xl/,)).

VyeG

Proof of Lemma 6.4. We prove this lemma by the same method as Lemma
4.1, namely by induction on #G. We may assume #G > 1 and #G; = p™ with m = 1.
Put N = G{’W1 x {1} x---x {1} and 4 = G, x --- x G,. For a character y; of Gj, the
ring homomorphism R[G] — R[%] induced by ¥, is denoted by i, ¢ . Consider an exact
sequence

VN, {1}

R[G/N]/IG/N - AR[G]/IG - ?%,Gl (R[G])/(‘Pl,(;, (IG))

where ; ranges over faithful characters of Gj.

By the hypothesis of the induction, we can apply this lemma for the group

G/N instead of G, and get (R[G/N]:Ign) = (R:( II x,;,)). We define #’
Ye(G/N)"

as in the proof of Lemma 4.1. For H' € #’', we define Iy = 6,(Ig/{1y<nv) and

Xy = Xy, for W' € Wy . Then, by the hypothesis of the induction, we obtain

(V1.6,(R[G]) : ¥y ,(Ig)) = (R[Y] : Iy) < (R: ( I1 x,/,],l,r)). Hence, by the above exact
sequence, we obtain V'ed

(R(G]: 1) = k- <¢1}cx‘”>>'

Proof of Lemma 6.3. Suppose that Gal(F/Q)=A x G where G is a p-group
and #A is prime to p, and that K is the subfield of F fixed by G. Put ¢ = [F: Q),
and R = Zp[u ][A]l. We have Z,[Gal(F/Q)] ®z, Zy[u.] = R[G]. To prove this lemma, it is

enough to show (R[G]" : Fitty gig)(4dr @ Zp[u.]) ") < (Zp[u,] : (#45)).
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We use the notation of Lemma 6.4. For H € #, we denote by M the subfield of F
fixed by H. We define I/ by Ig/H = (1) and I;,,; = Fitto,ric/m) (43 ® Zy[p])". Note
that R = €@ Z,[u.]* where the sum is taken over characters of A. We denote an element «

P

of R by a = (a*) where a” is the y-component. Suppose H € #, and € Y5/ Let M,
be the subfield of M fixed by Ker(yy). We take x;, = ((xy)*) € R such that (x,)* = 1if
is even, and #7Z,[u]/((xy)*) = #(4u, ® Z,lu])™ if x is odd (for example, we can take
(xy)* = B, (41 if x is odd + @ by Solomon’s theorem [42] where B -1 is the first
generalized Bernoulli number).

We define M, as in the proof of Theorem 0.9, then [M :M,] is prime
to p and M,/M,, is unramified. Hence, as in the proof of Theorem 0.9, by
Proposition 5.2, we have an isomorphism (A}/)Gau/a,,) = Au,,- Therefore, we have

V(o)™ = Fitto, gy ((4yy ® Zylue)gm)) = Fitto rn (i, ® Zo[ue)™)) = (xy)-  So
the property (i) of Lemma 6.4 is satisfied. The property (ii) of Lemma 6.4 can be checked
by the same method as in the proof of Theorem 0.9. So by Lemma 6.4 we have

#(RIGYFity (47 @ 1)) = # (R/(ITx)

# (2l M)

= # (Zp[/lc]/(#A;))'

This completes the proof of Lemma 6.3.

Next, we prove Theorem 0.5. We write A = Gal(K/Q) and G = Gal(F/K), then
Gal(F/Q) = A x G. By our assumption, G % {1}. Asin 1.4, we have

Z,|Gal(F/Q)] = EP Z,[7[G]-

We put Zr = Fitto 7,Gair/0) (A7), OF = Opjo ® Z,, and O = (8},0)"” ((©f,)"
was defined before Lemma 3.1). Let (#¢)”* (resp. (OF)%, (©F)*) be the y-component of Zp
(resp. Op, ©F). Our aim is to show (#r)* = (Or)* for all odd y.

Lemma 6.5. Let K, be the fixed field of Kery in K, and F, = K, ,. We denote by
01{37 (resp. 0?;7) the image of Or, (resp. Ok,) by the map

Q)[Gal(F,/Q)] = Qy[Gal(K,/Q)][G] — Qp(x)[G]  (resp. Qy[Gal(K,/Q)] — Qp())
induced by x. Then, (®p)* is generated by vr, k0% and 0 as a Z,[][G]-module.
Proof. By the same method as Lemma 2.6 (2) (ii), we know that (®})* is generated
by vr, k0% s With 0 < m < n. If m > 0, then p is ramified in K., so ¢z, /k, , (0F,) = 0

K‘ sm .
Hence, vr, /Kx’m(ﬁgm) is a multiple of Hé. This completes the proof of the lemma. ’

We go back to the proof of Theorem 0.5. First of all, if y = w, by the above lemma
we have (Zr)* = (OF)* = (1). So we may assume y #+ . We consider
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Z,[[Gal(K, /Q)]] = @Z [[[Gal(K /K]].

Let (Zk,)* (resp. (@k, )*) be the y-component of Fitto, 7, [Gai(x.. /o)) (X, ) (resp. Ok ja).

We first assume y(p) # 1. Since ¢k (07 ) = (1—x(p)” )0}(( and 1 —y(p)' is a
unit (the order of y is prime to p), 0}2 isa multlple of ¢ (0F ), and vr /k, 6§< is a multiple
of 0/ Hence, (OF)”* is generated by 0/ by Lemma 6.5 (note 'that (@) = (@F)X because
1 F a)) So we have ¢k, /r((Ok,)*) = (@F) by Lemma 3.5.

On the other hand, by Proposition 5.2 and x(p) # 1, (X{ )gak, /r) = A% is bijec-
tive. Hence, cx, /7 ((ZFk,)*) = (Zr)*. So Theorem 0.9 (the usual Iwasawa main conjecture)
implies (7r)* = (OF)*.

Next, we assume y(p) = 1. By Proposition 5.2, we have an exact sequence
(%) 0— Z,[x] ®z, Gal(Koo/F) (X¢ )Gal( K, JF) A% — 0.

Recall that G = Gal(F/K) is cyclic of order p”". Put N=Ng= > o, and for a
geCG

Z,[x)[G]-module M, we write MV=" (resp. M /(N)) for the kernel (resp. the cokernel) of
N:M— M.

Lemma 6.6. (X{ )Gk, /r)/(N) = AL/(N) is an isomorphism.

Proof. The exact sequence (x) yields an exact sequence

AV 2 (2, /p") @2, Gal(Kor [ F) — (X )gax, i)/ (N) = AR/(N) = 0.

We will compute the boundary homomorphism ¢, and show its surjectivity. Applying
Proposition 5.2 to K., /F and K, /K, we have a commutative diagram of exact sequences

0 —— Z,[x ®, Gal(K,./F) —— (X{ )k, /) Af 0
| | 2
0 —— Z,7] ®;, Gal(K./K) —— (X, )Gaik, /x) A 0.

Let gy be a generator of Gal(K.,/K), and put x = o(1 ® ag¢) (o2 is the map in the above
diagram). We take an element y e (X{ )Gal( K. /F) Wthh is mapped to x, and define z to be
the image of y in A}. Since Np/k(z) =0, zisin (AL)N= % We will compute 6(z). Since both
Ny and o (1 ® p"oy) are mapped to p"x in (Xlé;)Gal( x,/x) and Ny is in the image of oy, we
have Ny = o;(1 ® p"ap). This shows that o(z) = 1 ® p"ay. Since p"ag( is a generator of
Gal(K,,/F), 0 is surjective and we obtain the conclusion of this lemma.

