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Iwasawa theory and Fitting ideals

By Masato Kurihara at Tokyo

Abstract. By studying the Fitting ideals of the minus parts of the ideal class
groups of CM fields, we give a more precise relationship than the usual main conjec-
ture between the analytic side and the algebraic side. In particular, for the cyclotomic Zp-
extension Fy of an abelian field F , we determine the initial Fitting ideal of the minus part
of the Galois group of the maximal unramified abelian pro-p-extension of Fy over Fy as
a Zp½½GalðFy=QÞ��-module. We also study the Fitting ideals of the Selmer groups of an
elliptic curve and certain Galois cohomology groups.

0. Introduction

Iwasawa theory studies a relationship between arithmetic objects and special
values of the zeta functions. Their relationship is usually stated as a main conjecture which
claims that the p-adic L-function defined p-adic analytically gives a characteristic power
series of the arithmetic object. In this paper, we show that we can get more information
on the arithmetic object than the characteristic power series by studying p-adic analytic
zeta functions, namely p-adic measures on the Galois groups of abelian extensions of the
ground field.

Our main tools are Fitting ideals (for the definition, cf. 1.1). In this paper, first of all,
we study the initial Fitting ideals of ideal class groups. Let F=Q be an imaginary abelian
extension of finite degree, and ClF the ideal class group of F . In this paper, we neglect the
2-primary part and only consider Cl 0F ¼ ClF nZ 0 where Z 0 ¼ Z½1=2�. We regard Cl 0F as
a Z 0½GalðF=QÞ�-module. Note that every Z 0½GalðF=QÞ�-module M is decomposed into
M ¼MþlM� where Mþ (resp. M�) means the part on which the complex conjugation
acts as 1 (resp. �1). We will study the minus part of the initial Fitting ideal

Fitt0;Z 0½GalðF=QÞ�ðCl 0F Þ
� ¼ Fitt0;Z 0½GalðF=QÞ�

�
ðCl 0F Þ

���HZ 0½GalðF=QÞ��:

In general, for an R-module M, the Fitting ideals Fitti;RðMÞ give information on
the structure of the R-module M (cf. 1.1). In §2 we will define the Stickelberger ideal
YF=QHZ 0½GalðF=QÞ�, which is essentially generated by the Stickelberger elements of abe-
lian fields. (For a cyclotomic field F ¼ QðmmÞ, our Y�F=Q coincides with Sinnott’s Stick-
elberger ideal [39], but for an abelian field our ideal is slightly di¤erent from Sinnott’s
Stickelberger ideal [40], in general.) We first propose



Conjecture 0.1. Fitt0;Z 0½GalðF=QÞ�ðCl 0F Þ
� ¼ Y�F=Q.

Remark 0.2. (1) The left hand side of Conjecture 0.1 is an algebraic object and the
right hand side is an analytic object (in the sense that the Stickelberger elements are related
to the zeta functions). So this conjecture gives a relationship between the algebraic side
and the analytic side. Conjecture 0.1’s for all n-th layers of the cyclotomic Zp-extension
Fy=F formally imply the usual Iwasawa main conjecture for Fy and an odd Dirichlet
character (for an odd prime p). We will also see that this conjecture contains more infor-
mation than the usual Iwasawa main conjecture, so this is a refinement of the usual Iwa-
sawa main conjecture.

(2) Stickelberger’s theorem implies that YF=QHAnnZ 0 ½GalðF=QÞ�ðCl 0F Þ where
AnnZ 0½GalðF=QÞ�ðCl 0F Þ is the annihilator of Z 0½GalðF=QÞ�-module Cl 0F . In general, the Fit-
ting ideal is contained in the annihilator, so the above conjecture may also be regarded as a
refinement of Stickelberger’s theorem for the minus part of the ideal class groups.

(3) The minus component Cl�F is usually defined to be the cokernel of the natural
map ClF þ ! ClF where F þ is the maximal real subfield of F . Mazur and Wiles in [26]
posed the problem to determine the initial Fitting ideal Fitt0;Z½GalðF=QÞ�ðCl�F Þ of Cl�F com-
pletely. If Conjecture 0.1 is true, it would give an answer to their problem except 2-primary
component because

�
Fitt0;Z½GalðF=QÞ�ðCl�F ÞnZ 0

�� ¼ Fitt0;Z 0½GalðF=QÞ�ðCl 0F Þ
�.

(4) After the first version of this paper was circulated, I was informed of several
people’s works on the Fitting ideals of ideal class groups and some cohomology groups. I
would like to thank heartily D. Burns, C. Greither, T. Nguyen Quang Do, C. Popescu, J.
Ritter, V. Snaith, and A. Weiss for giving me some comments. In [13], Greither determined
the Fitting ideal of Cl�F under the assumption that F is ‘‘admissible’’ in the sense of [13].
This condition ‘‘admissibility’’ was improved in [14] to ‘‘niceness’’. For a CM field F over a
totally real field k such that F=k is finite abelian and ‘‘nice’’ in the sense of [14], Greither
determined the Fitting ideal of Cl 0F (by using the Stickelberger element of F ). For example,
QðmpnÞ=Q (with some prime p) is nice, and Greither’s result in [14] says that Conjecture 0.1
is true for F ¼ QðmpnÞ. A key point is that if F=k is nice, the Fitting ideal of ðClF nZpÞ�
over Zp½GalðF=QÞ� is locally principal for all odd p (cf. also Schoof [35]). But in Conjecture
0.1, we are dealing with general F, and one of our di‰culties lies in treating the Fitting ideal
which is not principal. (In §8 we need essentially the general case to investigate the higher
Fitting ideals.) For the Fitting ideals of class groups of real abelian fields, see also Cor-
nacchia and Greither [8]. Ritter and Weiss established a refinement of the Iwasawa main
conjecture from a di¤erent point of view (cf. Remark 0.11 (2)).

Fitting ideals are elementary objects, and our conjecture has the advantage to get
information on ideal class groups more directly than other ‘‘main conjectures’’ which are
formulated by using some techniques of homological algebra (for example, equivariant
Tamagawa Number conjecture cf. [18] and [1]). It would be interesting to find beautiful
relations between natural objects rather than modifications of the objects. (We also remark
that Burns and Greither [2] recently determined the Fitting ideal of certain cohomology
groups, using the equivariant Tamagawa Number conjecture proved in [1].)

Note that the ideal Fitt0;Z 0½GalðF=QÞ�ðCl 0F Þ
� is determined if we determine the ideals

Fitt0;Z 0 ½GalðF=QÞ�ðCl 0F Þ
�nZp ¼ Fitt0;Zp½GalðF=QÞ�ðClF nZpÞ�HZp½GalðF=QÞ�� for all odd

prime numbers p. So Conjecture 0.1 is equivalent to the following Conjecture 0.3 for all
odd p.
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Conjecture 0.3. Let p be an odd prime. Then we have

Fitt0;Zp½GalðF=QÞ�ðClF nZpÞ� ¼ ðYF=QnZpÞ�:

In several cases we can verify this conjecture easily. For example, suppose that p does
not divide the class number of F . Then, Conjecture 0.3 is trivial because both sides of the
formula are equal to Zp½GalðF=QÞ�. (For the right hand side, this follows from the analytic
class number formula, cf. [39], [40].)

Next, consider the case that the degree ½F : Q� is prime to p. Then, Zp½GalðF=QÞ� is
a product of discrete valuation rings, and the conjecture just claims that every component
of the ideal class group has the right order. This was proved by Mazur and Wiles [26], §10,
Theorem 2 in Chap. 1 as a corollary of the Iwasawa main conjecture, so Conjecture 0.3
holds in this case.

Let us call the case p j ½F : Q� ‘‘non-trivial’’ case. We proceed to the non-trivial cases.

Theorem 0.4. Assume that no prime of F þ above p splits in F=F þ. Then Conjecture

0.3 holds.

Theorem 0.5. Suppose that K is an abelian field such that the degree ½K : Q� is prime

to p, and Kn is the n-th layer of the cyclotomic Zp-extension Ky=K for some n > 0. Then
Conjecture 0.3 holds for F ¼ Kn.

Theorem 0.6. Suppose that p is tamely ramified in F=Q, and F does not contain a

primitive p-th root of unity. Then Conjecture 0.3 holds.

Combining Theorems 0.5 and 0.6, we obtain

Corollary 0.7. Suppose that K=Q is a finite abelian extension such that every odd

prime dividing ½K : Q� is unramified in K=Q. We take an odd prime p which does not divide

½K : Q�. Then, for nf 0, Conjecture 0.1 is true for F ¼ KðmpnÞ.

This corollary is a generalization of a result of Greither that Conjecture 0.1 is true for
F ¼ QðmpnÞ.

These theorems are obtained by consideration of cyclotomic Zp-extensions. We fix an
odd prime number p, and for a general number field F we denote by Fy=F the cyclotomic
Zp-extension. We consider the p-primary component AFn

of ClFn
for the n-th layer Fn, and

define

XFy ¼ lim � AFn

where the projective limit is taken with respect to the norm maps.

Let k be a totally real number field, and F be a CM field such that F=k is a finite
abelian extension. We regard XFy as a Zp½½GalðFy=kÞ��-module and study its Fitting ideal.
We assume F satisfies the conditions in the subsection 3.2 in §3, namely the existence of the
auxiliary field F 0 as in 3.2 for F and the Leopoldt conjecture for k. In §3, we will define the
Stickelberger ideal YFy=k of Zp½½GalðFy=kÞ��.
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Conjecture 0.8. For F satisfying the conditions in 3.2, we have

Fitt0;Zp½½GalðFy=kÞ��ðXFyÞ
� ¼ ðYFy=kÞ�:

Theorem 0.9. For F satisfying the conditions in 3.2, we assume that the Iwasawa m

invariant of Fy vanishes, namely XFy is a finitely generated Zp-module. Then, Conjecture 0.8
is true.

If k ¼ Q, the conditions in 3.2 are satisfied (F 0 always exists for F ), hence, from
Theorem 0.9 we obtain (we give the proof in §6)

Corollary 0.10. For any finite abelian extension F=Q and any odd p, we have

Fitt0;Zp½½GalðFy=QÞ��ðXFyÞ
� ¼ Y�Fy=Q:

Remark 0.11. (1) The Leopoldt conjecture is needed only for studying the
Teichmüller character component of XFy in the proof of Theorem 0.9 (more precisely, see
Remark 6.1 in §6). In this paper, our interest is mainly in the abelian fields over Q, and we
assumed in Conjecture 0.8 and Theorem 0.9 the strong conditions in 3.2. In our forth-
coming paper [24], we study general CM fields without assuming the existence of F 0 (but
study the dual of the ideal class groups). In a very recent preprint [15], Greither studied the
Fitting ideals of the Iwasawa modules of CM fields satisfying a weak assumption without
assuming the existence of F 0.

(2) Theorem 0.9 may also be regarded as a refinement of the usual Iwasawa main
conjecture (cf. Remark 3.6). We remark that Ritter and Weiss also obtained a di¤erent re-
finement of the usual Iwasawa main conjecture, which they call ‘‘equivariant Iwasawa
theory’’ [30], [31]. An essential di¤erence is that they consider the plus part XþS of the
Galois group of the maximal abelian pro-p-extension of Fy which is unramified outside S

over Fy where S is a set of primes which contains ramifying primes in Fy=k. On the other
hand, our interest is in XFy which is the Galois group of the maximal unramified abelian
pro-p-extension of Fy. Nguyen Quang Do informed me that he recently succeeded to
compute the Fitting ideal of a certain module related to XþS by using the result of Ritter
and Weiss [27].

(3) C. Popescu found an example of a finite abelian extension of function fields such
that the Stickelberger element (times an annihilator of the group of roots of unity) does not
belong to the Fitting ideal of the class group [29]. For cyclotomic Zp-extensions of number
fields, we can also construct a finite abelian field F=k such that the Stickelberger element of
Fy (times an annihilator of the group of roots of unity) does not belong to the Fitting ideal
of XFy if we remove the assumption in Conjecture 0.8 (if Fy=ky is wildly ramified at a
prime above p). We hope to come back to this point in our forthcoming paper.

These results on the initial Fitting ideals yield information on the higher Fitting
ideals. In §8 we study the higher Fitting ideals of ideal class groups. From the Stickelberger
elements we can define some elements di1;...; irðxÞ which we will show belong to the higher
Fitting ideal (Theorem 8.1). We propose Conjecture 8.2 which claims that under certain
hypotheses, the higher Fitting ideals of X�Fy would be generated by the Stickelberger ideal
and these elements di1;...; irðxÞ. These elements have relation with the argument of the Euler
system for number fields of finite degree. For example, for F ¼ QðmpÞ Rubin and Kolyva-
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gin determined the structure of A�QðmpÞ by using the Euler system of Gauss sums [32], and if

we state their theorem by using Fitting ideals, it says that the higher Fitting ideals of A�
QðmpÞ

are generated by the Stickelberger ideal and the elements d1;...;1ðxÞ. In Theorem 8.4, we
prove Conjecture 8.2 for the 1-st Fitting ideal Fitt1;Zp½½GalðFy=QÞ��ðXFyÞ. The argument of this

section will be used in [24] to determine the structure of the ideal class groups of certain
CM fields.

In §9 we study the case l ¼ 2. More precisely, for an odd Dirichlet char-
acter w of GalðF=QÞ, we consider the w-quotient X w

Fy
(cf. 1.3) which we assume to be a free

Zp½Image w�-module of rank 2. Then, we show that the isomorphism class of X
w
Fy

as a
Zp½w�½½GalðFy=FÞ��-module is determined completely by the Stickelberger elements, by
using the initial Fitting ideal and the 1-st Fitting ideal (see the explanation after Corollary
9.3). This also means that the isomorphism class can be determined easily by numerical
computation.

Our method can be applied for more general arithmetic objects. In §10 we study
the Selmer group of an elliptic curve. For an elliptic curve E defined over Q, Mazur and
Tate [25] defined the modular element yE

F for an abelian field F . They conjectured the
modular element is in the Fitting ideal of the Pontrjagin dual of the Selmer group ([25],
Conjecture 3). We take a prime p at which E has good ordinary reduction, and consider the
Pontrjagin dual SelðE=FyÞ4 of the p-primary part of the Selmer group over the cyclotomic
Zp-extension Fy. We define an ideal YFy;E of Zp½½GalðFy=QÞ�� which is essentially gen-
erated by the modular elements. We conjecture that it is equal to the Fitting ideal of
SelðE=FyÞ4 under certain hypotheses (Conjecture 10.1). Using Kato’s theorem [19], we
will show YFy;E is in the Fitting ideal of SelðE=FyÞ4 (see Theorem 10.2 and Corollary
10.3). Theorem 10.2 implies some results on the higher Fitting ideals (cf. Corollary 10.4
and Remark 10.5) which are similar to Theorem 8.1.

Even if E has supersingular reduction at p, we conjecture that the Fitting ideal
of SelðE=FÞ4 is essentially generated by the modular elements (cf. [23], Conjecture 0.3).
This is related to the asymptotic behaviour of the order of the p-primary torsion part of
SelðE=FnÞ4 as n!y.

In §12, for a totally real number field F and a positive even integer r, we consider
the etale cohomology group H 2

�
OF ½1=p�;ZpðrÞ

�
(which is isomorphic to H 2

�
GF ;p;ZpðrÞ

�
where GF ;p is the Galois group of the maximal extension of F unramified outside p over F ).
We will show under a certain assumption that the twisted Stickelberger elements are not
only in the annihilator of the cohomology group, but also in its Fitting ideal. (By a well-
known and easily proved fact, the Fitting ideal is in the annihilator, in general.) If F=Q is a
finite abelian extension and F is real, we will determine FittZp½GalðF=QÞ�

�
H 2ðOF ½1=p�;ZpðrÞ

�
completely. We will show that it is essentially generated by twisted Stickelberger
elements (Corollary 12.4). In particular, we will show an element SrðbÞ A Z½GalðF=QÞ�
defined by Coates and Sinnott [5] is in the Fitting ideal of H 2

�
OF ½1=p�;ZpðrÞ

�
(Corollary

12.5). This is a refinement of Conjecture 1 of Coates and Sinnott [5]. More generally,
for a totally real number field F and a subfield k such that F=k is abelian and sat-
isfies the conditions in the subsection 3.2, we will define the twisted Stickelberger ideal�
YFy=kð1� rÞ

�ðpÞ
HZp½½GalðFy=kÞ�� for the cyclotomic Zp-extension Fy, and will show

that it is equal to the Fitting ideal of H2
�
OFy ½1=p�;ZpðrÞ

�
¼ lim � H 2

�
OFn
½1=p�;ZpðrÞ

�
under

certain hypotheses (see Theorem 12.2 and Corollary 12.3).
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For the Fitting ideals of cohomology groups, many results have been obtained
by various authors. Cornacchia and Østvær determined in [7] the Fitting ideal of
H 2
�
OF ½1=p�;ZpðrÞ

�
for F with prime power conductor, and proved a refinement of Coates

and Sinnott conjecture for such a special F . V. Snaith [41] recently proved an interesting
relation between the Fitting ideal of H 2

�
OF ½1=S �;ZpðrÞ

�
and the twisted Stickelberger ele-

ments where S is a set of primes which contains ramifying primes in F and primes above
p, and OF ½1=S � denotes the ring of S-integers. Snaith’s approach is completely di¤erent
from ours, and interesting. After that, Burns and Greither proved in [2] a very beautiful
result, using the equivariant Tamagawa number conjecture (cf. [1]). Their result is more
precise than the above relation by Snaith. Especially, they determined the Fitting ideal
of H 2

�
OF ½1=S �;ZpðrÞ

�
completely. Their result also implies Corollary 12.5 in the case F=Q

in cyclic by a di¤erent method from that in this paper. An essential di¤erence is that we are
dealing with the Fitting ideal of H 2

�
OF ½1=p�;ZpðrÞ

�
directly, which is generated by several

(twisted) Stickelberger elements not only of F but also of some abelian fields (cf. Theorem
12.2 and Corollary 12.4), while Burns and Greither studied the Fitting ideal of
H 2
�
OF ½1=S �;ZpðrÞ

�
which they showed is generated by the (twisted) Stickelberger element

of F (times the annihilators of H 1). Nguyen Quang Do also announced to compute the
Fitting ideal of H 2

�
OF ½1=S �;ZpðrÞ

�
recently [27], using the result of Ritter and Weiss.

I would like to express my sincere gratitude to late Professor Iwasawa for his interest
in this work. A part of this work was done during my stay in Harvard University in 1992. I
would like to thank B. Mazur heartily for valuable discussion. I would also like to thank
J. Coates heartily for giving me a comment on the Stickelberger ideal of Iwasawa and
Sinnott. I also thank very much D. Burns, C. Greither, T. Nguyen Quang Do, C. Popescu,
J. Ritter, V. Snaith, and A. Weiss who gave me some information and helpful comments
after the first version of this paper was circulated. I especially thank C. Greither for sending
me his recent preprint [2] with Burns, and also for his paper [14] from which I learned the
argument avoiding the trivial zeros.

Notation. For an abelian group A and an integer n, A½n� (resp. A=n) denotes the
kernel (resp. cokernel) of the multiplication by n. For a positive integer n, mn denotes the
group of all n-th roots of unity. For a number field or a local field F , OF denotes the ring
of integers. For a group G and a G-module M, we denote by MG the G-invariant part of
M (the maximal subgroup of M on which G acts trivially), and by MG the G-coinvariant
of M (the maximal quotient of M on which G acts trivially).

1. Preliminaries

1.1. For a commutative ring R and an R-module M such that

Rm !f Rn !M ! 0

is an exact sequence of R-modules (where m and n are positive integers), Fitting ideals are
defined as follows. For an integer if 0 the i-th Fitting ideal of M is defined to be the ideal
of R generated by all ðn� iÞ � ðn� iÞ minors of the matrix corresponding to f . (If if n, it
is defined to be R.) This definition depends only on M and does not depend on the choice
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of the above exact sequence. We denote the i-th Fitting ideal of M over R by Fitti;RðMÞ.
So we have a sequence of ideals

Fitt0;RðMÞHFitt1;RðMÞH � � �HFittn;RðMÞ ¼ Fittnþ1;RðMÞ ¼ � � � ¼ R:

These ideals reflect the structure of M as an R-module. For example, assume that R
is a principal ideal domain and M is a finitely generated torsion R-module. Suppose

MFR=ða1Þl � � �lR=ðarÞ

with ða1ÞI ða2ÞI � � �I ðarÞ. Then we have Fitti;RðMÞ ¼ ða1 � . . . � ar�iÞ. So determin-
ing the Fitting ideals of M is equivalent to determining the structure of M in this case.
Another example is L ¼ R½½T �� where R is a complete discrete valuation ring. Let M be a
finitely generated torsion L-module such that M does not contain a nonzero L-submodule
with finite length as an R-module. (For example, suppose M is free of finite rank as an R-
module.) Then, Fitt0;LðMÞ is equal to the characteristic ideal of M, namely the ideal gen-
erated by a characteristic power series (cf. [26], Appendix).

1.2. Let k be a base field. For a finite abelian extension F=k and an inter-
mediate field M such that kHMHF , we consider the canonical homomorphism
GalðF=kÞ ! GalðM=kÞ defined by s 7! sjM . For a ring R, we denote by

cF=M : R½GalðF=kÞ� ! R½GalðM=kÞ�

the induced homomorphism on the group rings. In this situation,

nF=M : R½GalðM=kÞ� ! R½GalðF=kÞ�

denotes the homomorphism defined by

s 7!
P

cF=M ðtÞ¼s
t

for s A GalðM=kÞ where t ranges over elements of GalðF=kÞ such that cF=MðtÞ ¼ s. (cF=M
(resp. nF=M) is sometimes called the restriction (resp. corestriction) map.)

1.3. Let G be a finite abelian group, and p be a prime number. We consider a (p-
adic) character (homomorphism)

w : G ! Qp
�:

We define Zp½w� ¼ Zp½ImageðwÞ�, and define Zp½w�ðGÞ to be the Zp½G �-module which is Zp½w�
as a Zp-module, and on which G acts via w, namely s � x ¼ wðsÞx for s A G and x A Zp½w�ðGÞ.
For any Zp½G �-module M, we define the w-quotient of M by

M
w
ðGÞ ¼MnZp½G � Zp½w�ðGÞ:

We simply write M w for M w
ðGÞ in the case no confusion arises. For an element x of M, the

image of xn 1 in M w is denoted by xw.
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Suppose that G is an abelian group such that G ¼ H �H 0, and M is a Zp½G �-module.
For a character w of H, we often regard M

w
ðHÞ as a Zp½w�½H 0�-module. If we regard w as a

character of G, M w
ðGÞ is also defined, but it is not equal to M

w
ðHÞ.

1.4. Suppose that D is a finite abelian group whose order is prime to p. Then, the
group ring Zp½D� is semi-local, and isomorphic to a product of discrete valuation rings.
More explicitly, it is described as follows. Let D̂D be the group of Qp

�-valued characters of
D. We say two characters w1 and w2 are Qp-conjugate if sw1 ¼ w2 for some s A GalðQp=QpÞ.
We consider this equivalence relation on D̂D. Then,

Zp½D�F
L
w

Zp½w�ðDÞ

where the sum is taken over the equivalence classes of D̂D, and we choose a character w from
each equivalence class.

Let G be a finite abelian group. We write G ¼ D� P where P is a p-group and the
order of D is prime to p. By using the above decomposition of Zp½D�, we have

Zp½G � ¼ Zp½D�½P�F
L
w

Zp½w�ðDÞ½P�:

2. Stickelberger ideals

In this section, we consider the analytic side. We study the Stickelberger elements,
and define the Stickelberger ideal for a certain CM field.

Let k be a totally real number field, and F=k be a finite abelian extension. We define
in the usual way the partial zeta function for s A GalðF=kÞ by

zðs; sÞ ¼
P

ða;F=kÞ¼s
NðaÞ�s

for ReðsÞ > 1 where the sum is taken over integral ideals a of k which are prime to the
conductor ideal fF=k such that the Artin symbol ða;F=kÞ is equal to s (NðaÞ is the norm of
a). The partial zeta functions are meromorphically continued to the whole complex plane,
and holomorphic except s ¼ 1. We define

yF=kðsÞ ¼
P

s AGalðF=kÞ
zðs; sÞs�1:

So for s A Cnf1g, yF=kðsÞ A C½GalðF=kÞ� can be defined. We have

yF=kðsÞ ¼
Q

vFfF=k

�
1� j�1v NðvÞ�s

��1
for ReðsÞ > 1

where v ranges over prime ideals of k which are prime to fF=k, and jv is the Frobenius at v
in GalðF=kÞ (Tate [45], Proposition 1.6, p. 86). By Klingen and Siegel, we know that
yF=kð0Þ is in Q½GalðF=kÞ�. We simply write yF for yF=kð0Þ.

By the Euler product of yF as above, we have (cf. Tate [45], p. 86)
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Lemma 2.1. Assume that F=k is a finite abelian extension and M is a field such that

kHMHF . We denote by SF (resp. SM) the set of finite primes of k ramifying in F=k (resp.
M=k). Let

cF=M : Q½GalðF=kÞ� ! Q½GalðM=kÞ�

denote the natural homomorphism. Then we have

cF=MðyF Þ ¼
� Q
v ASF nSM

ð1� j�1v Þ
�
yM

where jv is the Frobenius of v in GalðM=kÞ.

Next, we define the Stickelberger ideal under a certain hypothesis. Let L1; . . . ;Lr

be all finite primes of k ramifying in F=k. We denote by ILi
the inertia subgroup of Li

in GalðF=kÞ. We assume that

GalðF=kÞ ¼ IL1
� � � � � ILr

:ðAÞ

A typical example is k ¼ Q and F ¼ QðmmÞ. In fact, when we write m ¼ le1
1 � . . . � ler

r , we
have

Gal
�
QðmmÞ=Q

�
¼ ðZ=mZÞ� ¼ ðZ=le1

1 ZÞ� � � � � � ðZ=ler
r ZÞ�:

We define a set HF=k of certain subgroups of GalðF=kÞ by

HF=k ¼ fH1 � � � � �Hr jHi is a subgroup of ILi
for all i such that 1e ie rg:

We also define

MF=k ¼ fM j kHMHF ;M is the fixed field of some H A HF=kg:

For an intermediate field M of F=k, let

cF=M : Q½GalðF=kÞ� ! Q½GalðM=kÞ�

and

nF=M : Q½GalðM=kÞ� ! Q½GalðF=kÞ�

be as in 1.2. In this paper, we neglect the 2-primary component of ideal class groups.
We put Z 0 ¼ Z½1=2�. We define a Z 0½GalðF=kÞ�-module Y 0F=k in Q½GalðF=kÞ� to be the
Z 0½GalðF=kÞ�-module generated by nF=MðyMÞ for all M A MF=k, namely

Y 0F=k ¼ hfnF=MðyMÞ jM A MF=kgi:

We remark we can check that for any intermediate field M of F=k, nF=MðyMÞ is in Y 0F=k,
though we do not use this fact in this paper.
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We define our Stickelberger ideal by

YF=k ¼ Y 0F=k XZ 0½GalðF=kÞ�:

Suppose M A MF=k. Then, M also satisfies the condition (A), and Y 0M=k and YM=k are
defined.

Lemma 2.2. For M A MF=k, we have

cF=MðYF=kÞHYM=k and nF=MðYM=kÞHYF=k:

Proof. By the definition of YF=k and YM=k, it is enough to show

cF=MðY 0F=kÞHY 0M=k

and

nF=MðY 0M=kÞHY 0F=k:

The first inclusion follows from Lemma 2.1, and the second inclusion follows from the
definition of Y 0F=k.

Next, we consider a field F which does not necessarily satisfy the assumption (A).
Instead of (A), we assume that there is a finite abelian extension F 0=k such that F HF 0, F 0

satisfies (A), and that F 0=F is unramified at all finite primes. If k ¼ Q, for any abelian field
F of finite degree, such F 0 exists uniquely for F by the next lemma. In this situation, we
define the Stickelberger ideal YF=k by

YF=k ¼ cF 0=F ðYF 0=kÞ:

Lemma 2.3. Let F=Q be a finite abelian extension. Then, there exists uniquely an

abelian extension F 0=Q such that F HF 0, F 0=F is unramified at all finite primes, and that

F 0=Q satisfies the condition (A).

Proof. This seems to be well known, for example, by genus theory, but we will
give here a proof. Let m be the conductor of F , and m ¼ le1

1 � . . . � ler
r be its prime

decomposition. We denote by Ili the inertia group of li in Gal
�
QðmmÞ=Q

�
. We have

Gal
�
QðmmÞ=Q

�
¼ Il1 � � � � � Ilr . Let vi be a prime of F lying over li. We consider the

extension QðmmÞ=F , and denote by Ivi the inertia group of vi in Gal
�
QðmmÞ=F

�
. Since F=Q

and QðmmÞ=Q are abelian, Ivi does not depend on the choice of vi but only on li. Consider
the subgroup H ¼ Iv1 � � � � � Ivr of Gal

�
QðmmÞ=Q

�
and the subfield F 0 which is fixed by H.

Clearly, F HF 0 and F 0=F is unramified. Further, we have

GalðF 0=QÞ ¼ Il1=Iv1 � � � � � Ilr=Ivr ;

so F 0=Q satisfies the condition (A).

Next, we show the uniqueness. Suppose that F 00 also satisfies the
conditions. Put ~FF ¼ F 0F 00. Since ~FF=F 0 is unramified, the inertia group Ilið ~FF=QÞ
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of li in Galð ~FF=QÞ is isomorphic to the inertia group of li in GalðF 0=QÞ. Put
G ¼ Il1ð ~FF=QÞ � � � � � Ilrð ~FF=QÞHGalð ~FF=QÞ. The natural map Galð ~FF=QÞ ! GalðF 0=QÞ
induces an isomorphism G!F GalðF 0=QÞ. On the other hand, Q has no unramified

extension, so we must have G ¼ Galð ~FF=QÞ. This shows that ~FF ¼ F 0. Similarly, we have
~FF ¼ F 00, so F 00 ¼ F 0.

Suppose further that F is a CM field. We have the usual decomposi-
tion Z 0½GalðF=kÞ� ¼ Z 0½GalðF=kÞ�þlZ 0½GalðF=kÞ�� where Z 0½GalðF=kÞ�G is the G-
eigenspace of the complex conjugation. Any Z 0½GalðF=kÞ�-module M is decomposed into
M ¼MþlM� by the above decomposition of Z 0½GalðF=kÞ�. In this paper, we are inter-
ested in ðYF=kÞ� in Z 0½GalðF=kÞ��.

Remark 2.4. For a finite abelian extension F=Q, Sinnott defined the Stickelberger
ideal SF ([39], [40]) which is an ideal of Z½GalðF=QÞ�. If F=Q satisfies the condition (A), our
ðYF=QÞ� coincides with ðSF nZ 0Þ� (cf. [39], Proposition 2.1 and [40], Theorem 5.4). So for
example in the case F ¼ QðmmÞ, our YF=Q is obtained from Sinnott’s ideal. But for a gen-
eral abelian field F , our YF=Q slightly di¤ers from the ideal obtained from the Sinnott’s
ideal in [40] (cf. [40], Theorem 5.4).

In the rest of this section, we fix an odd prime number p, and assume F=k satisfies
the condition (A). Since Y 0F=k is a free Z 0-module of finite rank, the following lemma is
immediate.

Lemma 2.5. In Qp½GalðF=kÞ�, we have

ðY 0F=k nZpÞXZp½GalðF=kÞ� ¼ YF=k nZp:

We consider a character w : GalðF=kÞ ! Qp
�. We denote by Fw the subfield

fixed by the kernel of w in F , and by Zp½w� (resp. QpðwÞ) the ring generated by
the image of w over Zp (resp. Qp). We extend w to the ring homomorphism
Qp½GalðF=kÞ� ! Qp½GalðFw=kÞ� ! QpðwÞ which we also denote by w.

Lemma 2.6. (1) wðY 0F=k nZpÞ is contained in Zp½w�yw
Fw

where y
w
Fw

is the image of yFw

by the map w.

(2) Let SF (resp. SFw
) be the set of finite primes of k ramifying in F=k (resp. Fw=k). We

assume at least one of the following conditions.

(i) SF ¼ SFw
.

(ii) ½F : k� is prime to p.

Then, we have wðY 0F=k nZpÞ ¼ Zp½w�yw
Fw
.

Proof. (1) Let M be a field in MF=k. Suppose that M does not contain Fw. Then
Ker w does not contain GalðF=MÞ, and we have w

�
nF=MðxÞ

�
¼ 0 for any x A Qp½GalðM=kÞ�

because wðNF=MÞ ¼ 0 where NF=M ¼
P

s AGalðF=MÞ
s. So it is enough to consider M A MF=k

such that Fw HM. For such M, it is clear that wðnF=MyMÞ A Zp½Image w�yw
Fw

by Lemma 2.1.
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(2) We first assume (i). Then, cF=Fw
ðyF Þ ¼ yFw

by Lemma 2.1, so we get the conclu-
sion. Next, we assume (ii). Let M A MF=k be a field such that Fw HM and SM ¼ SFw

(SM

is the set of primes of k ramifying in M=k). Then, we have w
�
nF=MðyMÞ

�
¼ ½F : M �yw

Fw
. By

our assumption, ½F : M � is prime to p. So we get the conclusion.

3. Stickelberger ideals—cyclotomic Zp-extensions

In this section, we fix an odd prime number p, and define the Stickelberger ideals for
cyclotomic Zp-extensions.

3.1. For a number field F , we denote by Fy=F the cyclotomic Zp-extension. As
in the previous section, we assume that k is a totally real number field, and that F is a
CM field such that F=k is a finite abelian extension. Let Fn denote the n-th layer of
Fy=F , namely the intermediate field such that ½Fn : F � ¼ pn. By Lemma 2.1, yFn

’s satisfy
cFnþ1=Fn

ðyFnþ1Þ ¼ yFn
for su‰ciently large n, so become a projective system. More precisely,

Deligne and Ribet [9] proved the existence of an element yFy of the total quotient ring of
the completed group ring Zp½½GalðFy=kÞ��, which satisfies the following properties (cf. [38],
Theorem 1.15).

(i) The canonical map cFy=Fn
: Zp½½GalðFy=kÞ�� ! Zp½GalðFn=kÞ� extends to

Zp½½GalðFy=kÞ��yFy ! Qp½GalðFn=kÞ�, and for a su‰ciently large n, we have
cFy=Fn

ðyFyÞ ¼ yFn
.

(ii) Suppose mp HF . For any s A GalðFy=kÞ, yFy satisfies

�
1� kðsÞ�1s

�
yFy A Zp½½GalðFy=kÞ��

where k : GalðFy=kÞ ! Z�p is the cyclotomic character.

(iii) Suppose that mpHF and F X ky ¼ k. Let g be a generator of GalðFy=FÞ
and define No�1

GalðF=kÞ ¼
P

s AGalðF=kÞ
oðsÞ�1s where o : GalðF=kÞ ! Gal

�
kðmpÞ=k

�
! Z�p is

the Teichmüller character. Then, yFy can be written as

yFy ¼
cNo�1

GalðF=kÞ
kðgÞ � g

þ m

for some c A Zp and m A Zp½½GalðFy=kÞ��.