Since Fitt, ; [[Gdl( . / x) (X ) = (0%, ) by the Iwasawa main conjecture, this lemma
implies that Fitto 7 (,i6/v) (4 F/ (N)) = (0% ). From the surjectivity of X} — Af, 0f

belongs to Ff, so the above says that 7/ i is generated by 0‘ and some elements of the
form Nx. Using the exact sequence

0 — Zy[x]/p" ®z, Gal(F/K) — (A})Gar/x) — Ak — 0
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which is obtained from Proposition 5.2, we know vg, k. (Fitto, Z,[5 (A%)) = F¥ by the same
method as in the proof of Theorem 0.9. By the calculation of the order of 4% by Mazur and
Wiles [26], Chap. 1, §10, Theorem 2, we have Fitty z,(,(4%) = (0% ). So vr,/x, (0% ) € F¥.
Suppose that Nx belongs to #/. This implies that p"cp/k(x) is in Fltto 7,17 ((4 F)Gal (F/K))
which is equal to (p”H/ ) by the above exact sequence. Hence, cF/K( x) is a multiple of
HX Thus, Nx is a multlple of vk, (HXX), and we know that 7 is generated by GX

and VE, /K, (0% ) Hence, by Lemma 6.5 we have 7 = @%. This completes the proof of
Theorem 0.5.

7. Proof of the theorems II

In this section, we prove Theorem 0.6. We use the argument of Wiles and Greither
[48], [14], namely the argument of avoiding the trivial zeros. I learned the method here from
Greither [14], §4.

First of all, using (a variant of ) Lemma 2.3, we can take an abelian field F’ such
that F’'/F is an unramified p-extension and F’ satisfies (A,). Since F'/F is a p-extension,
1, ¢ F'. We know p is tamely ramified in F’ because F'/F is unramified. So it suffices to
show this theorem for F’, and we may assume F satisfies the condition (A)).

We first prove this theorem under the assumption that p is unramified in F/Q. We fix
a positive integer N and take a prime number r such that

(i) ris unramified in F/Q,
(i) r =1 (modp"),
(iii) no prime above r splits in F/F™,

(iv) if we denote by k, ,~ the subfield of Q(x,) with degree p", the Frobenius ¢, of p
in Gal(k, ,v/Q) generates Gal(k, ,v/Q).

The existence of r follows from Proposition 4.1 in Greither [14], which was proved by
using Chebotarev density theorem. Put E = Fk, ,~. We use the notation Ar, Ag, X, etc.
as in the previous section. Since p is unramified in E, @ Z, (v ranges over primes of E

vlp
above p) is isomorphic to Z,[Gal(E/Q)]/(p, — 1) where ¢, € Gal(E/Q) is the Frobenius of

p- By Proposition 5.2, we have an exact sequence

(Z,[Gal(E/Q)]/(p, = 1)) = (X£,)Gae, /p) — Az — 0.

We take N and M sufﬁmently large such that p¥=™ is greater than the p-component
of #Gal(F/Q), and put v= Z o?"" where o is a generator of Gal(k, ,~/Q). Put
Rg = 7,[Gal(E/Q)], # = RE/(v) and Rr = Z,|Gal(F/Q)].

The next lemma is a fundamental property of Fitting ideals, which can be easily
proved ([28], p. 61, Exercise 2).
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Lemma 7.1. Let R be a commutative ring. If My — My, — M3 — 0 is an exact
sequence of finitely generated R-modules, we have

Fitto,R(Ml) Fitto,R(M:;) c FittOAR(Mz).
Applying Lemma 7.1 to the above exact sequence tensoring ®g, #, we have

(% —1) FittOM(AE/(V)) < Fittoyé%’(((Xl;.,v)Gal(Ew/E))/(v))'

By Theorem 0.9, we have Fitt 7 [Gae, jo)(Xg, )™ = Of, Ja Note that E satisfies the
condition (A,) because we assumed F satisfies (A,). Since p is unramlﬁed in £/Q, p, is
not contained in E, hence w, ¢ E, for n = 0. This implies (®’ @) c Z,[Gal(E,/Q)]

((@’E"/@)(p) was defined before Lemma 3.1) and (® /@) Z,[|Gal(E,/Q)]]. So

(@ém/@)( =0, jg, and ((7)”1/ )P (@E /@)(1’>. Since p is unramiﬁed in £/Q, by
Lemma 2.1 and the definitions of (® £, /Q ) and ((7)%/@)(’”, we get
CE,E/E((@l/?m/@)(p)) =(1- (”,71)( E/@) =(1-9¢, )<@E/@)(p)
=(1-9,)0p0®7,
where the last equality follows from Lemma 3.1. Therefore, we have

(¢, — 1) Fitto.# (4z/(v)) < (9, — 1)(Opj0 ® Z,)” mod(v).

Since we took N and M such that pV=# is greater than the p-component of #Gal(F/Q),
¢, — 1 is a nonzero divisor in #. Hence, we obtain

Flttoﬂ(AE/(v)) c (®E/CD ® Zp)7 mod(v).

Let ¢, be the Frobenius of r in Gal(F/Q). Since no prime above r splits in
F/F*, (p,—1)" is a unit in Z,[Gal(F/Q)] . Hence, by Lemma 2.1 we have
ce/r((Op/a ® Z,)") = (Or/o ® Z,)” (note that the ramifying primes in E/F are the
primes above r). We also have

(@ Z/pN)_ (v ranges over primes of F above r) ~ (Z/pN[Gal(F/Q)]/(p, — 1)) =

olr

Hence by Proposition 5.2, we get an isomorphism (Ag)gyg/r) =~ AF, S0 an isomorphism
(Ag/(v ))Gal & = ~ Ay /pM. Consider the map # — Rp/p™ defined by o +— 1. The above
inclusion for the Fitting ideal of 4, /(v) implies

Fitto, g, /pu (A7 /p")” < (@rj0 ® Z/p™)".
This holds for any M, hence we obtain Fitto z, (A7) < (Op/q ® Z,) .
On the other hand, by the same method as the proof of Theorem 0.4, we have
(Rg : Fitto &, (4z)") = (Rp : Op)q ® Z,) = #Ap.

Hence, the inclusion Fitty z.(4z)” < (Op/qg ® Z,)” implies the equality. This completes
the proof in the case p is unramified.
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Next, we prove Theorem 0.6 under the assumption that p is tamely ramified and
4, ¢ F. As in the proof of Theorem 0.9, we write Gal(F/Q) = A x G where #A is prime to
p and G is a p-group. It is enough to show Fittg g, (4r)* = (Op/q ® Z,)” for all odd
characters y of A. As in the proof of Theorem 0.9, we denote by F, (resp. K,) the fixed field
of the kernel of y (resp. the fixed field of Kery x G) in F. Let I, (resp. D,) be the inertia
group (resp. the decomposition group) of p in Gal(F/Q). By our assumption, I, is a sub-
group of A.

Case (i). Suppose that y, 5, + 1. Then,
(@ Zp)x (v ranges over primes of F above p) ~ Z,[Gal(F/Q)/D,]* =0
up

because there is o € D, such that y(¢) — 1 is a unit. It follows from Proposition 5.2 that
(X7, )Gal(r, ;) = AF is an isomorphism. Hence,

cr, /r (Fitto 7 Gar, jay) (X£,)) = Fitto g, (AF).