We assume the Leopoldt conjecture for k. So, in the above property (iii), c3 0 ([38]
and [6]). Let L1; . . . ;Lr be all finite primes of k ramifying in F=k. We denote by PLi

the p-
Sylow subgroup of the inertia subgroup ILi

of Li in GalðF=kÞ, and by GalðF=kÞfpg the p-
Sylow subgroup of GalðF=kÞ. Instead of the condition (A) in §2, we assume that
F X ky ¼ k, every prime of k above p is tamely ramified in F=k, and

GalðF=kÞfpg ¼ PL1
� � � � � PLr

:ðApÞ
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We write G ¼ GalðF=kÞfpg and GalðF=kÞ ¼ D� G where D is of order prime to p. We
define

ðHF=kÞðpÞ ¼ fH0 �H1 � � � � �Hr jH0 is a subgroup of D and Hi is a subgroup

of PLi
for all i such that 1e ie rg:

We also define

ðMF=kÞðpÞ ¼ fMHF jM is the fixed field of some H A ðHF=kÞðpÞg:

For a field M A ðMF=kÞðpÞ, yMy can be defined by the same method. Let
cFy=My

be the natural map from the total quotient ring Q
�
Zp½½GalðFy=kÞ��

�
of

Zp½½GalðFy=kÞ�� to the total quotient ring Q
�
Zp½½GalðMy=kÞ��

�
of Zp½½GalðMy=kÞ��,

and nFy=My
: Q
�
Zp½½GalðMy=kÞ��

�
! Q

�
Zp½½GalðFy=kÞ��

�
be the map induced by

s 7!
P

cFy=My ðtÞ¼s
t. We define a Zp½½GalðFy=kÞ��-module ðY 0Fy=kÞ

ðpÞ by

ðY 0Fy=kÞ
ðpÞ ¼ hfnFy=My

ðyMyÞ jM A ðMF=kÞðpÞgi

which is contained in Q
�
Zp½½GalðFy=kÞ��

�
.

We define the Stickelberger ideal ðYFy=kÞðpÞ for Fy=k by

ðYFy=kÞðpÞ ¼ ðY 0Fy=kÞ
ðpÞXZp½½GalðFy=kÞ��:

We simply write YFy=k (resp. Y 0Fy=k) for ðYFy=kÞðpÞ (resp. ðY 0Fy=kÞ
ðpÞ) if no confusion arises.

This notation ðYFy=kÞðpÞ is justified by the following lemma. We define ðY 0F=kÞ
ðpÞ

to be the sub Zp½GalðF=kÞ�-module of Qp½GalðF=kÞ� generated by nF=MðyMÞ for all

M A ðMF=kÞðpÞ, and define ðYF=kÞðpÞ by ðYF=kÞðpÞ ¼ ðY 0F=kÞ
ðpÞXZp½GalðF=kÞ�.

Lemma 3.1. Assume that there is an abelian extension F 0=k satisfying the condi-

tion (A) in §2 such that F 0IF , F 0=F is unramified, and of degree prime to p. Then,

ðYF=kÞðpÞ ¼ YF=k nZp.

Proof. At first, we assume that F satisfies the condition (A). In order to show
ðYF=kÞðpÞ ¼ YF=k nZp, it su‰ces to show ðY 0F=kÞ

ðpÞ ¼ Y 0F=k nZp which we can check easily.

Next, we consider the general case. It follows from what we showed above that
YF=k nZp ¼ cF 0=F ðYF 0=k nZpÞ ¼ cF 0=F

�
ðYF 0=kÞðpÞ

�
. Since ½F 0 : F � is prime to p, by the

norm argument, we get cF 0=F
�
ðYF 0=kÞðpÞ

�
¼ ðYF=kÞðpÞ. This completes the proof of this

lemma.

Lemma 3.2. Put ðMF=kÞðpÞ0 ¼ fM A ðMF=kÞðpÞ j there is a prime of k above p

which is unramified in M=kg. We can extend cFy=F to cFy=F : ðY 0Fy=kÞ
ðpÞ ! ðY 0F=kÞ

ðpÞ
, and

ðY 0F=kÞ
ðpÞ

is generated by cFy=F

�
ðY 0Fy=kÞ

ðpÞ�
and fnF=MðyMÞ jM A ðMF=kÞðpÞ0 g.
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Proof. By Lemma 2.1, we have cMy=MðyMyÞ ¼ yM for M B ðMF=kÞðpÞ0 . So we obtain

this lemma from the definitions of ðY 0Fy=kÞ
ðpÞ and ðY 0F=kÞ

ðpÞ.

By the same method as the proof of Lemma 2.2, we have

Lemma 3.3. For M A ðMF=kÞðpÞ, we have

cFy=My

�
ðYFy=kÞðpÞ

�
H ðYMy=kÞðpÞ and nFy=My

�
ðYMy=kÞðpÞ

�
H ðYFy=kÞðpÞ:

3.2. Next, we consider a finite abelian extension F=k with the following prop-
erty. There is a finite abelian extension F 0=k such that F HF 0, F 0=F is an unramified p-
extension, and F 0=k satisfies the above conditions of F=k (namely F 0X ky ¼ k, every
prime of k above p is tamely ramified in F 0=k, and the extension F 0=k satisfies the con-

dition (Ap) in the previous subsection). For such F , we define ðYFy=kÞðpÞ by

ðYFy=kÞðpÞ ¼ cF 0y=Fy

�
ðYF 0y=kÞðpÞ

�
:

This ðYFy=kÞðpÞ does not depend on the choice of F 0. We will show this. Suppose that F 00

also satisfies the conditions. Put ~FF ¼ F 0F 00. Let PLi
ð ~FF=kÞ be the p-Sylow subgroup of the

inertia group of Li in Galð ~FF=kÞ, and put G ¼ PL1
ð ~FF=kÞ � � � � � PLr

ð ~FF=kÞHGalð ~FF=kÞ. The
natural map Galð ~FF=kÞ ! GalðF 0=kÞ induces an isomorphism G!F GalðF 0=kÞfpg. Using

this isomorphism, we regard H A ðHF 0=kÞðpÞ as a subgroup of Galð ~FF=kÞ. We define
~MM~FF=k ¼ fM jM is the fixed field of H A ðHF 0=kÞðpÞ in ~FFg, and

ð~YY 0~FFy=k
ÞðpÞ ¼ hfn~FFy=My

ðyMyÞ jM A ~MM~FF=kgi.

Since ~FF=F 0 is unramified, by Lemma 2.1 we have c~FFy=F 0y

�
ð~YY 0~FFy=k

ÞðpÞ
�
¼ ðY 0F 0y=kÞ

ðpÞ. We define

ð~YY~FFy=kÞ
ðpÞ ¼ ð~YY 0~FFy=k

ÞðpÞXZp½½Galð ~FFy=kÞ��. We will see c~FFy=F 0y

�
ð~YY~FFy=kÞ

ðpÞ� ¼ ðYF 0y=kÞðpÞ. We

may assume mp HF . Suppose that x A ð~YY 0~FFy=k
ÞðpÞ. By the property (iii) in 3.1, x can be

written as x ¼ cNo�1

Galð ~FF=kÞ=
�
kðgÞ � g

�
þ m for some c A Zp and m A Zp½½Galð ~FFy=kÞ��. If

c~FFy=F 0y
ðxÞ is in Zp½½GalðF 0y=kÞ��, then ½ ~FFy : F 0y�c ¼ 0, so c ¼ 0 and x is in Zp½½Galð ~FFy=kÞ��.

Hence, we get c~FFy=F 0y

�
ð~YY~FFy=kÞ

ðpÞ�¼ðYF 0y=kÞðpÞ. Thus, we have ðYFy=kÞðpÞ ¼ c~FFy=Fy

�
ð~YY~FFy=kÞ

ðpÞ�,
and it does not depend on the choice of F 0.

We simply write YFy=k for ðYFy=kÞðpÞ when no confusion arises. We call this ideal
YFy=k the Stickelberger ideal for Fy=k.

3.3. In this subsection, we assume F satisfies the conditions in 3.1, so Y 0Fy=k is
defined. In the usual Iwasawa theory, we consider a character of GalðF=kÞ and study
the character-component of ideal class groups. Since we assumed F X ky ¼ k, we have
GalðFy=kÞ ¼ GalðF=kÞ �GalðFy=FÞ. Let w be a character of GalðF=kÞ as in Lemma 2.6.
We denote by Fw the fixed field of Ker w in F . We extend w to the ring homomorphism

Q
�
Zp½½GalðFy=kÞ��

�
! Q

�
Zp½w�½½GalðFy=FÞ��

�
¼ Q

�
Zp½w�½½GalðFw;y=FwÞ��

�
which we also denote by w. By abuse of notation, the homomorphism

Q
�
Zp½½GalðFw;y=kÞ��

�
! Q

�
Zp½w�½½GalðFw;y=FwÞ��

�
which is induced by w is also denoted by w. We use the same notation as Lemma 2.6.
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Lemma 3.4. We assume SFy ¼ SFw;y . (SF is the set of primes of k ramifying in F=k
for an algebraic extension F=k.)

(1) wðY 0Fy=kÞ ¼ Zp½w�½½GalðFw;y=FwÞ��yw
Fw;y

where y
w
Fw;y
¼ wðyFw;yÞ.

(2) We further assume w3o where o is the Teichmüller character. Then,
wðYFy=kÞ ¼ wðY 0Fy=kÞ.

Proof. (1) This can be proved by the same method as the proof of Lemma
2.6. We can easily see that wðY 0Fy=kÞHZp½w�½½GalðFw;y=FwÞ��yw

Fw;y
. On the other hand,

y
w
Fw;y

A wðY 0Fy=kÞ follows from cFy=Fw;y
ðyFyÞ ¼ yFw;y .

(2) By (1) and wðyFyÞ ¼ wðyFw;yÞ, it is enough to show wðyFyÞ A wðYFy=kÞ. If a
primitive p-th root of unity is not in F , Fn does not contain mp either, and we have
yFn

A Zp½GalðFn=kÞ�, so yFy A Zp½½GalðFy=kÞ��. Thus, wðyFyÞ A wðYFy=kÞ.

So we may assume mp HF . We write GalðF=kÞ ¼ D� G where the order of D is
prime to p and G is a p-group. Suppose at first the order of w is prime to p. Then, putting
ew ¼ ðKDÞ�1

P
s AD

wðsÞs�1, by the property (iii) in 3.1 and w3o, we have ewyFy A YFy=k.

This implies wðyFyÞ A wðYFy=kÞ.

Next, suppose the order of w is divisible by p. Take M ¼ kðmpÞ A ðMF=kÞðpÞ.
Note that M3F by our assumption that p divides the order of w. We write
yFy ¼ cFN

o�1

GalðF=kÞ=
�
kðgÞ � g

�
þ mF with cF A Zp and mF A Zp½½GalðFy=kÞ�� as in the

property (iii) in 3.1. We define cM A Zp similarly. Let L1; . . . ;Ls be the ramifying primes

in F=k, which are unramified in M=k. By Lemma 2.1, cFy=My
ðyFyÞ ¼

Qs
i¼1
ð1� j�1Li

ÞyMy . We
have

cFy=My

�
No�1

GalðF=kÞ=
�
kðgÞ � g

��
¼ ½F : M �No�1

GalðM=kÞ=
�
kðgÞ � g

�
and Q

i

ð1� j�1Li
ÞNo�1

GalðM=kÞ=
�
kðgÞ � g

�
¼
Q
i

�
1� kðjLi

Þ�1
�
No�1

GalðM=kÞ=
�
kðgÞ � g

�
mod Zp½½GalðMy=kÞ��.

Thus, we have

½F : M �cF ¼
Qs
i¼1

�
1� kðjLi

Þ�1
�
cM :

Since

ordpð½F : M �Þ ¼ ordpð½F : k�Þ ¼
Pr
i¼1

ordpðKPLi
Þ ¼

Ps
i¼1

ordpðKPLi
Þ

e
Ps
i¼1

ordp
�
NðLiÞ � 1

�
¼
Ps
i¼1

ordp
�
1� kðjLi

Þ�1
�

(note that by our assumption the primes above p are tamely ramified in F=k), cM divides
cF in Zp. Hence, there is c A Zp such that yFy � cnFy=My

ðyMyÞ A Zp½½GalðFy=kÞ��. So we
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have yFy � cnFy=My
ðyMyÞ A YFy=k. Since the order of w is divisible by p, w is non trivial

on GalðF=MÞ. Thus, w
�
nFy=My

ðyMyÞ
�
¼ 0, and we get wðyFyÞ A wðYFy=kÞ. This completes

the proof.

Lemma 3.5. Suppose that ½F : k� is prime to p.

(1) wðY 0Fy=kÞ ¼ Zp½w�½½GalðFw;y=FwÞ��yw
Fw;y

where y
w
Fw;y
¼ wðyFw;yÞ.

(2) We further assume w3o. Then, wðYFy=kÞ ¼ wðY 0Fy=kÞ.

Proof. (1) As in Lemma 3.4, it is enough to show y
w
Fw;y

A wðY 0Fy=kÞ. Since Fw is in

ðMF=kÞðpÞ and w
�
nF=Fw

ðyFw;yÞ
�
¼ ½F : Fw�yw

Fw;y
, we have y

w
Fw;y

A wðY 0Fy=kÞ because ½F : Fw� is
prime to p.

(2) Let ew be as above (note that D ¼ GalðF=kÞ in our case). Since
ewnF=Fw

ðyFw;yÞ A YFy=k, we have y
w
Fw;y
¼ w
�
½F : Fw��1ewnF=Fw

ðyFw;yÞ
�
A wðYFy=kÞ.

Remark 3.6. Let w be an odd character. The element wðyFyÞ is essentially the p-adic
L-function. We have the following interpolation property. Suppose mp HF and
k : GalðFy=kÞ ! Z�p is the cyclotomic character. For any positive integer r > 0, we have

k�r
�
wðyFy=kÞ

�
¼ Lfpgð�r; w�1Þ

where Lfpgðs; w�1Þ is the L-function obtained by removing the Euler factors of primes
above p. Hence, by Lemma 3.4 we know that the usual main conjecture is obtained by
taking the w-quotient of Conjecture 0.8.

4. A preliminary lemma

The aim of this section is to prove Lemma 4.1 below. Let R be a complete discrete
valuation ring of mixed characteristics ð0; pÞ, and LR ¼ R½½T �� be the ring of formal power
series in one variable over R. In this section, we consider a finite abelian p-group G, and
study a group ring LR½G �.

Let c be a (p-adic) character of G, namely a homomorphism from G to the multi-
plicative group of an algebraic closure of the fraction field of R. We define

cLR½G � : LR½G � ! LR½Imagec� ¼ LR½Imagec�

to be the ring homomorphism induced by s 7! cðsÞ for s A G.

Suppose that

G ¼ G1 � � � � � Gr

where G1; . . . ;Gr are cyclic groups. We define a set H of certain subgroups of G by

H ¼ fH1 � � � � �Hr jHi is a subgroup of Gi for all i such that 1e ie rg:

For any subgroup H ¼ H1 � � � � �Hr A H, we define a set of certain characters of G=H by

CG=H ¼ fc1 � . . . � cr jci is a faithful character of Gi=Hi for all i such that 1e ie rg:

For c ¼ c1 � . . . � cr A CG=H , ci is a faithful character of Gi=Hi by definition, but c itself is
not a faithful character of G=H in general.

Kurihara, Iwasawa theory and Fitting ideals54



Lemma 4.1. Let R, LR; . . . be as above. Suppose that for any subgroup H A H, an
ideal IG=H of LR½G=H � and an element xG=H of LR½G=H � are given and satisfy the following

properties.

(i) For any subgroup H A H, xG=H is the image of xG by the canonical map

LR½G � ! LR½G=H �.

(ii) For any subgroup H A H and any character c A CG=H ,

cLR½G=H �ðxG=HÞ A cLR½G=H �ðIG=HÞ:

(iii) For any subgroup H A H and any character c of CG=H ,
LR½Imagec�=cLR½G=H �ðIG=HÞ is a free R½Imagec�-module of finite rank.

(iv) For any subgroups H and H 0 in H such that HHH 0, we have

cH;H 0 ðIG=HÞH IG=H 0

where cH;H 0 : LR½G=H � ! LR½G=H 0� is the canonical homomorphism induced by the natural

map G=H ! G=H 0.

(v) For any subgroups H and H 0 in H such that HHH 0, we have

nH 0;HðIG=H 0 ÞH IG=H

where nH 0;H : LR½G=H 0� ! LR½G=H � is the map induced by s 7!
P

cH;H 0 ðtÞ¼s
t for s A G=H 0.

Then, LR½G �=IG is a free R-module of finite rank, and xG is in IG.

Proof. We prove this lemma by induction on the order of G. If KG ¼ 1, the
conclusion is clear from the properties (ii) and (iii) by taking c ¼ 1. SupposeKG > 1 and
G1 3 f1g. We denote by pm the order of G1.

Let c1 : G1 ! R½Imagec1�
� be an injective homomorphism. Set G ¼ G2 � � � � � Gr

and R 0 ¼ R½Imagec1�. So, G ¼ G1 � G. We consider a homomorphism

ðc1ÞLR½G �;G1
: LR½G � ¼ LR½G�½G1� ! LR½G�½Imagec1� ¼ LR 0 ½G�

which is the ring homomorphism induced by s 7! c1ðsÞ for s A G1. Let H
0 be the set of

the subgroups of G of the form H2 � � � � �Hr HG where Hi is a subgroup of Gi. For
a subgroup H 0 in H 0, we define an ideal IG=H 0 of LR 0 ½G=H 0� by IG=H 0 ¼ ðc1ÞLR½G �;G1

ðIG=HÞ,
and an element xG=H 0 by xG=H 0 ¼ ðc1ÞLR½G �;G1

ðxG=HÞ where H ¼ f1g �H 0 A H. Then, these

ideals IG=H 0 and elements xG=H 0 satisfy the properties (i)–(v) for LR 0 ½G�. Since KG <KG,

by the hypothesis of the induction, LR 0 ½G�=IG ¼ ðc1ÞLR½G �;G1
ðLR½G �Þ=ðc1ÞLR½G �;G1

ðIGÞ is a

free R 0-module of finite rank, and ðc1ÞLR½G �;G1
ðxGÞ A ðc1ÞLR½G �;G1

ðIGÞ.