On the other hand, we will show

CF,L/F((®E£/@)X) = (®F/@ ® Zp)x'

Suppose M e (,/%F/@)(‘”) and p is unramified in M/Q. Then, I, = Gal(F/M), so
(ve/m(Ou))* = 0. Hence, by Lemma 3.2 we have ¢z, /r((®f, )q)*) = (8 )*. Further,
by our assumption u, ¢ F, we have ((7)1’,/@)(1’) < Ry and (@;x/@)(p) < 7,[[Gal(F., ) O)]].
Hence, (@}%/@)(”) =0, /g and (@}/@)<p) = (CT)F/Q)(”) =Op/q ®7Z, by Lemma 3.1.
Thus, we obtained ¢z, /r((OF,/0)*) = (OF/q ® Z,)*. Therefore, Theorem 0.9 implies
Fitt()_’RF(AF)X = (G)F/@ &® Zp)}{'

Case (ii). Suppose that y, = 1. Since [F : F] is prime to p, (Ar)Gar/r,) = (AF,) is
bijective. So, Fitt, x, (4r)” = Fitto,x,, (Ar, ). |

On the other hand, by the same method as Lemma 2.6, using that [F : F,] is prime to
p, we can check that (@/q ® Z,)" = (Of, o ® Z,)". So this case is reduced to Theorem

0.6 for F,. But since p is unramified in F,/Q, we have already proved that Theorem 0.6 is
true for F,. This completes the proof of Theorem 0.6.

8. Higher Fitting ideals

Let F/k be as in Theorem 0.9. In this section we study the higher Fitting ideals
Fitt; 7,(Gal(r, /) (XE,) - (For more about the higher Fitting ideals of ideal class groups, see
241.)

Suppose that F/k satisfies the conditions in the subsection 3.2 in §3. We consider
an abelian extension L/k such that F < L, Gal(L/k) = Gal(F/k) x Gal(L/F), [L: F] is
a power of p, and L/k satisfies the conditions of F/k in the subsection 3.2. Put
G = Gal(L/F), Ar, = Z,[[Gal(F, /k)]], and

AL, = Z,[[Gal(L /k)]] = Ar, [G].
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We fix an isomorphism
G~Z/p™ x---xZ[p™

and take generators oy, ..., 0, of order p" of G, which correspond to the above decompo-
sition. We have a non canonical isomorphism

Ar, =Ap,[G] ~Ap [S1,...,S]/(1+S)”" —1,...,(1+S)" —1)

where S;’s are indeterminates, and o; corresponds to 1 + S;. For x € A, we write

where 7 = (1+85)"" —1,...,(1+5)"" —1) and 9,
We take N sufficiently large, and choose L such that n,...,n, = N. We consider
it,...,i, and s such that 0 < s < N, and ij,...,i < p**'. For i < p**!, one can easily

N
check that ord, <<p )) = ord, (p™N1/(il(p" —i)!)) 2 N —s. S0 J;,.....;,(x) is well defined
i

mod p"=*. This 0i,.....i,(x) does depend on the choice of the generators gy, ..., 0,.

Theorem 8.1. Assume that L., satisfies the conditions of Theorem 0.9 for F,,. For
any x € (@r_ k)", 0; (Xg, /pN =) wherei=ij + - +i.

.....

Fo [pN=$

Proof. By Theorem 0.9, we have x € Fitto a, (Xz,) . Since X, — (X1, ) is sur-
jective, we have Fitto o, (X.,) < Fittoa,, ((Xz,)g), and x € Fitto A, ((Xz,)g) . On the
other hand, since S;’s act on (X7, ) as zero, Fitto , ((X.,);) can be written as

FittQALI ((XL%)G) = FittO.AFm ((XLL)G) + Fittl,AFvC ((XLa)G)J

+Fitto o, (X2,))I>+

where J = (Si,...,S,). This fact together with x e Fittoa, ((X );) implies that
Si,....i,(x)mod p™~* is in Fitt; Ap, pN-s ((X,.)g/p"~*) . Since the norm map induces a sur-
jective homomorphism

(XL;)G/PN_S — Xp, /PN_Sa

we obtain ;. (x) mod p" ¥ e Fitt; 5, j,v-(Xg /pN )" [

goaey

We can define J;, ;. (x) for x e ©@, Ik similarly. For a character y of Gal(F/Q) whose

order is prime to p, the element J; 1(0{) appears in the argument of the Euler systems
after some computation of the “derivative” operator. The statement like Theorem 8.1 is
usually obtained by the argument of Euler system.

Using the Euler system of the Gauss sums, Rubin determined the structure of Agiu)
P

in [32], Theorem 4.4 (cf. also Kolyvagin [21], Theorem 7). By using Fitting ideals, his the-
orem can be written as
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Theorem (Rubin). For F = Q(u,), Fitt; 7/, Gar0)(Cly /pN)" is generated by
Or/q and 61,..,1(x)’s where x ranges over elements of (@p)q ® Z,)” and L ranges over the
abelzan fields as above.

It is also remarked in Rubin [32] that the same result is true for Q(g,,) as long as p
does not divide [Q(x,,) : Q]. For a generalization to CM fields, see [24].

Let y be an odd Dirichlet character, and F be the fixed field of Ker(y) (so
Gal(F/Q) ~ Image(y)). Put A, = A} = Z,[x][[Gal(F,. /F)]]. We consider the y-quotient
X gf which is a A,-module. We assume that the order of y is prime to p and y(p) =+ 1.

Conjecture 8.2. We take N and s such that N, s, and N — s are large enough. For any
i >0, the higher Fitting ideal Fitt; 5 j,v-(X{ [pN ™) is generated by ®F s and di, .__;, (x)’s
where

.....

() L ranges over all abelian fields such that L N F,, = F,
Gal(L/Q) = Gal(F/Q) x Gal(L/F),

and Gal(L/F) is a p-group with Gal(L/F) ~ Z/p™ X --- X Z/p" where ny,...,n. 2 N as
above,

(ii) x ranges over all elements of (® /@){A), and
(iii) (i1,...,i,) ranges over all integers satisfying iy, ... i < p*™Vand iy + --- +i, <.

Remark 8.3. Schoof asked an interesting question on a certain initial Fitting ideal
concerning the minus part of the ideal class group of an abelian field, which is related to the
above conjecture, before the argument of the Euler system was discovered [34]. (His ques-
tion itself has not yet been answered because he considers only cyclic extensions L/F.) An
idea to study the initial Fitting ideal of (X7 ), as a Az -module, which I used in the proof
of Theorem 8.1, was originally in Schoof [34].

Concerning Conjecture 8.2, in this paper we only show

Theorem 8.4. In the situation of Conjecture 8.2, we fix N >0, and put
S = {( : prime number |/ =1 (modp™) and ¢ is unramified in F/Q}, and & = {L : the
subfield of F(u,) such that [L: F]=p™ |/ e}, Then, the ideal Fitt; 5 ,n(XF /pV) is
generated by Héx and o1 (H{m)lvfor all L € &. Namely, Conjecture 8.2 is true for i = 1.

Proof. We may assume y + w. Let % be the ideal generated by 97 and
01(07 )’s. By Theorem 8.1 we have . < Fitt,  ,,v(X/ /p"), hence it is enough to show
Fitt;, A/pA(X /pN) = 7.