We consider L
c1

ðc1ÞLR½G �;G1
: LR½G � !

L
c1

ðc1ÞLR½G �;G1
ðLR½G �Þ
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where c1 ranges over all R½1=p�-conjugate classes of the faithful characters of G1

whose values are in an algebraic closure of R½1=p�. The kernel of the above map is� Pp�1
i¼0

sp
m�1i
�
LR½G � where s is a generator of G1. Hence, if we define the subgroup N by

N ¼ G
pm�1

1 � f1g � � � � � f1gHG (so the order of N is p), then the kernel of the above
map coincides with the image of nN;f1g : LR½G=N � ! LR½G � where nN;f1g is the map

defined in the property (v) in Lemma 4.1. So we have an exact sequence

LR½G=N �=IG=N ��!nN; f1g
LR½G �=IG ��!L

c1

ðc1ÞLR½G �;G1
ðLR½G �Þ=ðc1ÞLR½G �;G1

ðIGÞ:

By the hypothesis of the induction, we can apply the lemma for the group G=N
instead of G, and know that LR½G=N �=IG=N is a free R-module of finite rank, and xG=N is in
IG=N . We claim that the first map in the above sequence is injective. In order to show this,
since LR½G=N �=IG=N is a free R-module of finite rank, it su‰ces to show the injectivity of

nN;f1g : ðLR½G=N �=IG=NÞnQ! ðLR½G �=IGÞnQ:

But nN;f1g gives an injection from LR½G=N �nQ into a direct summand of
LR½G �nQ. In fact, if cf1g;N : LR½G �nQ! LR½G=N �nQ is the canonical map,
p�1cf1g;N � nN;f1g is the identity map on LR½G=N �nQ. So by the property (iv),
nN;f1g : ðLR½G=N �=IG=NÞnQ! ðLR½G �=IGÞnQ is injective. Thus, we get an exact
sequence

0! LR½G=N �=IG=N ! LR½G �=IG

!
L
c1

ðc1ÞLR½G �;G1
ðLR½G �Þ=ðc1ÞLR½G �;G1

ðIGÞ:

Since both LR½G=N �=IG=N and
L
c1

ðc1ÞLR½G �;G1
ðLR½G �Þ=ðc1ÞLR½G �;G1

ðIGÞ are free R-

modules of finite rank, it follows from this exact sequence that LR½G �=IG is free of
finite rank as an R-module. By the hypothesis of the induction, ðc1ÞLR½G �;G1

ðxGÞ is in

ðc1ÞLR½G �;G1
ðIGÞ, so the above exact sequence tells us that there is y A LG=N such that

xG 1 nN;f1gðyÞ ðmod IGÞ. Taking the projection to LR½G=N � of this equation, by the
properties (i) and (iv) we obtain xG=N 1 py ðmod IG=NÞ. By the hypothesis of the induc-
tion, xG=N is in IG=N , so this implies that py A IG=N . But LR½G=N �=IG=N is a free R-
module again by the hypothesis of the induction, so we get y A IG=N . This implies that
xG 1 nN;f1gðyÞ1 0 ðmod IGÞ by the property (v). Thus, we get xG A IG. This completes the
proof of Lemma 4.1.

From Lemma 4.1, we obtain

Corollary 4.2. Suppose that for any subgroup H A H, two ideals IG=H and JG=H of

LR½G=H � are given and satisfy the following properties.

(i) For any subgroup H A H and any character c of CG=H ,

cLR½G=H �ðIG=HÞ ¼ cLR½G=H �ðJG=HÞ:
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(ii) For any subgroup H A H and any character c of CG=H ,
LR½Imagec�=cLR½G=H �ðIG=HÞ is a free R½Imagec�-module of finite rank.

(iii) For any subgroups H and H 0 in H such that HHH 0, we have

cH;H 0 ðIG=HÞH IG=H 0 and cH;H 0 ðJG=HÞH JG=H 0 :

(iv) For any subgroups H and H 0 in H such that HHH 0, we have

nH 0;HðIG=H 0 ÞH IG=H and nH 0;HðJG=H 0 ÞH JG=H :

Then, we have IG ¼ JG.

5. Ideal class groups

In this section we study the minus parts of ideal class groups of CM fields. We fix an
odd prime number p.

Let k be a totally real number field, and L and K be two CM fields such that
kHKHL, L=k is a finite abelian extension, and that L=K is a p-extension. We denote by
AK (resp. AL) the p-Sylow subgroup of the ideal class group of K (resp. L). We consider
their minus parts A�K and A�L on which the complex conjugation acts as �1. We put
G ¼ GalðL=KÞ.

Lemma 5.1. (1) The norm map A�L ! A�K is surjective.

(2) Let ĤHqðG; �Þ be the Tate cohomology (cf. [36], Chap. 8). We denote by PL the set

of all finite primes of L. Then, we have an exact sequence

ĤH 0ðG;ELÞ� ! ĤH 0
�
G;

Q
w APL

ELw

��
! ĤH�1ðG;ALÞ�

! H 1ðG;ELÞ� ! H 1
�
G;

Q
w APL

ELw

��
! ĤH 0ðG;ALÞ�

! H 2ðG;ELÞ� ! H 2
�
G;

Q
w APL

ELw

��

where EL (resp. ELw
) is the unit group of L (resp. the local field Lw).

Proof. (1) Let K 0=K be the unramified extension of K corresponding to A�K by
class field theory. Then the complex conjugation acts on GalðK 0=KÞ as �1, and acts on
GalðL=KÞ trivially because L=k is abelian. So, K 0XL ¼ K. Hence, A�L ! A�K is surjective.

(2) Let CL be the idele class group of L. We consider the Tate cohomology
groups ĤH �ðG;CLÞ. By Tate-Nakayama’s theorem ([36], Chap. 9, §8), we have

ĤH 0ðG;CLÞ ¼ ĤH�2ðG;ZÞ ¼H1ðG;ZÞ ¼G, and ĤH�1ðG;CLÞ ¼ ĤH�3ðG;ZÞ ¼H2ðG;ZÞ ¼
V2

G.

So, ĤH 0ðG;CLÞ� ¼ ĤH�1ðG;CLÞ� ¼ 0. Note also that H 1ðG;CLÞ ¼ 0 by class field theory.
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Consider an exact sequence

0! EL !
Q

ELw
! CL ! ClL ! 0

where w ranges over all primes of L (if w is an infinite place, it is a complex place, and
we define ELw

¼ L�w), and ClL is the ideal class group of L. Define M to be the kernel
of CL ! ClL. Then, by the above calculation, ĤH qðG;ClLÞ� ¼ ĤHqðG;ALÞ� ¼ ĤHqþ1ðG;MÞ�
for q ¼ 0 and �1. Hence, taking the Tate cohomology of the exact sequence

0! EL !
Q

ELw
!M ! 0;

we obtain the conclusion of Lemma 5.1 (2).

Proposition 5.2. Let L=K be as above. For a prime v A PK , Iv denotes the inertia

group of v in G. Let mpyðKÞ be the p-primary component of the group of roots of unity in K.
Then, we have an exact sequence

mpyðKÞ !
� L
v APK

Iv

��
! ðA�L ÞG !

N
A�K ! 0

where ðA�L ÞG is the G-coinvariant of A�L , and N is the map induced by the norm map.

Proof. First of all, we note that there is an exact sequence

0! Ker
�
ðALÞG ! AK

�
! ĤH�1ðG;ALÞ ! KerðAK ! ALÞ:

This follows from the following commutative diagram

0 ���! ĤH�1ðG;ALÞ ���! ðALÞG ���!NG
AL???y

???yN

����
0 ���! KerðAK ! ALÞ ���! AK ���! AL

where NG ¼
P
s AG

s and N is the map induced by the norm map of ideal class groups.

It is well known that the kernel of H 1ðG;ELÞ ! H 1
�
G;

Q
w APL

ELw

�
coincides with

KerðAK ! ALÞ (cf. [22], Remark 2.2). Hence, the kernel of ðA�L ÞG ! A�K coincides with

Ker
�
ĤH�1ðG;ALÞ� ! H 1ðG;ELÞ�

�
which is the cokernel of

ĤH 0ðG;ELÞ� ! ĤH 0
�
G;

Q
w APL

ELw

��

by Lemma 5.1 (2).

By local class field theory, we have

ĤH 0
�
G;

Q
w APL

ELw

�
¼
L
v APK

EKv
=NELw

¼
L
v APK

Iv:
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Since K is a CM field, H 0ðG;ELÞ�nZp ¼ mpyðKÞ. Hence, we have
Ker

�
ðA�L ÞG ! A�K

�
¼ Coker

�
mpyðKÞ ! ð

L
IvÞ�

�
. Since A�L ! A�K is surjective by Lemma

5.1 (1), we get the conclusion.

Let Ky=K and Ly=L be the cyclotomic Zp-extensions, and consider XKy ¼ lim � AKn

and XLy ¼ lim � ALn
.

Corollary 5.3. Let K, L, Ky, and Ly be as above. We denote by PKy the set of finite

primes of Ky, and by Iv the inertia group of v in GalðLy=KyÞ for v A PKy . The norm map

from XLy to XKy induces an exact sequence of Zp½½GalðKy=kÞ��-modules

T !
� L
v APKy

Iv

��
! ðX�Ly

ÞGalðLy=KyÞ ! X�Ky
! 0

where T ¼ Zpð1Þ ¼ lim � mpn if mp HK , and T ¼ 0 otherwise.

Proof. This is obtained by taking the projective limit of the exact sequence in
Proposition 5.2.

Lemma 5.4. Suppose that GalðLy=KyÞ is cyclic, and that the m-invariant of Ky

vanishes (XKy is a finitely generated Zp-module). We further assume that the primes above

p are unramified in Ly=Ky, and there is a totally ramified prime in Ly=Ky. Then, the
canonical map induces an isomorphism

X�Ky
!F ðX�Ly

ÞGalðLy=KyÞ:

Proof. First of all, since X�Ky
does not have a non-trivial finite Zp½½GalðKy=KÞ��-

submodule ([46], Proposition 13.28), m ¼ 0 implies that X�Ky
is a free Zp-module. So the

norm argument implies the injectivity.

Put G ¼ GalðLy=KyÞ and KG ¼ pm. Let v0 be a prime of Ky which is totally
ramified in Ly=Ky, and w0 be the prime of L lying over v0. We may change K and L

to su‰ciently large number fields, and suppose that GalðL=KÞ ¼ GalðLy=KyÞ and
mpyðKÞ ¼ mpyðKv0Þ where Kv0 is the completion of K at the prime below v0. Then, we
have ĤH 0ðG;ELÞ� ¼ mpyðKÞ=mpyðKÞ

pm

, and ĤH 0ðG;ELw0
Þ ¼ mpyðKv0Þ=mpyðKv0Þ

pm

, so the

map ĤH 0ðG;ELÞ� ! ĤH 0
�
G;

Q
w APL

ELw

��
is injective. Since this injectivity holds for all inter-

mediate fields Ln and G is cyclic, the map lim � H 2ðG;ELn
Þ� ! lim � H 2

�
G;

Q
w APLn

ELn;w

��
is

injective.

On the other hand, H 1
�
G;

Q
w APLn

EðLnÞw

�
¼
L

v APKn

Z=evZ where ev is the ramification

index of v in Ln=Kn. For a su‰ciently large n, the norm map from Lnþ1 to Ln induces the

multiplication by p on the right hand side, so lim � H 1
�
G;

Q
w APLn

EðLnÞw

�
¼ 0. Hence, by

Lemma 5.1 (2) we get ĤH 0ðG;X�Ly
Þ ¼ 0, which implies the conclusion of the lemma.

By this lemma, we obtain

Kurihara, Iwasawa theory and Fitting ideals 59



Lemma 5.5. In the situation of Lemma 5.4, for a faithful character c of

G ¼ GalðLy=KyÞ, we define ðX�Ly
Þc by ðX�Ly

Þc ¼ X�Ly
nZp½G � Zp½c�ðGÞ where Zp½c�ðGÞ is the

G-module on which G acts via c (cf. 1.3). Then, ðX�Ly
Þc does not have a non-trivial finite

Zp½c�½½GalðLy=LÞ��-submodule.

Proof. Suppose that the order of G is pm, and s is a generator. Since
Zp½c�FZp½G �=ð1þ s pm�1 þ � � � þ s pm�1ðp�1ÞÞ, if we denote by C the subgroup of order p

of G and put NC ¼
P
s AC

s, we have Zp½c�FZp½G �=NC . So ðX�Ly
Þc ¼ X�Ly

=NCX
�
Ly

. We

denote by K 0 the fixed field of C in L. Put s0 ¼ s pm�1
which is a generator of C. We will

show that s0 � 1 induces an injection

s0 � 1 : X�Ly
=NCX

�
Ly

,!X�Ly
:

In fact, if ðs0 � 1ÞðxÞ ¼ 0 for some x A X�Ly
, then x A ðX�Ly

ÞC , so x can be written as
x ¼ iðyÞ for some y A X�K 0y by Lemma 5.4 where i : X�K 0y ! X�Ly

is the natural map. Since

the norm map X�Ly
! X�K 0y is surjective by Lemma 5.1 (1), we have x ¼ NCðzÞ for some

z A X�Ly
. This implies X�Ly

=NCX
�
Ly
! X�Ly

is injective. Hence, we get the conclusion of
Lemma 5.5 because X�Ly

does not have a non-trivial finite Zp½½GalðLy=LÞ��-submodule
([46], Proposition 13.28).

6. Proof of the theorems I

We will prove Theorem 0.9 at first. We may assume that F satisfies the
condition (Ap). In fact, suppose that F 0=F is the unramified extension in 3.2, and
c ¼ cF 0y=Fy : Zp½½GalðF 0y=kÞ�� ! Zp½½GalðFy=kÞ�� is the natural map. By Corollary 5.3, we
have an isomorphism ðX�F 0 ÞGalðF 0=FÞ !

F
X�F . Hence, we have

c
�
Fitt0;Zp½½GalðF 0y=kÞ��ðX�F 0 Þ

�� ¼ Fitt0;Zp½½GalðFy=kÞ��ðX�F Þ
�:

On the other hand, by definition, we have cðYF 0y=kÞ ¼ YFy=k. Hence, Conjecture 0.8 for F 0

implies Conjecture 0.8 for F .

We write GalðF=kÞ ¼ D� G where the order of D is prime to p, and G is a p-
group. Let K be the fixed field of G in F (so GalðF=KÞ ¼ G). We have the decomposition
Zp½D� ¼

L
w

Zp½w� as in 1.4, and have

Zp½½GalðFy=kÞ�� ¼
L
w

Zp½w�½½GalðFy=KÞ��:

So in order to prove this theorem, it su‰ces to show the equality�
Fitt0;Zp½w�½½GalðFy=KÞ��ðX w

Fy
Þ
�w
ðDÞ ¼ ðYFy=kÞwðDÞ

as ideals of Zp½w�½½GalðFy=KÞ�� for each odd character w of D.

We take an odd character w of D. We denote by Dw the kernel of w, and by Kw (resp.
Fw) the fixed field of Dw in K (resp. F ). So GalðKw=kÞ ¼ Image w and GalðFw=KwÞ ¼ G.
Recall that we assumed F=k satisfies the condition (Ap), so

G ¼ PL1
� � � � � PLr
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where PLi
is the p-Sylow subgroup of the inertia group of Li. We define

H ¼ fH1 � � � � �Hr jHi is a subgroup of PLi
for all i such that 1e ie rg

and

M ¼ fM jKHMHF ; M is the fixed field of some H A H in Fg:

We note that PLi
is cyclic since we assumed a prime over p is tamely ramified in F=k.

As in §4, for H ¼ H1 � � � � �Hr A H we define

CG=H ¼ fc1 � . . . � cr jci is a faithful character of PLi
=Hi for all i such that 1e ie rg:

For H A H, let M be the subfield in F fixed by H (so M A M). We write
Mw the fixed field of Dw in M. Put L ¼ Zp½½GalðKy=KÞ��wðDÞ ¼ Zp½w�½½GalðKw;y=KwÞ��.
Then, Zp½½GalðMy=KÞ��wðDÞ ¼ Zp½w�½½GalðMw;y=KwÞ��w ¼ L½G=H �. We regard ðYMy=kÞw

(¼ðYMy=kÞwðDÞ) as a L½G=H �-module. We define two ideals IG=H and JG=H of L½G=H � by

IG=H ¼ ðYMy=kÞw

and

JG=H ¼
�
Fitt0;L½G=H �ðX w

My
Þ
�w
:

Since ½M : Mw� is prime to p, we easily see cMy=ðMwÞyðYMy=kÞ ¼ YðMwÞy=k by the norm

argument. Hence, we have IG=H ¼ ðYMy=kÞw ¼ ðYðMwÞy=kÞw.

Let c be a character in CG=H . We regard wc as a character of GalðM=kÞ, and
denote by Mwc the fixed field of the kernel of wc in M. So Kw HMwcHMw, and
GalðMwc=KwÞ ¼ Imagec. Since c is a product of faithful characters ci of some quotient
of PLi

ðc A CG=HÞ, we have SMwc;y ¼ SMw;y (where SF is the set of primes of k ramifying
in F=k as in Lemma 2.6). So we can apply Lemma 3.4 to the field Mw which satisfies the
condition (Ap) and to a character wc of GalðMw=kÞ. If w3o or c3 1, by Lemma 3.4, we
have

cL½G=H �ðIG=HÞ ¼ cL½G=H �
�
ðYðMwÞy=kÞw

�
¼ wcðYðMwÞy=kÞ ¼ ðywc

Mwc;y
Þ

in Zp½wc�½½GalðMwc;y=MwcÞ�� where cL½G=H � is as in §4.

On the other hand, for JG=H , we have ðXMyÞGalðMy=Mw;yÞFXMw;y by the norm argu-

ment since ½M : Mw� is prime to p. Further, by the definition of CG=H , c A CG=H implies
that Mw=Mwc is unramified. So by Corollary 5.3, ðX�My

ÞGalðMy=Mwc;yÞ !
F

X�Mwc;y
is bijective.

Hence, we obtain

cL½G=H �ðJG=HÞ ¼ Fitt0;Zp½wc�½½GalðMwc;y=MwcÞ��ðX
wc
Mwc;y

Þ:

We note that c is a faithful character of GalðMwc=KwÞ. Since we assumed the m-invariant
vanishes, the extension Mwc;y=Kw;y and the character c satisfy the conditions of Lemma
5.5, and we can apply this lemma. Thus, we know that X wc

Mwc;y
is a free Zp½wc�-module of

finite rank. Hence, cL½G=H �ðJG=HÞ ¼ Fitt0;Zp½wc�½½GalðMwc;y=MwcÞ��ðX
wc
Mwc;y

Þ is the characteristic
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ideal of X wc
Mwc;y

. If w3o or c3 1, by the Iwasawa main conjecture proved by Wiles [47],
we have

Fitt0;Zp½wc�½½GalðMwc;y=MwcÞ��ðX
wc
Mwc;y

Þ ¼ ðywc
Mwc;y

Þ:

Hence, we get cL½G=H �ðIG=HÞ ¼ cL½G=H �ðJG=HÞ in this case.

Suppose w ¼ o and c ¼ 1. Then, by the definition of CG=H , we have G ¼ H, M ¼ K,
and Mw ¼ Ko ¼ kðmpÞ. By Lemma 3.5, ðY 0Ky=kÞ

o is generated by yo
Ko;y

. Since we assumed

the Leopoldt conjecture holds for k, yo
Ko;y

is not in L, and Yo
Ky=k ¼ ðY 0Ko;y=kÞ

o XL is
generated by the numerator of yo

Ko;y
. Therefore, the Iwasawa main conjecture proved by

Wiles also implies that cL½G=H �ðIG=HÞ ¼ cL½G=H �ðJG=HÞ.

So we have checked the properties (i) and (ii) of Corollary 4.2. The properties (iii)
and (iv) of Corollary 4.2 for IG=H follow from Lemma 3.3. We will show the properties (iii)
and (iv) for JG=H . We denote by M and M 0 the subfields of F corresponding to H and H 0,
respectively. By induction we may assume that GalðM=M 0Þ is cyclic, and that there is a
prime L of k such that only primes above L are ramified in M=M 0. Corollary 5.3 yields
an exact sequence �L

vjL
Iv

�w
!a ðX w

My
ÞGalðMy=M 0

yÞ !
b
X

w
M 0

y
! 0

where Iv is the inertia group of v in GalðMy=M 0
yÞ for a prime v above L. The surjectivity

of b implies cH;H 0 ðJG=HÞH JG=H 0 .

Since Iv is cyclic and only primes above L are ramified, the image of a

is cyclic as a L½G=H 0�-module. We take generators e1; . . . ; es of X
w
My

as a L½G=H �-
module such that the image of e1 in ðX w

My
ÞGalðMy=M 0

yÞ generates the image of a. Put
N ¼

P
s AGalðMy=M 0

yÞ
s. Since b is induced by the norm map, by the above exact sequence, we

have Ne1 ¼ 0. Let e2; . . . ; es denote the image of e2; . . . ; es in X
w
M 0

y
by the map b. SupposePs

i¼2
aijei ¼ 0 ð j ¼ 2; 3; . . .Þ are relations of X w

M 0
y
. We may suppose

Ps
i¼1

~aaijei ¼ 0 ð j ¼ 1; 2; . . .Þ

such that cH;H 0 ð~aaijÞ ¼ aij for i; jf 2, ~aa11 ¼ N, and ~aa21 ¼ � � � ¼ ~aas1 ¼ 0, are relations of
X

w
My

. Hence, if x is an ðs� 1Þ � ðs� 1Þ minor of the relation matrix of X
w
M 0

y
, we have

N~xx A JG=H ¼ Fitt0;L½G=H �ðX w
My
Þ for some ~xx with cH;H 0 ð~xxÞ ¼ x. But N~xx ¼ nH 0;HðxÞ. Hence,

nH 0;HðJG=H 0 ÞH JG=H .

Therefore, we can apply Corollary 4.2 to obtain IG ¼ JG. This completes the proof of
Theorem 0.9.

Remark 6.1. We remark that we did not use the Leopoldt conjecture to prove�
Fitt0;Zp½w�½½GalðFy=KÞ��ðX w

Fy
Þ
�w
ðDÞ ¼ ðYFy=kÞwðDÞ for w3o.

Next, we will prove Corollary 0.10. Put k ¼ Q. The Leopoldt conjecture of course
holds for Q. For any abelian extension F=Q, we can take an abelian extension F 00=Q
such that Fy ¼ F 00y, p is tamely ramified in F 00, and F 00XQy ¼ Q. So we may assume F

satisfies the above conditions. Using (a variant of ) Lemma 2.3, we can take F 0 as in the
subsection 3.2 in §3. Hence, F satisfies all conditions in the subsection 3.2. Further, by
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Ferrero and Washington [10], we know m ¼ 0 for any abelian field, so Theorem 0.9 implies
Corollary 0.10.

Corollary 6.2. Let F be an arbitrary abelian number field such that p is ramified in

F=Q. Suppose that GalðF=QÞ ¼ D� G whereKD is prime to p, and G is a p-group. Then
for a character w of D such that w3o, we have

y
w
F A Fitt0;Zp½w�½G �

�
ðAF ÞwðDÞ

�
:

This follows from Theorem 0.9, the surjectivity of X w
Fy
! A

w
F , and y

w
F A cFy=F ðYw

Fy=QÞ.

Next, we will prove Theorem 0.4. Using (a variant of ) Lemma 2.3, we can take
an abelian field F 0 such that F 0=F is an unramified p-extension and F 0 satisfies (Ap). Since
F 0=F is a p-extension, no prime above p splits in F 0=ðF 0Þþ. Hence, as in the proof of
Theorem 0.9, it is enough to show this theorem for F 0. So we may assume F satisfies
the assumption (Ap). Let IvðFy=FÞ be the inertia group of v in GalðFy=FÞ. Our assump-
tion that no prime of F þ over p splits in F=F þ implies that the complex conjugation
acts trivially on

L
vjp

IvðFy=FÞ where the sum is taken over the primes of F above p.

Hence,
�L

vjp
IvðFy=FÞ

��
¼ 0. By Proposition 5.2, this implies that ðX�FyÞGalðFy=FÞ !

F
A�F is

an isomorphism. Let cFy=F : Zp½½GalðFy=QÞ�� ! Zp½GalðF=QÞ� be the natural map. By
Theorem 0.9 and the above isomorphism, we have

Fitt0;Zp½GalðF=QÞ�ðA�F Þ ¼ cFy=F

�
Fitt0;Zp½½GalðFy=QÞ��ðX�FyÞ

�
¼ cFy=F ðY�Fy=QÞ:

Hence, Fitt0;Zp½GalðF=QÞ�ðA�F Þ
�HY�F=QnZp by Lemmas 3.1 and 3.2.

It follows from the following Lemma 6.3 that

KA�F f
�
Zp½GalðF=QÞ�� : Fitt0;Zp½GalðF=QÞ�ðA�F Þ

��
f
�
Zp½GalðF=QÞ�� : Y�F=Q nZp

�
:

On the other hand, by Sinnott’s theorem ([40], Theorems 2.1 and 5.4), we have�
Zp½GalðF=QÞ�� : Y�F=QnZp

�
¼KA�F . (Let F 0 be the abelian field satisfying the condi-

tion (A) such that F 0=F is unramified and of degree prime to p. In the notation of [40],
RF 0 ¼ UF 0 by Theorem 5.4 in [40], which implies RF nZp ¼ UF nZp, hence by Theorem
2.1 in [40] we get the above equality.) Thus, we get

Fitt0;Zp½GalðF=QÞ�ðA�F Þ
� ¼ Y�F=QnZp:

Lemma 6.3. �
Zp½GalðF=QÞ�� : Fitt0;Zp½GalðF=QÞ�ðA�F Þ

��
eKA�F :

To prove Lemma 6.3, we need the following lemma.

Lemma 6.4. Let G ¼ G1 � � � � � Gr be a finite abelian p-group such that Gi’s are

cyclic for all i. Put c ¼KG. Let R be a semi-local ring such that R ¼ R1 � � � � � Rq where
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Rj’s are rings of integers of local fields of mixed characteristics ð0; pÞ, and mc HR�j for all j.
We use the notation H and CG=H in §4. For c A CG=H , the ring homomorphism R½G=H � ! R

induced by c is also denoted by c. Suppose that for any subgroup H A H, an ideal IG=H of

R½G=H � is given, and for any H A H and c A CG=H , an element xc A R is given, and that they
satisfy the following properties.

(i) For any subgroup H A H and any character c A CG=H , we have�
R : cðIG=HÞ

�
e
�
R : ðxcÞ

�
:

(ii) For any subgroups H and H 0 in H such that HHH 0, we have

cH;H 0 ðIG=HÞH IG=H 0 and nH 0;HðIG=H 0 ÞH IG=H

where cH;H 0 : R½G=H � ! R½G=H 0� and nH 0;H : R½G=H 0� ! R½G=H � are defined as in

Lemma 4.1.

Then, we have

ðR½G� : IGÞe
�
R :
� Q
H AH

Q
c ACG=H

xc

��
¼
�
R :
� Q
c A ĜG

xc

��
:

Proof of Lemma 6.4. We prove this lemma by the same method as Lemma
4.1, namely by induction on KG. We may assume KG > 1 and KG1 ¼ pm with mf 1.

Put N ¼ G
pm�1

1 � f1g � � � � � f1g and G ¼ G2 � � � � � Gr. For a character c1 of G1, the
ring homomorphism R½G � ! R½G� induced by c1 is denoted by c1;G1

. Consider an exact
sequence

R½G=N �=IG=N ��!nN; f1g
LR½G �=IG ��!L

c1

c1;G1
ðR½G�Þ=

�
c1;G1

ðIGÞ
�

where c1 ranges over faithful characters of G1.

By the hypothesis of the induction, we can apply this lemma for the group

G=N instead of G, and get ðR½G=N � : IG=NÞe
�
R :
� Q

c A ðG=NÞ5
xc

��
. We define H 0

as in the proof of Lemma 4.1. For H 0 A H 0, we define IG=H 0 ¼ c1;G1
ðIG=f1g�H 0 Þ and

xc 0 ¼ xc1c 0 for c 0 A CG=H 0 . Then, by the hypothesis of the induction, we obtain�
c1;G1

ðR½G�Þ : c1;G1
ðIGÞ

�
¼ ðR½G� : IGÞe

�
R :
� Q

c 0 A ĜG

xc1c 0
��

. Hence, by the above exact
sequence, we obtain

ðR½G� : IGÞe
�
R :
� Q
c A ĜG

xc

��
:

Proof of Lemma 6.3. Suppose that GalðF=QÞ ¼ D� G where G is a p-group
and KD is prime to p, and that K is the subfield of F fixed by G. Put c ¼ ½F : Q�,
and R ¼ Zp½mc�½D�. We have Zp½GalðF=QÞ�nZp

Zp½mc� ¼ R½G �. To prove this lemma, it is

enough to show
�
R½G �� : Fitt0;R½G �ðA�F nZp½mc�Þ

��
e
�
Zp½mc� : ðKA�F Þ

�
.
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We use the notation of Lemma 6.4. For H A H, we denote by M the subfield of F
fixed by H. We define IG=H by Iþ

G=H ¼ ð1Þ and I�G=H ¼ Fitt0;R½G=H �ðA�M nZp½mc�Þ
�. Note

that R ¼
L
w

Zp½mc�
w where the sum is taken over characters of D. We denote an element a

of R by a ¼ ðawÞ where aw is the w-component. Suppose H A H, and c A CG=H . Let Mwc

be the subfield of M fixed by KerðwcÞ. We take xc ¼
�
ðxcÞw

�
A R such that ðxcÞw ¼ 1 if w

is even, andKZp½mc�=
�
ðxcÞw

�
¼KðAMwc

nZp½mc�Þ
wc if w is odd (for example, we can take

ðxcÞw ¼ B1; ðwcÞ�1 if w is odd3o by Solomon’s theorem [42] where B1; ðwcÞ�1 is the first

generalized Bernoulli number).

We define Mw as in the proof of Theorem 0.9, then ½M : Mw� is prime
to p and Mw=Mwc is unramified. Hence, as in the proof of Theorem 0.9, by
Proposition 5.2, we have an isomorphism ðA�MÞGalðM=MwcÞFA�Mwc

. Therefore, we have

cðIG=HÞ� ¼ Fitt0;R½c�
�
ðA�M nZp½mc�Þ

c
ðG=HÞ

�
¼ Fitt0;R½c�

��
ðA�Mwc

nZp½mc�Þ
wc�� ¼ ðxcÞ. So

the property (i) of Lemma 6.4 is satisfied. The property (ii) of Lemma 6.4 can be checked
by the same method as in the proof of Theorem 0.9. So by Lemma 6.4 we have

K
�
R½G�=Fitt0;R½G �ðA�F nZp½mc�Þ

��
eK

�
R=
�Q

c

xc

��

¼K

�
Zp½mc�=

Q
wc

ðxcÞw
�

¼K
�
Zp½mc�=ðKA�F Þ

�
:

This completes the proof of Lemma 6.3.

Next, we prove Theorem 0.5. We write D ¼ GalðK=QÞ and G ¼ GalðF=KÞ, then
GalðF=QÞ ¼ D� G. By our assumption, G3 f1g. As in 1.4, we have

Zp½GalðF=QÞ� ¼
L
w

Zp½w�½G �:

We put FF ¼ Fitt0;Zp½GalðF=QÞ�ðA�F Þ, YF ¼ YF=QnZp, and Y 0F ¼ ðY 0F=QÞ
ðpÞ (ðY 0F=QÞ

ðpÞ

was defined before Lemma 3.1). Let ðFF Þw (resp. ðYF Þw, ðY 0F Þ
wÞ be the w-component of FF

(resp. YF , Y
0
F ). Our aim is to show ðFF Þw ¼ ðYF Þw for all odd w.

Lemma 6.5. Let Kw be the fixed field of Ker w in K, and Fw ¼ Kw;n. We denote by

y
w
Fw

(resp. yw
Kw
) the image of yFw

(resp. yKw
) by the map

Qp½GalðFw=QÞ� ¼ Qp½GalðKw=QÞ�½G � ! QpðwÞ½G � (resp. Qp½GalðKw=QÞ� ! QpðwÞ)

induced by w. Then, ðY 0F Þ
w
is generated by nFw=Kw

y
w
Kw

and y
w
Fw

as a Zp½w�½G �-module.

Proof. By the same method as Lemma 2.6 (2) (ii), we know that ðY 0F Þ
w is generated

by nFw=Kw;m
y
w
Kw;m

’s with 0eme n. If m > 0, then p is ramified in Km, so cFw=Kw;m
ðyw

Fw
Þ ¼ y

w
Kw;m

.
Hence, nFw=Kw;m

ðyw
Kw;m
Þ is a multiple of yw

Fw
. This completes the proof of the lemma.

We go back to the proof of Theorem 0.5. First of all, if w ¼ o, by the above lemma
we have ðFF Þw ¼ ðYF Þw ¼ ð1Þ. So we may assume w3o. We consider
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Zp½½GalðKy=QÞ�� ¼
L
w

Zp½w�½½GalðKy=KÞ��:

Let ðFKyÞ
w (resp. ðYKyÞ

wÞ be the w-component of Fitt0;Zp½½GalðKy=QÞ��ðX�Ky
Þ (resp. YKy=QÞ.

We first assume wðpÞ3 1. Since cFw=Kw
ðyw

Fw
Þ ¼

�
1� wðpÞ�1

�
y
w
Kw

and 1� wðpÞ�1 is a

unit (the order of w is prime to p), yw
Kw

is a multiple of cFw=Kw
ðyw

Fw
Þ, and nFw=Kw

y
w
Kw

is a multiple

of yw
Fw
. Hence, ðYF Þw is generated by y

w
Fw

by Lemma 6.5 (note that ðY 0F Þ
w ¼ ðYF Þw because

w3o). So we have cKy=F

�
ðYKyÞ

w� ¼ ðYF Þw by Lemma 3.5.

On the other hand, by Proposition 5.2 and wðpÞ3 1, ðX w
Ky
ÞGalðKy=FÞ !

F
A

w
F is bijec-

tive. Hence, cKy=F

�
ðFKyÞ

w� ¼ ðFF Þw. So Theorem 0.9 (the usual Iwasawa main conjecture)
implies ðFF Þw ¼ ðYF Þw.

Next, we assume wðpÞ ¼ 1. By Proposition 5.2, we have an exact sequence

0! Zp½w�nZp
GalðKy=FÞ !a1 ðX w

Ky
ÞGalðKy=FÞ ! A

w
F ! 0:ð�Þ

Recall that G ¼ GalðF=KÞ is cyclic of order pn. Put N ¼ NG ¼
P
s AG

s, and for a

Zp½w�½G �-module M, we write MN¼0 (resp. M=ðNÞ) for the kernel (resp. the cokernel) of
N : M !M.

Lemma 6.6. ðX w
Ky
ÞGalðKy=FÞ=ðNÞ !

F
A

w
F=ðNÞ is an isomorphism.

Proof. The exact sequence ð�Þ yields an exact sequence

ðAw
F Þ

N¼0 !d ðZp½w�=pnÞnZp
GalðKy=FÞ !