We first remark some properties of X7 and 47 . Since X7 is a free Z,[y]-module of

finite rank, if there is a surjective homomorphism (A,)" — X , its kernel is a free A,-

module of rank m (because X7 is an elementary A,-module in the sense of Northcott [28]
p. 80). We take generators of X ; and consider an exact sequence
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m f m
0— (A)(> - (A;<> & Xé —0

of A,-modules. We denote by A€ M, (A,) the matrix corresponding to the A,-
homomorphism f.

Forn >0, we put I', = = Gal(F,/F,), and A,, = Z,[x|[Gal(F,/F)]. By our assumption
x(p) * 1, (X£ )r, = A % is an isomorphism. The map g defines generators of X7 and 4% .
We take n suﬂimently large. Let Divg, be the group of fractional ideals of F,. We cons1der
an exact sequence

(F* ®7,)" & (Divy, ® Z,)% — A% —0.

We choose primes vy,...,v, of degree 1 by Chebotarev density theorem such that the
subgroup M generated by vi,...,v, in (Divg, ® Z,)* is a free A,-module of rank m,
and that the classes of vy,...,v, correspond to the generators of A} ~ (X7 )p. which

we took. Namely, the map M ~ (A,)" — A{p is induced by the above map g¢. Since
M =~ (A,)" — A}, is surjective and (X, é)r” =0, its kernel M’ is a free A,-module of
rank m.

We choose basis of M’ and take an isomorphism M’ =~ (A,)" such that
M~ (A,)" — M ~ (A,)" is induced by f. We have an exact sequence

0—>M’£>M—>A{:- — 0.

Since Fittg A, (X };) is generated by det 4 and is equal to the characteristic ideal
chary (X7 ), by the usual main conjecture we have (detA) = (0% ) as ideals of A,. By
changing the basis, we may assume that det 4 = 917:71.

Put # ={xe(F‘®Z,)"|div(x)e M}. Then, we have a homomorphism
e: A — M’ such that div:.# — M satisfies div= f oe. We denote an element of M
and M’ by a column vector of the form “(ay,...,a,). By the argument of Euler system of
Gauss sums (cf. Rubin [32], Theorems 2.4 and 3.1), for any 7/ and j such that 1 < i, j < m,
we can take a cyclic extension L € ., and can construct an element g; € #" such that

(1) div(g:) = (0,...,0,0%,0,...,0) (07 is in the i-th coordinate),

(2) when we write &(g;) = ‘(ai,...,an), we have a; = udi(0] ) (modp", 0% ) for
some unit u € A’;.

Put @ ;= (—1)""detd;; where 4;; is the matrix obtained by crossing out
the i-th row and the j-th column of A. The above properties of g; imply that
Al(ay,...,am) ="(0,...,0, 0175”,0, ...,0) (where A corresponds to f'), hence

cr, /r,(@ij)0%, = a;0F,.

Since x(p) # 1, 0% is a nonzero divisor. Hence, cr, /r,(a; ;) = a;. From the property (2), we
know that ¢z, r,(a; ;) mod p" belongs to the ideal generated by 6} and 6,(6] ). Hence,
a; jmod pV is in 0§%Ax/pN +51(0fx)l\l p". This implies Fittl’Al/pN(Xé /pN) = #, and
we have completed the proof of Theorem §.4.
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9. Example—the case A = 2

In this section, we assume that F' is an imaginary abelian field, and y is an odd char-
acter of Gal(F/Q) such that y # w, and that the conductor of y is equal to the conductor of
F. We study the case that X7 is a free Z,[y]-module of rank 2.

We begin with a preparation of linear algebra. Let R be a complete discrete valuation
ring of mixed characteristics (0, p) (p =+ 2) with maximal ideal mg. Let = be a prime ele-
ment of R (namely mp = (n)), and vg is an additive valuation such that vg(n) = 1. Let
A = R[[T]] be the formal power series ring over R. We consider a finitely generated A-
module M which is not cyclic (not generated by one element as a A-module). We further
assume that as an R-module, M is free of rank 2, namely M ~ R @ R. Then, the charac-
teristic ideal of M is generated by the distinguished polynomial Fj,(T) of degree 2.

Lemma 9.1. We write
Fy(T) = (T — o) (T = ).
(1) Suppose o and f§ belong to R. Then, we have an exact sequence of A-modules
0-A2L A2 M0
such that the matrix Ay € M>(A) which corresponds to the A-homomorphism f"is of the form
v=("0" 1)
Sfor some i such that 0 < i < vg(oe— ). Here, if o =f, i = o0 is allowed (in this case
n* = 0). Further, the isomorphism class of M is determined by the value i.

(2) Suppose Fy(T) does not have a root in R. We define

a_oc+ﬁ
=

Then, we have an exact sequence of A-modules
0— A’ ER A= M—0
such that the matrix Ay € M>(A) which corresponds to the A-homomorphism f is of the form
T—a 7'
Ar= ( c T— a)
Sor some i such that 0 < i < vg(a— f), and some c € R with vg(c) = i. Further, the iso-
morphism class of M is determined by the value i.

Proof Since M is a free R-module of rank 2, we have an exact sequence
0—A2L A2 = M — 0 such that det(f) = Fy(T) (Proposition 2 in the appendix of
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[26]). By elementary operations of the matrices, one can transform the matrix of f into
the above form. For example, we consider the case (1). By the usual theory of elemen-
jég ZEQ) such that a(o) = b(a) = ¢(a) = 0. Since
Fy(T) is of degree 2, either at least a’(0) or ¢/(0) is a unit. We may assume that
a’(0) is a unit by adding the second row to the first row if it is needed. So we may assume
a(T) is a polynomial of degree 1, and a(T) =T —a. Since T — o|¢(7T), we can take
¢(T) =0. Then, d(T) =T — B, and we can take b(T) to be a constant, and b(T) = '
with 0 <7 < vg(a — f). (If i = vg(o — f), one can take b(T) = 0.) One can show (2) by
the same method.

tary divisors, one can take Ay = <

The isomorphism class of M is determined by i because it determines the 1-st Fitting
ideal Fittl,A(M).

Remark 9.2. (1) Lemma 9.1 says that the Fitting ideals Fitt; (M) for i = 0 deter-
mine the isomorphism class of M in this case. But in general (in the case rankgz(M) = 3), it
is not true.

(2) H. Sumida [44] and M. Koike [20] classified the isomorphism classes of these A-
modules by different methods. They computed X, for many examples.

Let F be as above. By Lemma 9.1, we get

Corollary 9.3. Suppose that X Ig@ is a free Zp|y]-module of rank 2. Then, the iso-
morphism class of Xf. is determined by Fitt; o (X[ ) for i =0, 1.

By this corollary together with Theorem 8.4, we know that the isomorphism
class of X, }? is determined by the Stickelberger elements at least in the case y(p) # 1 and
p X [F : Q]. We will explain more explicitly.

Let N>0 be a positive integer, and /7 be a prime number such that
/=1 (modp?), and 7 is unramified in F/Q. Let L be the subfield of F(u,) such that
[L: F]=p". We identify A, = Z,[y][[Gal(F.,/F)]] with Z,[x][[T]] by identifying a gener-
ator y of Gal(F,,/F) with 1 4 7. Similarly, identifying a generator of Gal(L/F) with 1 + S,
we identify

Z,[A[Gal(L../F)]] = A [Gal(L/F)] =~ A[S]/((1 +8)"" —1).
We write 0] € A,[Gal(L/F)] as
0F =0(T) +0(T)S +5(T)S* +

(So 0/(T) = (07 ) in the notation of §8.) Note that 07(T) is well defined in A,/p". By
Theorem 8.1, (5/(T) is in Fitt; (X£ ) mod p". Theorem 8.4 says that Fitt) (X7 ) is gen-
erated by 07 and these 37(T)’s (¢ ranges over all prime numbers satisfying the condltlons)
Namely, we can determine the isomorphism class of X in principle by this method.

Example 9.4. We take F = Q(v/—6910), p = 3, and y = the nontrivial character of
Gal(F/Q). So A, = Ap, ~ Z3[[T]]. In this case, Xj, = Z3 @ 73, and it is not generated by



Kurihara, Iwasawa theory and Fitting ideals 75

one element as a Ag, -module. We compute 07 € Z3[[T]] and know that 07 does not have
a root in Z3. Hence, we are in the case (2) of Lemma 9.1. We calculate ] (7).

¢ 8/(T)mod(1+T)° —1
109 T2 +5T+3
163 5T? +2T +6

(This is an example of the calculation done by Y. Yamazaki [49].) These polynomials
are well defined modulo (9, (1 + T)® - 1). So for any a € 373, f{(a) mod?9 is well defined.
We have f!®(a) = 0 (mod9) & a = 3 (mod9) and f{!%(a) = 0 (mod9) & a = 6 (mod9).
This shows that the ideal (7 — a, ;'”(T), ;'®*(T)) of A/(9,(1+ T)’ — 1) must contain
3 for any a € 3Z3. Hence, Fitt; 5, (Xp, ) contains 3. So Xy, corresponds to the matrix

T —a 3 )
( c T_ a> (cf. also Koike [20], p. 392, Table 2).

10. Elliptic curve with ordinary reduction at p

In this section, we study the Selmer group of a modular elliptic curve with good
ordinary reduction at p by the above method.

Let E be an elliptic curve defined over Q (so a modular elliptic curve) such that E has
good ordinary reduction at p. We assume that p = 5.

For Q(u,,)", we denote by 0& .,y the modular element defined by Mazur and

m

1
Tate [25], so Hg(# y ZEZ[a/m]Eaa € Q[Gal(Q(y,,)"/Q)]. (Here, [a/b]; is defined in
the following way. Let f(z) = > a, exp(2ninz) be the modular form corresponding to E.
We define [a/b]; by 2n f‘f<g+ iy) dy = [a/b]; QL + [a/b];Q) where Qf are the Néron
0

periods. cf. [25], p. 716.) For a real abelian field F with conductor m, we define 6 to be the
image of 045(# j+ by the natural map @ [Gal(Q(u,,)"/Q)] — Q[Gal(F/Q)].

As before, F, /F denotes the cyclotomic Z,-extension, and F, the n-th layer.
Let o be the unique solution of 7% —a,T+p=0 such that ord,(«) =0 where
ay=p—+1—#E(F,). For n>1, we define 9, = o (a0} —vg,r, ,(0F ). Then, for
n > 0 9g’s become a projective system with respect to the natural maps.

In the following, we assume that p is tamely ramified in F/Q, E(F) does not contain
a point of order p, and p does not divide the Manin constant of E. Then, by Stevens [43],
Theorem 4.6, 35, is in Z,[Gal(F,/Q)] and (8F,) defines an element 9z, € Z,[[Gal(F,,/Q)]].

We first assume that the extension F'/Q satisfies the condition (A,) in §3. For a prime
v of F, e, /g denotes the ramification index of v in F/Q, and x(v) denotes the residue
field of v. We assume that #FE (K(v)) [p] * p? for any good reduction prime v with ple,, F/Q-
Using the notation in §2 and §3, we define @ to be the ideal of Z,[[Gal(F,,/Q)]] gen-
erated by vg, u, (9, ) forall M e (%p/@)<p).
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Next, we consider a real abelian field F such that p is tamely ramified, and
E(F)[p] = 0. Using (a variant of ) Lemma 2.3, we can take a real abelian field F' > F such
that F'/F is an unramified p-extension and F’ satisfies the condition (A,). Note that

p is tamely ramified in F’ and E(F’)[p] = 0. We again assume that #E(x(v))[p] + p?
for any good reduction prime v of F’ with ple, r//g. For such F, we define O, g by
OF,.£ = ¢ryr, (OF) E).

For any algebraic extension .7 /Q, we denote by Sel(E/Z ) the Selmer group of E
over # with respect to E[p*], namely

Sel(E/7) = Ker(H' (7, E[p”]) — l:IHl(%E[pw])/(E(%) ® Q)/2,))

where v ranges over all primes of % . For an abelian field F' as above, we consider the
Pontrjagin dual Sel(E/F,)" of the Selmer group, which is a finitely generated torsion
Z,||Gal(F,, /Q)]]-module by Kato’s theorem [19].

Conjecture 10.1.
Fitty 7 (Gai(r, ja)) (Sel(E/F.)") = O, .

Theorem 10.2. Assume that F satisfies the above conditions, and the (algebraic) u-
invariant of F, for E vanishes, namely Sel(E/F.,)" is a finitely generated Z,-module. Then,
we have

Fltto Z,[[Gal(F, (SCI(E/F ) ) >0, E.
We will prove this theorem in the next section.
Corollary 10.3. Suppose that p* does not divide m. We assume that F = Q(u,,)"

satisfies the conditions in Theorem 10.2. We further assume that a, % 1 (mod p) (not anom-
alous). Then, we have

E . v
O,y € Fitty 7, Gaau,) /o) (S (E/Q(1,,) "))

Mazur and Tate conjectured 05, |+ € Fitty 7 (aa(s, /) (Se1(E/Q(x,,) ")) in
general (Conjecture 3 in [25]). !

Theorem 10.2 immediately implies Corollary 10.3. We will give here the proof. We
first assume (m,p) = 1. By the property (1) in [25], 1.3, we have

cr, ;r(95,) = (2 — alp, +¢,") +1)0F
where ¢, is the Frobenius of p in Gal(F/Q). By our assumptlon a, =1 (modp),

EN (modp) Since o? —oz((op—Hﬂp )4+ 1=(a—1)* +a(p, — 1)((pp —1), it is a unit.
Hence, the surjectivity of Sel(E/F.,)" — Sel(E/F)” with

917 EFlttOZ L [[Gal(F, /Q)]] (SGI(E/F ) )

implies 05 € FittO,ZP[Gal(F/@)] (SCI(E/F)V).



Kurihara, Iwasawa theory and Fitting ideals 77

Next, suppose m = pm’ and (m’, p) = 1. Put K = Q(u,,)". As above, the property
(4) in [25], 1.3, and 9, € Fitty 7 jGar, o)) (Sel(E/F.)") imply

O(Hf — VF/K(0[€> € FittO,Z,,[Gal(F/@)] (Sel(E/F)V).

Since [F : K] is prime to p, 0% € Fitty 7 (Gaix/a) (Sel(E/K)") implies
v/ (0%) € Fitto, 7 (Ga(r/a) (SEl(E/F)").
Thus, we get 0% € Fitto 7, (Gai(r/a) (SEl(E/F)”).