�
ðX w

Ky
ÞGalðKy=FÞ

�
=ðNÞ ! A

w
F=ðNÞ ! 0:

We will compute the boundary homomorphism d, and show its surjectivity. Applying
Proposition 5.2 to Ky=F and Ky=K , we have a commutative diagram of exact sequences

0 ���! Zp½w�nZp
GalðKy=FÞ ���!a1 ðX w

Ky
ÞGalðKy=FÞ ���! A

w
F ���! 0???y

???y
???yNF=K

0 ���! Zp½w�nZp
GalðKy=KÞ ���!a2 ðX w

Ky
ÞGalðKy=KÞ ���! A

w
K ���! 0:

Let s0 be a generator of GalðKy=KÞ, and put x ¼ a2ð1n s0Þ (a2 is the map in the above
diagram). We take an element y A ðX w

Ky
ÞGalðKy=FÞ which is mapped to x, and define z to be

the image of y in A
w
F . Since NF=KðzÞ ¼ 0, z is in ðAw

F Þ
N¼0. We will compute dðzÞ. Since both

Ny and a1ð1n pns0Þ are mapped to pnx in ðX w
Ky
ÞGalðKy=KÞ and Ny is in the image of a1, we

have Ny ¼ a1ð1n pns0Þ. This shows that dðzÞ ¼ 1n pns0. Since pns0 is a generator of
GalðKy=FÞ, d is surjective and we obtain the conclusion of this lemma.

Since Fitt0;Zp½½GalðKy=KÞ��ðX w
Ky
Þ ¼ ðyw

Ky
Þ by the Iwasawa main conjecture, this lemma

implies that Fitt0;Zp½w�½G �=ðNÞ
�
A

w
F=ðNÞ

�
¼ ðyw

Fw
Þ. From the surjectivity of X

w
Ky
! A

w
F , y

w
Fw

belongs to F
w
F , so the above says that Fw

F is generated by y
w
Fw

and some elements of the
form Nx. Using the exact sequence

0! Zp½w�=pn nZp
GalðF=KÞ ! ðAw

F ÞGalðF=KÞ ! A
w
K ! 0
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which is obtained from Proposition 5.2, we know nFw=Kw

�
Fitt0;Zp½w�ðA

w
KÞ
�
HF

w
F by the same

method as in the proof of Theorem 0.9. By the calculation of the order of Aw
K by Mazur and

Wiles [26], Chap. 1, §10, Theorem 2, we have Fitt0;Zp½w�ðA
w
KÞ ¼ ðy

w
Kw
Þ. So nFw=Kw

ðyw
Kw
Þ A F

w
F .

Suppose that Nx belongs to F
w
F . This implies that pncF=KðxÞ is in Fitt0;Zp½w�

�
ðAw

F ÞGalðF=KÞ
�

which is equal to ðpny
w
Kw
Þ by the above exact sequence. Hence, cF=KðxÞ is a multiple of

y
w
Kw
. Thus, Nx is a multiple of nFw=Kw

ðyw
Kw
Þ, and we know that F

w
F is generated by y

w
Fw

and nFw=Kw
ðyw

Kw
Þ. Hence, by Lemma 6.5 we have F

w
F ¼ Y

w
F . This completes the proof of

Theorem 0.5.

7. Proof of the theorems II

In this section, we prove Theorem 0.6. We use the argument of Wiles and Greither
[48], [14], namely the argument of avoiding the trivial zeros. I learned the method here from
Greither [14], §4.

First of all, using (a variant of ) Lemma 2.3, we can take an abelian field F 0 such
that F 0=F is an unramified p-extension and F 0 satisfies (Ap). Since F 0=F is a p-extension,
mp SF 0. We know p is tamely ramified in F 0 because F 0=F is unramified. So it su‰ces to
show this theorem for F 0, and we may assume F satisfies the condition (Ap).

We first prove this theorem under the assumption that p is unramified in F=Q. We fix
a positive integer N and take a prime number r such that

(i) r is unramified in F=Q,

(ii) r1 1 ðmod pNÞ,

(iii) no prime above r splits in F=F þ,

(iv) if we denote by kr;pN the subfield of QðmrÞ with degree pN , the Frobenius jp of p
in Galðkr;pN=QÞ generates Galðkr;pN=QÞ.

The existence of r follows from Proposition 4.1 in Greither [14], which was proved by
using Chebotarev density theorem. Put E ¼ Fkr;pN . We use the notation AF , AE , XEy , etc.
as in the previous section. Since p is unramified in E,

L
vjp

Zp (v ranges over primes of E

above p) is isomorphic to Zp½GalðE=QÞ�=ðjp � 1Þ where jp A GalðE=QÞ is the Frobenius of
p. By Proposition 5.2, we have an exact sequence�

Zp½GalðE=QÞ�=ðjp � 1Þ
�� ! ðXEyÞ

�
GalðEy=EÞ ! A�E ! 0:

We take N and M su‰ciently large such that pN�M is greater than the p-component

of KGalðF=QÞ, and put n ¼
PpM�1

i¼0
s ipN�M

where s is a generator of Galðkr;pN=QÞ. Put

RE ¼ Zp½GalðE=QÞ�, R ¼ RE=ðnÞ, and RF ¼ Zp½GalðF=QÞ�.

The next lemma is a fundamental property of Fitting ideals, which can be easily
proved ([28], p. 61, Exercise 2).
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Lemma 7.1. Let R be a commutative ring. If M1 !M2 !M3 ! 0 is an exact

sequence of finitely generated R-modules, we have

Fitt0;RðM1ÞFitt0;RðM3ÞHFitt0;RðM2Þ:

Applying Lemma 7.1 to the above exact sequence tensoring nRE
R, we have

ðjp � 1ÞFitt0;R
�
A�E=ðnÞ

�
HFitt0;R

��
ðX�Ey

ÞGalðEy=EÞ
�
=ðnÞ

�
:

By Theorem 0.9, we have Fitt0;Zp½½GalðEy=QÞ��ðX�Ey
Þ� ¼ Y�Ey=Q. Note that E satisfies the

condition (Ap) because we assumed F satisfies (Ap). Since p is unramified in E=Q, mp is

not contained in E, hence mp SEn for nf 0. This implies ðY 0En=Q
ÞðpÞHZp½GalðEn=QÞ�

(ðY 0En=Q
ÞðpÞ was defined before Lemma 3.1) and ðY 0Ey=QÞ

ðpÞHZp½½GalðEy=QÞ��. So

ðY 0Ey=QÞ
ðpÞ ¼ YEy=Q, and ðY 0En=Q

ÞðpÞ ¼ ðYEn=QÞ
ðpÞ. Since p is unramified in E=Q, by

Lemma 2.1 and the definitions of ðY 0Ey=QÞ
ðpÞ and ðY 0E=QÞ

ðpÞ, we get

cEy=E

�
ðY 0Ey=QÞ

ðpÞ� ¼ ð1� j�1p ÞðY 0E=QÞ
ðpÞ ¼ ð1� j�1p ÞðYE=QÞðpÞ

¼ ð1� j�1p ÞYE=QnZp

where the last equality follows from Lemma 3.1. Therefore, we have

ðjp � 1ÞFitt0;R
�
A�E=ðnÞ

��
H ðjp � 1ÞðYE=Q nZpÞ� modðnÞ:

Since we took N and M such that pN�M is greater than the p-component ofKGalðF=QÞ,
jp � 1 is a nonzero divisor in R. Hence, we obtain

Fitt0;R
�
A�E=ðnÞ

�
H ðYE=QnZpÞ� modðnÞ:

Let jr be the Frobenius of r in GalðF=QÞ. Since no prime above r splits in
F=F þ, ðjr � 1Þ� is a unit in Zp½GalðF=QÞ��. Hence, by Lemma 2.1 we have
cE=F

�
ðYE=QnZpÞ�

�
¼ ðYF=QnZpÞ� (note that the ramifying primes in E=F are the

primes above r). We also have�L
vjr

Z=pN
��

(v ranges over primes of F above r)F
�
Z=pN ½GalðF=QÞ�=ðjr � 1Þ

�� ¼ 0.

Hence by Proposition 5.2, we get an isomorphism ðA�E ÞGalðE=FÞFA�F , so an isomorphism�
A�E=ðnÞ

�
GalðE=FÞFA�F =p

M . Consider the map R! RF=p
M defined by s 7! 1. The above

inclusion for the Fitting ideal of A�E=ðnÞ implies

Fitt0;RF=pM ðA�F =pMÞ�H ðYF=QnZ=pMÞ�:

This holds for any M, hence we obtain Fitt0;RF
ðA�F Þ

�H ðYF=QnZpÞ�.

On the other hand, by the same method as the proof of Theorem 0.4, we have�
R�F : Fitt0;RF

ðA�F Þ
�� ¼ ðR�F : Y�F=QnZpÞ ¼KA�F :

Hence, the inclusion Fitt0;RF
ðA�F Þ

�H ðYF=Q nZpÞ� implies the equality. This completes
the proof in the case p is unramified.

Kurihara, Iwasawa theory and Fitting ideals68



Next, we prove Theorem 0.6 under the assumption that p is tamely ramified and
mp SF . As in the proof of Theorem 0.9, we write GalðF=QÞ ¼ D� G whereKD is prime to
p and G is a p-group. It is enough to show Fitt0;RF

ðAF Þw ¼ ðYF=Q nZpÞw for all odd
characters w of D. As in the proof of Theorem 0.9, we denote by Fw (resp. Kw) the fixed field
of the kernel of w (resp. the fixed field of Ker w� G) in F . Let Ip (resp. Dp) be the inertia
group (resp. the decomposition group) of p in GalðF=QÞ. By our assumption, Ip is a sub-
group of D.

Case (i). Suppose that wjIp 3 1. Then,�L
vjp

Zp

�w
(v ranges over primes of F above p)FZp½GalðF=QÞ=Dp�w ¼ 0

because there is s A Dp such that wðsÞ � 1 is a unit. It follows from Proposition 5.2 that
ðX w

Fy
ÞGalðFy=F ÞFA

w
F is an isomorphism. Hence,

cFy=F

�
Fitt0;Zp½½GalðFy=QÞ��ðX w

Fy
Þ
�
¼ Fitt0;RF

ðAw
F Þ:

On the other hand, we will show

cFy=F

�
ðYFy=QÞw

�
¼ ðYF=Q nZpÞw:

Suppose M A ðMF=QÞðpÞ and p is unramified in M=Q. Then, IpHGalðF=MÞ, so�
nF=MðyMÞ

�w ¼ 0. Hence, by Lemma 3.2 we have cFy=F

�
ðY 0Fy=QÞ

w� ¼ ðY 0F=QÞw. Further,
by our assumption mp SF , we have ðY 0F=QÞ

ðpÞHRF and ðY 0Fy=QÞ
ðpÞHZp½½GalðFy=QÞ��.

Hence, ðY 0Fy=QÞ
ðpÞ ¼ YFy=Q and ðY 0F=QÞ

ðpÞ ¼ ðYF=QÞðpÞ ¼ YF=Q nZp by Lemma 3.1.

Thus, we obtained cFy=F

�
ðYFy=QÞw

�
¼ ðYF=QnZpÞw. Therefore, Theorem 0.9 implies

Fitt0;RF
ðAF Þw ¼ ðYF=QnZpÞw.

Case (ii). Suppose that wjIp ¼ 1. Since ½F : Fw� is prime to p, ðAF ÞGalðF=FwÞF ðAFw
Þ is

bijective. So, Fitt0;RF
ðAF Þw ¼ Fitt0;RFw

ðAFw
Þw.

On the other hand, by the same method as Lemma 2.6, using that ½F : Fw� is prime to
p, we can check that ðYF=Q nZpÞw ¼ ðYFw=QnZpÞw. So this case is reduced to Theorem

0.6 for Fw. But since p is unramified in Fw=Q, we have already proved that Theorem 0.6 is
true for Fw. This completes the proof of Theorem 0.6.

8. Higher Fitting ideals

Let F=k be as in Theorem 0.9. In this section we study the higher Fitting ideals
Fitti;Zp½½GalðFy=kÞ��ðXFyÞ

�. (For more about the higher Fitting ideals of ideal class groups, see
[24].)

Suppose that F=k satisfies the conditions in the subsection 3.2 in §3. We consider
an abelian extension L=k such that F HL, GalðL=kÞ ¼ GalðF=kÞ �GalðL=FÞ, ½L : F � is
a power of p, and L=k satisfies the conditions of F=k in the subsection 3.2. Put
G ¼ GalðL=FÞ, LFy ¼ Zp½½GalðFy=kÞ��, and

LLy ¼ Zp½½GalðLy=kÞ�� ¼ LFy ½G �:
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We fix an isomorphism

GFZ=pn1 � � � � � Z=pnr

and take generators s1; . . . ; sr of order pni of G, which correspond to the above decompo-
sition. We have a non canonical isomorphism

LLy ¼ LFy ½G�FLFy ½S1; . . . ;Sr�=
�
ð1þ S1Þp

n1 � 1; . . . ; ð1þ SrÞp
nr � 1

�
where Si’s are indeterminates, and si corresponds to 1þ Si. For x A LLy , we write

x ¼
P

di1;...; irðxÞSi1
1 . . .Sir

r mod I

where I ¼
�
ð1þ S1Þp

n1 � 1; . . . ; ð1þ SrÞp
nr � 1

�
and di1;...; irðxÞ’s are in LFy .

We take N su‰ciently large, and choose L such that n1; . . . ; nr fN. We consider
i1; . . . ; ir, and s such that 0e s < N, and i1; . . . ; ir < psþ1. For i < psþ1, one can easily

check that ordp

 
pN

i

� �!
¼ ordp

�
pN !=

�
i!ðpN � iÞ!

��
fN � s. So di1;...; irðxÞ is well defined

mod pN�s. This di1;...; irðxÞ does depend on the choice of the generators s1; . . . ; sr.

Theorem 8.1. Assume that Ly satisfies the conditions of Theorem 0.9 for Fy. For
any x A ðYLy=kÞ�, di1;...; irðxÞmod pN�s is in Fitti;LFy=pN�s

ðXFy=p
N�sÞ� where i ¼ i1 þ � � � þ ir.

Proof. By Theorem 0.9, we have x A Fitt0;LLy
ðXLyÞ

�. Since XLy ! ðXLyÞG is sur-

jective, we have Fitt0;LLy
ðXLyÞHFitt0;LLy

�
ðXLyÞG

�
, and x A Fitt0;LLy

�
ðXLyÞG

��
. On the

other hand, since Si’s act on ðXLyÞG as zero, Fitt0;LLy

�
ðXLyÞG

�
can be written as

Fitt0;LLy

�
ðXLyÞG

�
¼ Fitt0;LFy

�
ðXLyÞG

�
þ Fitt1;LFy

�
ðXLyÞG

�
J

þ Fitt2;LFy

�
ðXLyÞG

�
J 2 þ � � �

where J ¼ ðS1; . . . ;SrÞ. This fact together with x A Fitt0;LFy

�
ðX�Ly

ÞG
�

implies that
di1;...; irðxÞmod pN�s is in Fitti;LFy=pN�s

�
ðXLyÞG=pN�s��. Since the norm map induces a sur-

jective homomorphism

ðX�Ly
ÞG=pN�s ! X�Fy=p

N�s;

we obtain di1;...; irðxÞmod pN�s A Fitti;LFy=pN�sðX�Fy=p
N�sÞ�. r

We can define di1;...; irðxÞ for x A Y�L=k similarly. For a character w of GalðF=QÞ whose
order is prime to p, the element d1;...;1ðyw

LÞ appears in the argument of the Euler systems
after some computation of the ‘‘derivative’’ operator. The statement like Theorem 8.1 is
usually obtained by the argument of Euler system.

Using the Euler system of the Gauss sums, Rubin determined the structure of A�
QðmpÞ

in [32], Theorem 4.4 (cf. also Kolyvagin [21], Theorem 7). By using Fitting ideals, his the-
orem can be written as
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Theorem (Rubin). For F ¼ QðmpÞ, Fitti;Z=pN ½GalðF=QÞ�ðCl�F =pNÞ� is generated by

Y�F=Q and d1;...;1ðxÞ’s where x ranges over elements of ðYL=QnZpÞ� and L ranges over the

abelian fields as above.

It is also remarked in Rubin [32] that the same result is true for QðmmÞ as long as p

does not divide ½QðmmÞ : Q�. For a generalization to CM fields, see [24].

Let w be an odd Dirichlet character, and F be the fixed field of KerðwÞ (so
GalðF=QÞF ImageðwÞ). Put Lw ¼ L

w
Fy
¼ Zp½w�½½GalðFy=FÞ��. We consider the w-quotient

X
w
Fy

which is a Lw-module. We assume that the order of w is prime to p and wðpÞ3 1.

Conjecture 8.2. We take N and s such that N, s, and N � s are large enough. For any
i > 0, the higher Fitting ideal Fitti;Lw=pN�sðX w

Fy
=pN�sÞ is generated by Y

w
Fy=Q and di1;...; irðxÞ’s

where

(i) L ranges over all abelian fields such that LXFy ¼ F ,

GalðL=QÞ ¼ GalðF=QÞ �GalðL=FÞ;

and GalðL=FÞ is a p-group with GalðL=FÞFZ=pn1 � � � � � Z=pnr where n1; . . . ; nrfN as

above,

(ii) x ranges over all elements of ðYLy=QÞwðDÞ, and

(iii) ði1; . . . ; irÞ ranges over all integers satisfying i1; . . . ; ir < psþ1 and i1 þ � � � þ ir e i.

Remark 8.3. Schoof asked an interesting question on a certain initial Fitting ideal
concerning the minus part of the ideal class group of an abelian field, which is related to the
above conjecture, before the argument of the Euler system was discovered [34]. (His ques-
tion itself has not yet been answered because he considers only cyclic extensions L=F .) An
idea to study the initial Fitting ideal of ðXLyÞG as a LLy-module, which I used in the proof
of Theorem 8.1, was originally in Schoof [34].

Concerning Conjecture 8.2, in this paper we only show

Theorem 8.4. In the situation of Conjecture 8.2, we fix N > 0, and put

S ¼ fl : prime number j l1 1 ðmod pNÞ and l is unramified in F=Qg, and L ¼ fL : the
subfield of FðmlÞ such that ½L : F � ¼ pN j l A Sg. Then, the ideal Fitt1;Lw=pN ðX w

Fy
=pNÞ is

generated by y
w
Fy

and d1ðyw
Ly
Þ’s for all L A L. Namely, Conjecture 8.2 is true for i ¼ 1.

Proof. We may assume w3o. Let F be the ideal generated by y
w
Fy

and
d1ðyw

Ly
Þ’s. By Theorem 8.1 we have FHFitt1;Lw=pN ðX w

Fy
=pNÞ, hence it is enough to show

Fitt1;Lw=pN ðX w
Fy
=pNÞHF.

We first remark some properties of X w
Fy

and A
w
Fn
. Since X w

Fy
is a free Zp½w�-module of

finite rank, if there is a surjective homomorphism ðLwÞm ! X
w
Fy
, its kernel is a free Lw-

module of rank m (because X w
Fy

is an elementary Lw-module in the sense of Northcott [28],
p. 80). We take generators of X w

Fy
and consider an exact sequence

Kurihara, Iwasawa theory and Fitting ideals 71



0! ðLwÞm !
f ðLwÞm !

g
X

w
Fy
! 0

of Lw-modules. We denote by A A MmðLwÞ the matrix corresponding to the Lw-
homomorphism f .

For n > 0, we put Gn ¼ GalðFy=FnÞ, and Ln ¼ Zp½w�½GalðFn=FÞ�. By our assumption

wðpÞ3 1, ðX w
Fy
ÞGn
!F A

w
Fn

is an isomorphism. The map g defines generators of X w
Fy

and A
w
Fn
.

We take n su‰ciently large. Let DivFn
be the group of fractional ideals of Fn. We consider

an exact sequence

ðF�n nZpÞw !
div ðDivFn

nZpÞw ! A
w
Fn
! 0:

We choose primes v1; . . . ; vm of degree 1 by Chebotarev density theorem such that the
subgroup M generated by v1; . . . ; vm in ðDivFn

nZpÞw is a free Ln-module of rank m,
and that the classes of v1; . . . ; vm correspond to the generators of A

w
Fn
F ðX w

Fy
ÞGn

which
we took. Namely, the map MF ðLnÞm ! A

w
Fn

is induced by the above map g. Since
MF ðLnÞm ! A

w
Fn

is surjective and ðX w
Fy
ÞGn ¼ 0, its kernel M 0 is a free Ln-module of

rank m.

We choose basis of M 0 and take an isomorphism M 0F ðLnÞm such that
M 0F ðLnÞm !MF ðLnÞm is induced by f . We have an exact sequence

0!M 0 !f M ! A
w
Fn
! 0:

Since Fitt0;Lw
ðX w

Fy
Þ is generated by detA and is equal to the characteristic ideal

charLw
ðX w

Fy
Þ, by the usual main conjecture we have ðdetAÞ ¼ ðyw

Fy
Þ as ideals of Lw. By

changing the basis, we may assume that detA ¼ y
w
Fy
.

Put K ¼ fx A ðF�n nZpÞw j divðxÞ A Mg. Then, we have a homomorphism
e : K!M 0 such that div : K!M satisfies div ¼ f � e. We denote an element of M

and M 0 by a column vector of the form tða1; . . . ; amÞ. By the argument of Euler system of
Gauss sums (cf. Rubin [32], Theorems 2.4 and 3.1), for any i and j such that 1e i, jem,
we can take a cyclic extension L A L, and can construct an element gi A K such that

(1) divðgiÞ ¼ tð0; . . . ; 0; yw
Fn
; 0; . . . ; 0Þ (yw

Fn
is in the i-th coordinate),

(2) when we write eðgiÞ ¼ tða1; . . . ; amÞ, we have aj 1 ud1ðyw
Ln
Þ ðmod pN ; yw

Fn
Þ for

some unit u A L�n .

Put ~aai; j ¼ ð�1Þ iþj detAi; j where Ai; j is the matrix obtained by crossing out
the i-th row and the j-th column of A. The above properties of gi imply that
Atða1; . . . ; amÞ ¼ tð0; . . . ; 0; yw

Fn
; 0; . . . ; 0Þ (where A corresponds to f ), hence

cFy=Fn
ð~aai; jÞyw

Fn
¼ ajy

w
Fn
:

Since wðpÞ3 1, yw
Fn

is a nonzero divisor. Hence, cFy=Fn
ð~aai; jÞ ¼ aj. From the property (2), we

know that cFy=Fn
ð~aai; jÞmod pN belongs to the ideal generated by y

w
Fn

and d1ðyw
Ln
Þ. Hence,

~aai; j mod pN is in y
w
Fy
Lw=p

N þ d1ðyw
Ly
ÞLw=p

N . This implies Fitt1;Lw=pN ðX w
Fy
=pNÞHF, and

we have completed the proof of Theorem 8.4.
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9. Example—the case lF 2

In this section, we assume that F is an imaginary abelian field, and w is an odd char-
acter of GalðF=QÞ such that w3o, and that the conductor of w is equal to the conductor of
F . We study the case that X w

Fy
is a free Zp½w�-module of rank 2.

We begin with a preparation of linear algebra. Let R be a complete discrete valuation
ring of mixed characteristics ð0; pÞ ðp3 2Þ with maximal ideal mR. Let p be a prime ele-
ment of R (namely mR ¼ ðpÞ), and vR is an additive valuation such that vRðpÞ ¼ 1. Let
L ¼ R½½T �� be the formal power series ring over R. We consider a finitely generated L-
module M which is not cyclic (not generated by one element as a L-module). We further
assume that as an R-module, M is free of rank 2, namely MFRlR. Then, the charac-
teristic ideal of M is generated by the distinguished polynomial FMðTÞ of degree 2.

Lemma 9.1. We write

FMðTÞ ¼ ðT � aÞðT � bÞ:

(1) Suppose a and b belong to R. Then, we have an exact sequence of L-modules

0! L2 !f L2 !M ! 0

such that the matrix Af A M2ðLÞ which corresponds to the L-homomorphism f is of the form

Af ¼
T � a p i

0 T � b

� �

for some i such that 0 < ie vRða� bÞ. Here, if a ¼ b, i ¼y is allowed (in this case

py ¼ 0). Further, the isomorphism class of M is determined by the value i.

(2) Suppose FMðTÞ does not have a root in R. We define

a ¼ aþ b

2
:

Then, we have an exact sequence of L-modules

0! L2 !f L2 !M ! 0

such that the matrix Af A M2ðLÞ which corresponds to the L-homomorphism f is of the form

Af ¼
T � a p i

c T � a

� �

for some i such that 0 < ie vRða� bÞ, and some c A R with vRðcÞf i. Further, the iso-

morphism class of M is determined by the value i.

Proof. Since M is a free R-module of rank 2, we have an exact sequence

0! L2 !f L2 !M ! 0 such that detð f Þ ¼ FMðTÞ (Proposition 2 in the appendix of
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[26]). By elementary operations of the matrices, one can transform the matrix of f into
the above form. For example, we consider the case (1). By the usual theory of elemen-

tary divisors, one can take Af ¼
aðTÞ bðTÞ
cðTÞ dðTÞ

� �
such that aðaÞ ¼ bðaÞ ¼ cðaÞ ¼ 0. Since

FMðTÞ is of degree 2, either at least a 0ð0Þ or c 0ð0Þ is a unit. We may assume that
a 0ð0Þ is a unit by adding the second row to the first row if it is needed. So we may assume
aðTÞ is a polynomial of degree 1, and aðTÞ ¼ T � a. Since T � a j cðTÞ, we can take
cðTÞ ¼ 0. Then, dðTÞ ¼ T � b, and we can take bðTÞ to be a constant, and bðTÞ ¼ p i

with 0 < ie vRða� bÞ. (If if vRða� bÞ, one can take bðTÞ ¼ 0.) One can show (2) by
the same method.

The isomorphism class of M is determined by i because it determines the 1-st Fitting
ideal Fitt1;LðMÞ.

Remark 9.2. (1) Lemma 9.1 says that the Fitting ideals Fitti;LðMÞ for if 0 deter-
mine the isomorphism class of M in this case. But in general (in the case rankRðMÞf 3), it
is not true.

(2) H. Sumida [44] and M. Koike [20] classified the isomorphism classes of these L-
modules by di¤erent methods. They computed XFy for many examples.

Let F be as above. By Lemma 9.1, we get

Corollary 9.3. Suppose that X
w
Fy

is a free Zp½w�-module of rank 2. Then, the iso-

morphism class of X
w
Fy

is determined by Fitti;Lw
ðX w

Fy
Þ for i ¼ 0; 1.

By this corollary together with Theorem 8.4, we know that the isomorphism
class of X w

Fy
is determined by the Stickelberger elements at least in the case wðpÞ3 1 and

pF ½F : Q�. We will explain more explicitly.

Let N > 0 be a positive integer, and l be a prime number such that
l1 1 ðmod pNÞ, and l is unramified in F=Q. Let L be the subfield of FðmlÞ such that
½L : F � ¼ pN . We identify Lw ¼ Zp½w�½½GalðFy=FÞ�� with Zp½w�½½T �� by identifying a gener-
ator g of GalðFy=FÞ with 1þ T . Similarly, identifying a generator of GalðL=FÞ with 1þ S,
we identify

Zp½w�½½GalðLy=FÞ�� ¼ Lw½GalðL=FÞ�FLw½S �=
�
ð1þ SÞp

N

� 1
�
:

We write y
w
Ly

A Lw½GalðL=FÞ� as

y
w
Ly
¼ dl0ðTÞ þ dl1ðTÞS þ dl2ðTÞS2 þ � � � :

(So dli ðTÞ ¼ diðyw
Ly
Þ in the notation of §8.) Note that dl1ðTÞ is well defined in Lw=p

N . By

Theorem 8.1, dl1ðTÞ is in Fitt1;LðX w
Fy
Þmod pN . Theorem 8.4 says that Fitt1;LðX w

Fy
Þ is gen-

erated by y
w
Fy

and these dl1ðTÞ’s (l ranges over all prime numbers satisfying the conditions).
Namely, we can determine the isomorphism class of X w

Fy
in principle by this method.

Example 9.4. We take F ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6910
p

Þ, p ¼ 3, and w ¼ the nontrivial character of
GalðF=QÞ. So Lw ¼ LFy FZ3½½T ��. In this case, XFy ¼ Z3 lZ3, and it is not generated by
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one element as a LFy-module. We compute yw
Fy

A Z3½½T �� and know that yw
Fy

does not have

a root in Z3. Hence, we are in the case (2) of Lemma 9.1. We calculate dl1ðTÞ.

l dl1ðTÞmodð1þ TÞ3 � 1

109 T 2 þ 5T þ 3

163 5T 2 þ 2T þ 6

(This is an example of the calculation done by Y. Yamazaki [49].) These polynomials
are well defined modulo

�
9; ð1þ TÞ3 � 1

�
. So for any a A 3Z3, f

l
1 ðaÞmod9 is well defined.

We have f 1091 ðaÞ1 0 ðmod9Þ , a1 3 ðmod 9Þ and f 1631 ðaÞ1 0 ðmod9Þ , a1 6 ðmod9Þ.
This shows that the ideal

�
T � a; f 1091 ðTÞ; f 1631 ðTÞ

�
of L=

�
9; ð1þ TÞ3 � 1

�
must contain

3 for any a A 3Z3. Hence, Fitt1;LFy
ðXFyÞ contains 3. So XFy corresponds to the matrix

T � a 3

c T � a

� �
(cf. also Koike [20], p. 392, Table 2).

10. Elliptic curve with ordinary reduction at p

In this section, we study the Selmer group of a modular elliptic curve with good
ordinary reduction at p by the above method.

Let E be an elliptic curve defined over Q (so a modular elliptic curve) such that E has
good ordinary reduction at p. We assume that pf 5.

For QðmmÞ
þ, we denote by yE

QðmmÞþ
the modular element defined by Mazur and

Tate [25], so yE
QðmmÞ

þ ¼ 1

2

P
½a=m�þEsa A Q



Gal

�
QðmmÞ

þ=Q
��
. (Here, ½a=b�þE is defined in

the following way. Let f ðzÞ ¼
P

an expð2pinzÞ be the modular form corresponding to E.

We define ½a=b�þE by 2p
Ðy
0

f
a

b
þ iy

� �
dy ¼ ½a=b�þEWþE þ ½a=b�

�
EW
�
E where WG

E are the Néron

periods. cf. [25], p. 716.) For a real abelian field F with conductor m, we define yE
F to be the

image of yE
QðmmÞþ

by the natural map Q


Gal

�
QðmmÞ

þ=Q
��
! Q½GalðF=QÞ�.

As before, Fy=F denotes the cyclotomic Zp-extension, and Fn the n-th layer.
Let a be the unique solution of T 2 � apT þ p ¼ 0 such that ordpðaÞ ¼ 0 where

ap ¼ pþ 1�KEðFpÞ. For nf 1, we define QFn
¼ a�n

�
ayE

Fn
� nFn=Fn�1ðy

E
Fn�1
Þ
�
. Then, for

ng 0 QFn
’s become a projective system with respect to the natural maps.

In the following, we assume that p is tamely ramified in F=Q, EðFÞ does not contain
a point of order p, and p does not divide the Manin constant of E. Then, by Stevens [43],
Theorem 4.6, QFn

is in Zp½GalðFn=QÞ� and ðQFn
Þ defines an element QFy A Zp½½GalðFy=QÞ��.

We first assume that the extension F=Q satisfies the condition (Ap) in §3. For a prime
v of F , ev;F=Q denotes the ramification index of v in F=Q, and kðvÞ denotes the residue
field of v. We assume thatKE

�
kðvÞ

�
½p�3 p2 for any good reduction prime v with pjev;F=Q.

Using the notation in §2 and §3, we define YFy;E to be the ideal of Zp½½GalðFy=QÞ�� gen-
erated by nFy=My

ðQMyÞ for all M A ðMF=QÞðpÞ.
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Next, we consider a real abelian field F such that p is tamely ramified, and
EðFÞ½p� ¼ 0. Using (a variant of ) Lemma 2.3, we can take a real abelian field F 0IF such
that F 0=F is an unramified p-extension and F 0 satisfies the condition (Ap). Note that

p is tamely ramified in F 0 and EðF 0Þ½p� ¼ 0. We again assume that KE
�
kðvÞ

�
½p�3 p2

for any good reduction prime v of F 0 with pjev;F 0=Q. For such F , we define YFy;E by
YFy;E ¼ cF 0y=FyðYF 0y;EÞ.

For any algebraic extension F=Q, we denote by SelðE=FÞ the Selmer group of E
over F with respect to E½py�, namely

SelðE=FÞ ¼ Ker
�
H 1ðF;E½py�Þ !

Q
v

H 1ðFv;E½py�Þ=
�
EðFvÞnQp=Zp

��
where v ranges over all primes of F. For an abelian field F as above, we consider the
Pontrjagin dual SelðE=FyÞ4 of the Selmer group, which is a finitely generated torsion
Zp½½GalðFy=QÞ��-module by Kato’s theorem [19].

Conjecture 10.1.

Fitt0;Zp½½GalðFy=QÞ��
�
SelðE=FyÞ4

�
¼ YFy;E :

Theorem 10.2. Assume that F satisfies the above conditions, and the (algebraic) m-
invariant of Fy for E vanishes, namely SelðE=FyÞ4 is a finitely generated Zp-module. Then,
we have

Fitt0;Zp½½GalðFy=QÞ��
�
SelðE=FyÞ4

�
IYFy;E :

We will prove this theorem in the next section.

Corollary 10.3. Suppose that p2 does not divide m. We assume that F ¼ QðmmÞ
þ

satisfies the conditions in Theorem 10.2. We further assume that apE 1 ðmod pÞ (not anom-

alous). Then, we have

yE
QðmmÞþ

A Fitt0;Zp½GalðQðmmÞþ=QÞ�
�
Sel
�
E=QðmmÞ

þ�4�:
Mazur and Tate conjectured yE

QðmmÞþ
A Fitt0;Zp½GalðQðmmÞ

þ=QÞ�
�
Sel
�
E=QðmmÞ

þ�4� in
general (Conjecture 3 in [25]).

Theorem 10.2 immediately implies Corollary 10.3. We will give here the proof. We
first assume ðm; pÞ ¼ 1. By the property (1) in [25], 1.3, we have

cFy=F ðQFyÞ ¼
�
a2 � aðjp þ j�1p Þ þ 1

�
yE
F

where jp is the Frobenius of p in GalðF=QÞ. By our assumption ap E 1 ðmod pÞ,
aE 1 ðmod pÞ. Since a2 � aðjp þ j�1p Þ þ 1 ¼ ða� 1Þ2 þ aðjp � 1Þðj�1p � 1Þ, it is a unit.

Hence, the surjectivity of SelðE=FyÞ4! SelðE=FÞ4 with

QFy A Fitt0;Zp½½GalðFy=QÞ��
�
SelðE=FyÞ4

�
implies yE

F A Fitt0;Zp½GalðF=QÞ�
�
SelðE=FÞ4

�
.
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Next, suppose m ¼ pm 0 and ðm 0; pÞ ¼ 1. Put K ¼ Qðmm 0 Þ
þ. As above, the property

(4) in [25], 1.3, and QFy A Fitt0;Zp½½GalðFy=QÞ��
�
SelðE=FyÞ4

�
imply

ayE
F � nF=KðyE

KÞ A Fitt0;Zp½GalðF=QÞ�
�
SelðE=FÞ4

�
:

Since ½F : K � is prime to p, yE
K A Fitt0;Zp½GalðK=QÞ�

�
SelðE=KÞ4

�
implies

nF=KðyE
KÞ A Fitt0;Zp½GalðF=QÞ�

�
SelðE=FÞ4

�
.

Thus, we get yE
F A Fitt0;Zp½GalðF=QÞ�

�
SelðE=FÞ4

�
.

Theorem 10.2 (and Corollary 10.3) implies a similar statement as Theorem 8.1 on the
higher Fitting ideal.