Theorem 10.2 (and Corollary 10.3) implies a similar statement as Theorem 8.1 on the
higher Fitting ideal.

We use the same notation as §8. Let /,...,/, be prime numbers such that
/i =1 (mod p") and /s are unramified in F/Q. We take L to be the maximal p-extension
of Fin F(u, ,). We put Ag, = Z,[[Gal(F,./Q)]] and Ar, = Z,[[Gal(L,/Q)]], and take
ni,...,ny, s as in §8. We can define 6;,_; (x) € Ap, /pY ™ for x € O, . We assume L sat-
isfies the assumptions of Theorem 10.2.

From Theorem 10.2, as in §8, we obtain

xe®p, g wherei=i+---+i.

-----

Remark 10.5. We get a similar statement for J; ir(@g(ﬂ y+) by using Corollary
10.3. Corollary 10.4 (and also the statement for Hg(ﬂ )+) gives information on the upper

bound of the Mordell-Weil rank of E over F. (Concerning the Mordell-Weil rank, see also
Proposition 3 in Chap. 1 of Mazur and Tate [25].)

11. Proof of Theorem 10.2

Theorem 10.2 can be proved by the same method as Theorem 0.9. Instead of Corol-
lary 5.3, we have

Proposition 11.1. Suppose that L is a real abelian field of finite degree, and K is a
subfield of L such that L/K is a p-extension. We assume that E(L)[p] = 0. We denote by
Py the set of all finite primes of K., which are prime to p. Then, we have an exact sequence
of Z,|[Gal(K,, /Q)]|-modules

0— PT,(E)®Z,/eeZ, ® D Z/e,Z(1) — (Sel(E/LOO)V)GaMw/Kw)

veT) veT,
— Sel(E/Ky,)" — 0
where
Ty = {v e Py _| E has good reduction at v,v is ramified in L, /K,
and E(K, ;) has a point of order p},
T, = {v e Pg_| E has split multiplicative reduction at v and v is ramified in L, /K. },
e, is the ramification index of v in L., /K., and T,(E) is the Tate module of E.

Instead of Lemmas 5.4 and 5.5, we have
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Lemma 11.2. In the situation of Proposition 11.1, we further assume that the (alge-
braic) p-invariant of K., for E is zero. Then, the natural map

Sel(E/Ky)" = (SCI(E/LOO)V)GH‘I(L*/K%)

is an isomorphism.

Lemma 11.3. [In the situation of Lemma 11.2, suppose that G = Gal(L.,/K) is
cyclic, and y is a faithful character of G. Then, (Sel(E/LOO)V)w =Sel(E/Ly)" ®z,16) Z,[Y]
does not have a non-trivial finite 7,\y|[|Gal(L., /L)]]-submodule.

Proof of Theorem 10.2. Let y be a character of Gal(F/Q) (whose order is not nec-
essarily prime to p), and F, be the subfield of F which is fixed by the kernel of . Then, by
Kato’s theorem [19], the characteristic power series of (Sel(E/F, ,)")” divides 8;‘;7 _.(Note
that we assumed the algebraic p-invariant vanishes, so the ambiguity of the ﬂiiﬁvariant
in Kato’s theorem disappears.) Hence, applying Lemma 4.1 we obtain Theorem 10.2 by
the same method as the proof of Theorem 0.9, by using Proposition 11.1 and Lemmas 11.2
and 11.3 instead of Corollary 5.3, and Lemmas 5.4 and 5.5, respectively. Suppose that v
is a good reduction prime of F with ple, ¢ /o and / is a prime of Q below v. Then, by our
assumption, @ T,(E) is cyclic as a Z,[[Gal(F,,/Q)]]-module where w ranges over all

w|/
primes of F,, thove /. This property is needed to check the property (v) of Lemma 4.1.

Proof of Proposition 11.1. Let S be the set of the primes of K,, which lie above p,
or ramified in L., /K, or bad reduction primes. We denote by Ok, [1/S] the ring of S-
integers (the set of elements whose valuations at primes outside S are non-negative). By the
definition of the Selmer group, we have an exact sequence

0 — Sel(E/K.) — Hy(Ox, [1/S], E[p™]) — EBSHI(Koo?u,E)[p”}-

(For an abelian group 4, A[p™] denotes the subgroup of elements whose orders are powers
of p.) Since Sel(E/K.,)" is a torsion Z,[[Gal(K,, /K)]]-module by Kato’s theorem [19], the
last map in the above exact sequence is surjective (cf. Greenberg [12], Lemma 4.6 or [11],
Consequence 2).

Let O. [1/S] be the integral closure of Ok, [1/S] in L.,. By our assumption
E(L) [p] = 0: we have E(Lao)[p] = 0, hence

HY(Ox, [1/S], E[p™]) — H (O, [1/S], E[p~])* /%)

is bijective. We consider the same exact sequence as above for L., and apply the snake
lemma. Then, by the above consideration, what we have to show is the Pontrjagin dual of
the kernel of

D H'(Ke0, E)[p™] = @ H' (Lo, E)[p”]

veS weS

is isomorphic to @ T,(E) ® Z,/e,Z, ® @ Z/e,(1) (where S is the set of primes of L.,
lying over S).  v€Th veTy
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If v divides p, by Coates and Greenberg [4], Theorem 3.1 and Lang’s theo-
rem, Hl(LOO.W/KOOﬂU,E(LOCW)) =0, hence H' (K, ,, E)[p*] — H' (L., ., E)[p™] is injec-
tive. If £ has non-split multiplicative reduction or additive reduction at v, we also have
H'" (Lo /Koo, E(Ls ) [p*] = H' (Les,w/Koo,0, E(Los, ) [p™]) = 0 by [16], Proposition
5.1. So we get the same conclusion. In the case E(K ,)[p] = 0, we have E(L, ,)[p*] =0,
and also get the same conclusion. Hence, it is enough to show the next lemma.

Lemma 11.4. Suppose that ¢ + p, K is a finite extension of Qy, K, is the cyclotomic
Z,-extension of K, and 8!, /K., is an abelian extension of degree p" (so totally ramified). Let
E be an elliptic curve over K.

(i) If E has good reduction over K and E(RK,)[p| 0, the Pontrjagin dual of
H'(R] /R, E(R))) is isomorphic to E[p"].

(i) If E has split multiplicative reduction over KR, the Pontrjagin dual of
H'(R /R, E(R))) is isomorphic to Z /p"Z(1).

Proof of Lemma 11.4. By Tate’s local duality, the Pontrjagin dual of
H' (K] /R, E(K)) is isomorphic to lim E(K,)/NE(K,,) where N : E(K) ) — E(R,) is
the norm map. Since K’ /K., is totally ramified, we may assume that & /R, is totally
ramified of degree p”. We may assume n > 0.

!
m

(i) Let x, be the residue field of &K,. Since E(R,)[p]+0 implies
E(R,)[p*] = E[p”] ([16], Proposition 5.1), considering the usual filtration on E(R,),
we have E(R,,)/NE(R)) ~ E(ky) ® Z/p" ~ E(kn)[p"] ~ E[p"] for sufficiently large m.
Hence, we get the conclusion.

This can be also checked in the following way. As in the proof of Hachimori and
Matsuno [16], Corollary 5.2, we have

H'(8], /K., E(8,)) = Hom(Gal(8/,/K..), E[p”]) = Hom(Z/p"(1), E[p”]).
Since the Weil pairing induces E[p"]” ~ E[p"](—1), the above implies the conclusion.

(i) Since E is a Tate curve, we can write E(R,,) = &1 /g’ for some ¢. Hence,
E(R,)/NE(8,) ~ Gal(K,,/R,,) by local class field theory. Thus,

lim E(R,,)/NE(R,) ~ Gal(R, /8..) ~ Z/p"Z(1).

Proof of Lemma 11.2. By Kato’s theorem ([19]), Sel(E/K,,)" is a finitely generated
torsion Z,[[Gal(K,,/K)]]-module, and by Greenberg’s theorem (Greenberg [12], Proposi-
tion 4.14), it does not have a non-trivial finite Z,[[Gal(K,, /K)]]-submodule. Hence, it is a
free Z,-module. So the injectivity follows. The surjectivity follows from Hachimori and
Matsuno [16], Theorem 6.3.

Proof of Lemma 11.3. By using Lemma 11.2, this can be proved by the same
method as Lemma 5.5.
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12. Cohomology of Z,(r)

In this section, we study the etale cohomology group

H2(OF(1/p], Z,(r)) = HZ(OF([1/p), Z,(r))

for a totally real number field F and a positive even integer r. It is isomorphic to
H?*(Gr,p, Z,(r)) where Gr,, = Gal(F™? /F) is the Galois group of the maximal extension
of F unramified outside p over F.

Let k be a totally real number field and F/k a finite abelian extension. For a positive
even integer r, we consider 0, (1 —r) € Q[Gal(F /k)] where 0, (s) is as in §2. We use the
notation in §2. By the same method as Lemma 2.1, we have

Lemma 12.1.  In the situation of Lemma 2.1, we have
e (0r(1=1) = (T (1= N@)""9"))0u(1 =)
L“ESF\SM
where N (v) = #x(v) (k(v) is the residue field of v).

Let F,/F be the cyclotomic Z,-extension. By this lemma, we know that
(0F, (1= r)) becomes a projective system for n> 0, and we can define 0, (1 =7).
Let 0F, be as in §3, and 7 : Q(Z,[[Gal(F.. /k)]]) — Q(Z,[[Gal(F../k)]]) be the ring homo-
morphism defined by o — x(0)o for o € Gal(F., /k) (i : Gal(F., /k) — Z, is the cyclotomic
character). If 4, = F, we have ([26], Chap. 1, §5, Proposition 1)

HEE/k(l — }’) = ‘L'lirepm.

We assume that F' satisfies the conditions in the subsection 3.1, especially the condi-
tion (A,). As in 3.1 we define

(@, k(1 = 1)) = ({vr, jar, (Onr, (1 = 1)) | M € (M)}
and
(©r, (1= 1)) = (O, (1 — 1)) A Z,[[Gal(F,, /k)]).
Next, we assume that F' satisfies the conditions in the subsection 3.2. We define
(@, i1 = )" = ey yr, (O, (1= 1)),

We also define

H2(OF, [1/p), Z,(r)) = lim H?(Or,[1/p], Z,(r))
which we regard as a Z,[[Gal(F,, /k)]]-module.

Theorem 12.2. Suppose that F is a totally real number field, and satisfies the con-
ditions in the subsection 3.2. We also assume that the Iwasawa p-invariant of F,(u,) is zero.
Then, we have

Fitto,z, Gar, ) (07 (OF, [1/p),Z,(1)) = (O, (1 = )"
In particular, (O, /(1 — r))(p) annihilates 1> (Op, [1/p], Z,(r)).

We will prove this theorem later. In the same way as Corollary 0.10, we have
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Corollary 12.3.  For any real abelian field F, we have

Fitty 7 (cai(r, ) (H* (OF, [1/p], Z,(r))) = (O, jo(1 - V))(p)-

Since the p-cohomological dimension of Op[l/p] is 2, for any n >0 and any
Galois extension L/F which is unramified outside p, by [37], Chap. I, Prop. 17,
H?(0.[1/p], Z/p"(r))Gal<L/F> — H?*(Of[1/p],Z/p"(r)) is bijective. Hence,

HZ(O& [1/p], ZP(V))Gal(F%/F) = HZ(OF[I/P]a Zp(r))
is an isomorphism. Therefore, by Corollary 12.3 we have

Corollary 12.4. For any real abelian field F, we have

Fitto, 7, (Gal(F/0)) (H*(0r[1/p], Z,(r))) = cr, /7 ((OF, jo(1 — ”))(p))-

Let F be a real abelian field of finite degree with conductor m. Following Coates and
Sinnott [5], for a positive integer b with (b,m) = 1, we put

Sy (b) = w,(Q)(b" — @b)eF/@(l —7)

where w,(Q) = #H"(Q, Q/Z(r)), and ¢, = (b, F/Q). We have S,(b) € Z[Gal(F/Q)] ([5],
Theorem 1.2).

We define

H2(0r, 7'(r)) = E[zHZ(OF[l/p],Zp(r))

where p ranges over all odd prime numbers. A well known conjecture by Quillen-
Lichtenbaum claims that H?(Op, Z'(r)) is isomorphic to the K-group K»,—>(Ofp) @ Z'.

Corollary 12.5. For any real abelian field F, we have

S:(b) € Fittg 7(Gair/a) (H*(OF, Z'(r))).

Conjecture 1 in Coates and Sinnott [5] claims that S,(b)K>—2(OF) = 0, so it would
imply S,(b)H*(OpF,Z'(r)) = 0. Hence, we can regard Corollary 12.5 as a refinement of
their conjecture because Corollary 12.5 says that S,(b) is not only in the annihilator of
H?(OF,Z'(r)), but also in the Fitting ideal. Cornacchia and @stver proved in [6] this
corollary for F with prime power conductor.

Proof of Corollary 12.5. By Corollary 124
Sy(b) € cr, (O, ja(1 — r)) for each odd prime p.

, it is enough to show

First of all, note that ¢x_/r(0p, (1 —r))/0p(1 —r) is a unit by Lemma 12.1 because
1—p~'p,1is a unit. Put L= F(u,). Since 7' (0., /o(1 —r)) = 0L, by the property
(i) in 3.1, (1 —x(0)"0)0L, jo(1 —r) is in Z,[[Gal(L,/Q)]] for any ¢ € Gal(L../Q). So

(1 =x(0) g, )0k, j0(1 = 1) € (OF, jo(l - r))(p) for any o € Gal(L,,/Q).
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If b is prime to p, taking ¢ = (b, L,,/Q), we know

(b" — 0)0r /(1 = 1) € cr, yr (OF, ja(l —1)).
Hence, in this case we have the conclusion of Corollary 12.5.

Next, suppose that p divides b. Then, m is prime to p. Let y be a generator of
Gal(L.,/L). Then, ¢, /r(1 — x(y)""y) € Z, satisfies

ord, (cg, /r (1 —x(y)"y)) = ord,(r) + 1 = ord, (w,(Q)).

Hence, we have w,(Q)0p /(1 —r) ecF%/F(G)FA/@(l —r)). This completes the proof of
Corollary 12.5.

Remark 12.6. In the above proof of Corollary 12.5, we showed

(1 —x(0)"0),)0r/a(1 — r) € Fitt 7 (Gar/a) (H* (OF[1/p], Z,(r)))

for o € Gal(L.,/Q). This implies
AnngGarye) (H° (F,Q/Z(r)) ® Z')0p/o(1 — r) = Fitty z1Gar/a) (H* (OF, Z'())).

Burns and Greither proved in [2] this inclusion in the case F/Q is cyclic by a different
method. They obtained this inclusion by proving a beautiful result on the Fitting ideal of
H?(0F[1/S],Z,(r)) for a general CM field F and any r > 0 where S is a set of primes
containing ramifying primes in F/k and primes above p. For the Fitting ideal of
H?(OF[1/S],Z,(r)), see also Snaith [41] and Nguyen Quang Do [27].

Proof of Theorem 12.2. We can prove Theorem 12.2 by the same method as the
proof of Theorem 0.9. Instead of Proposition 5.2, we have

Lemma 12.7. Suppose that L/K is a Galois extension of number fields of finite degree
with Galois group G. Let S be the set of the primes of K which are above p or ramified in
L/K. We denote by S’ the set of ramifying primes of L in L/K which are prime to p. We
denote by Or[1/S] the ring of S-integers. Then, we have an exact sequence

Hy(G, H2(0L[1/5],Z,(r))) — H, (G, D HZ(LW,Zp(r))>

weS’

— H?*(0.[1/p), Z,(r)) ; — H*(Ok[1/p], Z,(r)) — 0.
Proof of Lemma 12.7. By the localizing sequence,

0 — H*(OL[1/p], Z,(r)) — H*(OL[1/S),Z,(r)) — @ H*(Lw,Z,(r)) =0
weS’
is exact. Similarly,

0 — H*(0k[1/p), Z,(r)) — H*(0x[1/S),Z,(r)) — @ H* (K, Z,(r)) — 0

veS’
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is exact where S’ is the set of primes of K below S’. Since both
H*(01[1/5),Z,(r)), — H*(0k[1/S],Z,(r))

and

(@ H(Ln2,()) = @ H(KnZ,(1)

o~ y I
weS’ ves

are bijective (the p-cohomological dimensions of Ok[1/S] and K, are 2), taking the
homology of the first exact sequence, we obtain Lemma 12.7.

In several cases, it is not difficult to compute Hl(G, @ Hz(Lw,Zp(r))). For
example, instead of Corollary 5.3 we have wes'

Lemma 12.8. Suppose that L/k is a finite abelian extension, and K is a subfield of L
such that L/K is a p-extension. We assume that the primes above p are tamely ramified in
L/k. We denote by S’ the set of the primes of K., ramifying in Ly, /K. Then, the sequence

H\ (Lo, /Ky, H* (0L, [1/S],Z,(r))) — @ Z/e,Z(r)

vesS’
— W00, 1L Z")) e . — WO, [1/p),Z,()) — 0
is exact where e, is the ramification index of vin L., /K.

Proof of Lemma 12.8. 1t is enough to compute

H, (L@/Koo, ® [I-[IZ(LOCM,,ZI,(r))) = @ H (LKoo, H2(Lop s, Z,(r))).

weS’ veS’

Let v be a prime in S’, w a prime above v, and / the characteristic of the residue field of v.
By our assumption, we have / % p. Hence, L, /K , is totally ramified and cyclic. Since
L., #+ K ,, by local class field theory the residue field of v contains a primitive p-th root
of unity. Thus, by Tate duality

H?(Loo, v, Zy(r)) = H*(Loo, v, @/ Z,(1 = 1)) = Q,/Z,(1 — 1)’ = Z,(r — 1).
Hence, we have
H\(Los /Koo, H? (Lo 1, Z,(1))) = H (Lo /Koo, 0 Zy(r — 1))
=H" (Lo, o/Koo,0, Zp(r — 1)) (1) = Z/e, Z(r)
because L, ,,/K, , is cyclic.
Instead of Lemma 5.4, we have
Lemma 12.9. [In the situation of Lemma 12.8, we assume that L is totally real,

Gal(L./K) is cyclic, there is a totally ramified prime in L. /K., and the Iwasawa
p-invariant of K(uw, ), vanishes. Then, the natural map
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~ Gal(L, /K
W2 (Ok. [1/p]. Z,(r)) = 1 (0L [1/p]. Z,(r)) "%

is bijective.

We first need the following lemma.

Lemma 12.10.  For a totally real number field K, H*(Ox, [1/p], Z,(r)) does not have a
non-trivial finite Z,[[Gal(K, / K)]|-submodule.

Proof of Lemma 12.10. By Coates [3], Theorem 11,

H2(0K,1[1/P]>Zp(”)) - HZ(OK,M [I/P],Zp(”))

is injective for all n. Since

H? 0k, [1/P], Z(M) gk, 15y — H (Ox,[1/p), Z,(r))
is bijective, the conclusion of Lemma 12.10 follows from the above injectivity.

Proof of Lemma 129. By Lemma 12.10 and our assumption u =0,
I]-I]Z(OK% [1/p],Z,(r)) is a free Z,-module. Hence, the injectivity follows by the norm argu-
ment.

Consider an exact sequence

(%) 0 — H*(0r,[1/p), Z,(r)) — H*(Or, [1/S), Z,(r))

— @ H (Lo, Z,(r) = 0

weS’

which is obtained from the localizing sequence. Put G = Gal(L.,/K,). Using the Serre-
Hochschild spectral sequence, we have

H2(G.#2(01,1/5].2,01)) = H*(G,4' (01, 1/51.2,(1)
~ Hz(G, IH]O(LOO, @p/ZP(I’))(—l))-

Let vy be a prime which is totally ramified in L., /K., and w, be the prime above vy. Simi-
larly, we have

H*(G,H*(Loo, s Zp(r))) ~ H*(G,H°(Les wy, @p/Z,(r — 1))).
Hence,

H2(G,H2(0L, [1/5],Z,(r))) —>H2<G, D Hz(Lw,zp(r)))

weS’

is injective.
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On the other hand, from the isomorphism

(@ WL 2,)) > @ B (K Z,(0),

weS’ G ves’

we have H'! (G, @ H*(Loo,w, Zp(r))) = 0. Hence, taking the cohomology of the above
weS’

exact sequence (x), we get H>(G,H?*(Oy, [1/p], Z,(r))) = 0. This shows the surjectivity of

the map in Lemma 12.9.

Lemmas 12.9 and 12.10 imply the following lemma which corresponds to Lemma 5.5.

Lemma 12.11. In the sztuatlon of Lemma 12.9, for a faithful character  of
Gal(L.,/K.), H*(Or, [1/p), [,(r)) H*(OL.,.[1/p], Z,(r)) ®2z,(6) ZpW] does not have a
non-trivial finite Z,[\y|[[Gal(L., /L)]]-submodule.

We go back to the proof of Theorem 12.2. Let y be a character of Gal(F/k) (whose
order is not necessarily prime to p), and F, be the subfield of F which is fixed by the kernel
of y. Consider a Z,[y][[Gal(F,, . /F,)]]-module I]-I]z(OFZ‘,,c [1/p], Zp(r))x. Suppose y + o'
The main conjecture proved by Wiles [47] implies that the characteristic ideal of

2( [1/p],Z,(r))” is equal to (0F, k(1 —1)*). For y = &', the main conjecture im-
plies that the characterlstlc ideal is generated by the numerator of 0r, , (1 —r)”. Hence,
using above lemmas and Corollary 4.2, we obtain Theorem 12.2 by the same method as the
proof of Theorem 0.9.
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