We use the same notation as §8. Let l1; . . . ; lr be prime numbers such that
li 1 1 ðmod pNÞ and li’s are unramified in F=Q. We take L to be the maximal p-extension
of F in Fðml1...lrÞ. We put LFy ¼ Zp½½GalðFy=QÞ�� and LLy ¼ Zp½½GalðLy=QÞ��, and take
n1; . . . ; nr, s as in §8. We can define di1;...; irðxÞ A LFy=p

N�s for x A YLy;E . We assume L sat-
isfies the assumptions of Theorem 10.2.

From Theorem 10.2, as in §8, we obtain

Corollary 10.4. di1;...; irðxÞmod pN�s is in Fitti;LF=pN�s
�
SelðE=FyÞ4=pN�s� for

x A YLy;E where i ¼ i1 þ � � � þ ir.

Remark 10.5. We get a similar statement for di1;...; irðyE
QðmmÞþ

Þ by using Corollary

10.3. Corollary 10.4 (and also the statement for yE
QðmmÞþ

) gives information on the upper

bound of the Mordell-Weil rank of E over F . (Concerning the Mordell-Weil rank, see also
Proposition 3 in Chap. 1 of Mazur and Tate [25].)

11. Proof of Theorem 10.2

Theorem 10.2 can be proved by the same method as Theorem 0.9. Instead of Corol-
lary 5.3, we have

Proposition 11.1. Suppose that L is a real abelian field of finite degree, and K is a

subfield of L such that L=K is a p-extension. We assume that EðLÞ½p� ¼ 0. We denote by

P 0Ky
the set of all finite primes of Ky which are prime to p. Then, we have an exact sequence

of Zp½½GalðKy=QÞ��-modules

0!
L
v AT1

TpðEÞnZp=evZp l
L
v AT2

Z=evZð1Þ !
�
SelðE=LyÞ4

�
GalðLy=KyÞ

! SelðE=KyÞ4! 0

where

T1 ¼ fv A P 0Ky
jE has good reduction at v; v is ramified in Ly=Ky;

and EðKy; vÞ has a point of order pg;

T2 ¼ fv A P 0Ky
jE has split multiplicative reduction at v and v is ramified in Ly=Kyg;

ev is the ramification index of v in Ly=Ky, and TpðEÞ is the Tate module of E.

Instead of Lemmas 5.4 and 5.5, we have
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Lemma 11.2. In the situation of Proposition 11.1, we further assume that the (alge-
braic) m-invariant of Ky for E is zero. Then, the natural map

SelðE=KyÞ4!
F �

SelðE=LyÞ4
�GalðLy=KyÞ

is an isomorphism.

Lemma 11.3. In the situation of Lemma 11.2, suppose that G ¼ GalðLy=KyÞ is
cyclic, and c is a faithful character of G. Then,

�
SelðE=LyÞ4

�c ¼ SelðE=LyÞ4nZp½G � Zp½c�
does not have a non-trivial finite Zp½c�½½GalðLy=LÞ��-submodule.

Proof of Theorem 10.2. Let w be a character of GalðF=QÞ (whose order is not nec-
essarily prime to p), and Fw be the subfield of F which is fixed by the kernel of w. Then, by
Kato’s theorem [19], the characteristic power series of

�
SelðE=Fw;yÞ4

�w
divides Qw

Fw;y
. (Note

that we assumed the algebraic m-invariant vanishes, so the ambiguity of the m-invariant
in Kato’s theorem disappears.) Hence, applying Lemma 4.1 we obtain Theorem 10.2 by
the same method as the proof of Theorem 0.9, by using Proposition 11.1 and Lemmas 11.2
and 11.3 instead of Corollary 5.3, and Lemmas 5.4 and 5.5, respectively. Suppose that v
is a good reduction prime of F with pjev;F=Q and l is a prime of Q below v. Then, by our

assumption,
L
wjl

TpðEÞ is cyclic as a Zp½½GalðFy=QÞ��-module where w ranges over all

primes of Fy above l. This property is needed to check the property (v) of Lemma 4.1.

Proof of Proposition 11.1. Let S be the set of the primes of Ky which lie above p,
or ramified in Ly=Ky, or bad reduction primes. We denote by OKy ½1=S � the ring of S-
integers (the set of elements whose valuations at primes outside S are non-negative). By the
definition of the Selmer group, we have an exact sequence

0! SelðE=KyÞ ! H 1
etðOKy ½1=S �;E½py�Þ !

L
v AS

H 1ðKy; v;EÞ½py�:

(For an abelian group A, A½py� denotes the subgroup of elements whose orders are powers
of p.) Since SelðE=KyÞ4 is a torsion Zp½½GalðKy=KÞ��-module by Kato’s theorem [19], the
last map in the above exact sequence is surjective (cf. Greenberg [12], Lemma 4.6 or [11],
Consequence 2).

Let OLy ½1=S � be the integral closure of OKy ½1=S � in Ly. By our assumption
EðLÞ½p� ¼ 0, we have EðLyÞ½p� ¼ 0, hence

H 1
etðOKy ½1=S �;E½py�Þ ! H 1

etðOLy ½1=S �;E½py�Þ
GalðLy=KyÞ

is bijective. We consider the same exact sequence as above for Ly, and apply the snake
lemma. Then, by the above consideration, what we have to show is the Pontrjagin dual of
the kernel of L

v AS
H 1ðKy; v;EÞ½py� !

L
w A ~SS

H 1ðLy;w;EÞ½py�

is isomorphic to
L
v AT1

TpðEÞnZp=evZp l
L
v AT2

Z=evð1Þ (where ~SS is the set of primes of Ly

lying over S).
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If v divides p, by Coates and Greenberg [4], Theorem 3.1 and Lang’s theo-
rem, H 1

�
Ly;w=Ky; v;EðLy;wÞ

�
¼ 0, hence H 1ðKy; v;EÞ½py� ! H 1ðLy;w;EÞ½py� is injec-

tive. If E has non-split multiplicative reduction or additive reduction at v, we also have
H 1
�
Ly;w=Ky; v;EðLy;wÞ

�
½py� ¼ H 1

�
Ly;w=Ky; v;EðLy;wÞ½py�

�
¼ 0 by [16], Proposition

5.1. So we get the same conclusion. In the case EðKy; vÞ½p� ¼ 0, we have EðLy;wÞ½py� ¼ 0,
and also get the same conclusion. Hence, it is enough to show the next lemma.

Lemma 11.4. Suppose that l3 p, K is a finite extension of Ql, Ky is the cyclotomic

Zp-extension of K, and K 0y=Ky is an abelian extension of degree pn (so totally ramified ). Let
E be an elliptic curve over K.

(i) If E has good reduction over Ky and EðKyÞ½p�3 0, the Pontrjagin dual of

H 1
�
K 0y=Ky;EðK 0yÞ

�
is isomorphic to E½pn�.

(ii) If E has split multiplicative reduction over Ky, the Pontrjagin dual of

H 1
�
K 0y=Ky;EðK 0yÞ

�
is isomorphic to Z=pnZð1Þ.

Proof of Lemma 11.4. By Tate’s local duality, the Pontrjagin dual of
H 1
�
K 0y=Ky;EðK 0yÞ

�
is isomorphic to lim � EðKmÞ=NEðK 0mÞ where N : EðK 0mÞ ! EðKmÞ is

the norm map. Since K 0y=Ky is totally ramified, we may assume that K 0m=Km is totally
ramified of degree pn. We may assume n > 0.

(i) Let km be the residue field of Km. Since EðKyÞ½p�3 0 implies
EðKyÞ½py� ¼ E½py� ([16], Proposition 5.1), considering the usual filtration on EðKnÞ,
we have EðKmÞ=NEðK 0mÞFEðkmÞnZ=pn FEðkmÞ½pn�FE½pn� for su‰ciently large m.
Hence, we get the conclusion.

This can be also checked in the following way. As in the proof of Hachimori and
Matsuno [16], Corollary 5.2, we have

H 1
�
K 0y=Ky;EðK 0y; Þ

�
¼ Hom

�
GalðK 0y=KyÞ;E½py�

�
¼ Hom

�
Z=pnð1Þ;E½py�

�
:

Since the Weil pairing induces E½pn�4FE½pn�ð�1Þ, the above implies the conclusion.

(ii) Since E is a Tate curve, we can write EðKmÞ ¼ K�m=q
Z for some q. Hence,

EðKmÞ=NEðK 0mÞFGalðK 0m=KmÞ by local class field theory. Thus,

lim � EðKmÞ=NEðK 0mÞFGalðK 0y=KyÞFZ=pnZð1Þ:

Proof of Lemma 11.2. By Kato’s theorem ([19]), SelðE=KyÞ4 is a finitely generated
torsion Zp½½GalðKy=KÞ��-module, and by Greenberg’s theorem (Greenberg [12], Proposi-
tion 4.14), it does not have a non-trivial finite Zp½½GalðKy=KÞ��-submodule. Hence, it is a
free Zp-module. So the injectivity follows. The surjectivity follows from Hachimori and
Matsuno [16], Theorem 6.3.

Proof of Lemma 11.3. By using Lemma 11.2, this can be proved by the same
method as Lemma 5.5.
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12. Cohomology of Zp(r)

In this section, we study the etale cohomology group

H 2
�
OF ½1=p�;ZpðrÞ

�
¼ H 2

et

�
OF ½1=p�;ZpðrÞ

�
for a totally real number field F and a positive even integer r. It is isomorphic to
H 2
�
GF ;p;ZpðrÞ

�
where GF ;p ¼ GalðF max;p=FÞ is the Galois group of the maximal extension

of F unramified outside p over F .

Let k be a totally real number field and F=k a finite abelian extension. For a positive
even integer r, we consider yF=kð1� rÞ A Q½GalðF=kÞ� where yF=kðsÞ is as in §2. We use the
notation in §2. By the same method as Lemma 2.1, we have

Lemma 12.1. In the situation of Lemma 2.1, we have

cF=M
�
yF ð1� rÞ

�
¼
� Q
v ASFnSM

�
1�NðvÞr�1j�1v

��
yMð1� rÞ

where NðvÞ ¼KkðvÞ (kðvÞ is the residue field of v).

Let Fy=F be the cyclotomic Zp-extension. By this lemma, we know that�
yFn=kð1� rÞ

�
becomes a projective system for ng 0, and we can define yFy=kð1� rÞ.

Let yFy be as in §3, and t : Q
�
Zp½½GalðFy=kÞ��

�
! Q

�
Zp½½GalðFy=kÞ��

�
be the ring homo-

morphism defined by s 7! kðsÞs for s A GalðFy=kÞ (k : GalðFy=kÞ ! Z�p is the cyclotomic
character). If mp HF , we have ([26], Chap. I, §5, Proposition 1)

yFy=kð1� rÞ ¼ t1�ryFy :

We assume that F satisfies the conditions in the subsection 3.1, especially the condi-
tion (Ap). As in 3.1 we define�

YFy=kð1� rÞ0
�ðpÞ ¼ �nFy=My

�
yMy=kð1� rÞ

�
jM A ðMF=kÞðpÞ

��
and �

YFy=kð1� rÞ
�ðpÞ ¼ �YFy=kð1� rÞ0

�ðpÞ
XZp½½GalðFy=kÞ��:

Next, we assume that F satisfies the conditions in the subsection 3.2. We define�
YFy=kð1� rÞ

�ðpÞ ¼ cF 0y=Fy

��
YF 0y=kð1� rÞ

�ðpÞ�
:

We also define

H2
�
OFy ½1=p�;ZpðrÞ

�
¼ lim � H 2

�
OFn
½1=p�;ZpðrÞ

�
which we regard as a Zp½½GalðFy=kÞ��-module.

Theorem 12.2. Suppose that F is a totally real number field, and satisfies the con-

ditions in the subsection 3.2. We also assume that the Iwasawa m-invariant of FyðmpÞ is zero.
Then, we have

Fitt0;Zp½½GalðFy=kÞ��
�
H2
�
OFy ½1=p�;ZpðrÞ

��
¼
�
YFy=kð1� rÞ

�ðpÞ
:

In particular,
�
YFy=kð1� rÞ

�ðpÞ
annihilates H2

�
OFy ½1=p�;ZpðrÞ

�
.

We will prove this theorem later. In the same way as Corollary 0.10, we have
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Corollary 12.3. For any real abelian field F, we have

Fitt0;Zp½½GalðFy=QÞ��
�
H2
�
OFy ½1=p�;ZpðrÞ

��
¼
�
YFy=Qð1� rÞ

�ðpÞ
:

Since the p-cohomological dimension of OF ½1=p� is 2, for any n > 0 and any
Galois extension L=F which is unramified outside p, by [37], Chap. I, Prop. 17,
H 2
�
OL½1=p�;Z=pnðrÞ

�
GalðL=FÞ !

F
H 2
�
OF ½1=p�;Z=pnðrÞ

�
is bijective. Hence,

H2
�
OFy ½1=p�;ZpðrÞ

�
GalðFy=FÞFH 2

�
OF ½1=p�;ZpðrÞ

�
is an isomorphism. Therefore, by Corollary 12.3 we have

Corollary 12.4. For any real abelian field F, we have

Fitt0;Zp½GalðF=QÞ�
�
H 2
�
OF ½1=p�;ZpðrÞ

��
¼ cFy=F

��
YFy=Qð1� rÞ

�ðpÞ�
:

Let F be a real abelian field of finite degree with conductor m. Following Coates and
Sinnott [5], for a positive integer b with ðb;mÞ ¼ 1, we put

SrðbÞ ¼ wrðQÞðbr � jbÞyF=Qð1� rÞ

where wrðQÞ ¼KH 0
�
Q;Q=ZðrÞ

�
, and jb ¼ ðb;F=QÞ. We have SrðbÞ A Z½GalðF=QÞ� ([5],

Theorem 1.2).

We define

H 2
�
OF ;Z

0ðrÞ
�
¼
Q
p32

H 2
�
OF ½1=p�;ZpðrÞ

�

where p ranges over all odd prime numbers. A well known conjecture by Quillen-
Lichtenbaum claims that H 2

�
OF ;Z

0ðrÞ
�
is isomorphic to the K-group K2r�2ðOF ÞnZ 0.

Corollary 12.5. For any real abelian field F, we have

SrðbÞ A Fitt0;Z 0½GalðF=QÞ�
�
H 2
�
OF ;Z

0ðrÞ
��
:

Conjecture 1 in Coates and Sinnott [5] claims that SrðbÞK2r�2ðOF Þ ¼ 0, so it would
imply SrðbÞH 2

�
OF ;Z

0ðrÞ
�
¼ 0. Hence, we can regard Corollary 12.5 as a refinement of

their conjecture because Corollary 12.5 says that SrðbÞ is not only in the annihilator of
H 2
�
OF ;Z

0ðrÞ
�
, but also in the Fitting ideal. Cornacchia and Østvær proved in [6] this

corollary for F with prime power conductor.

Proof of Corollary 12.5. By Corollary 12.4, it is enough to show
SrðbÞ A cFy=F

�
YFy=Qð1� rÞ

�
for each odd prime p.

First of all, note that cFy=F

�
yFyð1� rÞ

�
=yF ð1� rÞ is a unit by Lemma 12.1 because

1� pr�1j�1p is a unit. Put L ¼ FðmpÞ. Since tr�1
�
yLy=Qð1� rÞ

�
¼ yLy , by the property

(ii) in 3.1,
�
1� kðsÞ�rs

�
yLy=Qð1� rÞ is in Zp½½GalðLy=QÞ�� for any s A GalðLy=QÞ. So�

1� kðsÞ�rsjFy
�
yFy=Qð1� rÞ A

�
YFy=Qð1� rÞ

�ðpÞ
for any s A GalðLy=QÞ.
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If b is prime to p, taking s ¼ ðb;Ly=QÞ, we know

ðbr � jbÞyF=Qð1� rÞ A cFy=F

�
YFy=Qð1� rÞ

�
:

Hence, in this case we have the conclusion of Corollary 12.5.

Next, suppose that p divides b. Then, m is prime to p. Let g be a generator of
GalðLy=LÞ. Then, cFy=F

�
1� kðgÞ�rg

�
A Zp satisfies

ordp
�
cFy=F

�
1� kðgÞ�rg

��
¼ ordpðrÞ þ 1 ¼ ordp

�
wrðQÞ

�
:

Hence, we have wrðQÞyF=Qð1� rÞ A cFy=F

�
YFy=Qð1� rÞ

�
. This completes the proof of

Corollary 12.5.

Remark 12.6. In the above proof of Corollary 12.5, we showed�
1� kðsÞ�rsjF

�
yF=Qð1� rÞ A Fitt0;Zp½GalðF=QÞ�

�
H 2
�
OF ½1=p�;ZpðrÞ

��
for s A GalðLy=QÞ. This implies

AnnZ 0½GalðF=QÞ�
�
H 0
�
F ;Q=ZðrÞ

�
nZ 0

�
yF=Qð1� rÞHFitt0;Z 0½GalðF=QÞ�

�
H 2
�
OF ;Z

0ðrÞ
��
:

Burns and Greither proved in [2] this inclusion in the case F=Q is cyclic by a di¤erent
method. They obtained this inclusion by proving a beautiful result on the Fitting ideal of
H 2
�
OF ½1=S �;ZpðrÞ

�
for a general CM field F and any r > 0 where S is a set of primes

containing ramifying primes in F=k and primes above p. For the Fitting ideal of
H 2
�
OF ½1=S �;ZpðrÞ

�
, see also Snaith [41] and Nguyen Quang Do [27].

Proof of Theorem 12.2. We can prove Theorem 12.2 by the same method as the
proof of Theorem 0.9. Instead of Proposition 5.2, we have

Lemma 12.7. Suppose that L=K is a Galois extension of number fields of finite degree

with Galois group G. Let S be the set of the primes of K which are above p or ramified in

L=K . We denote by ~SS 0 the set of ramifying primes of L in L=K which are prime to p. We

denote by OL½1=S � the ring of S-integers. Then, we have an exact sequence

H1

�
G;H 2

�
OL½1=S �;ZpðrÞ

��
! H1

�
G;
L
w A ~SS 0

H 2
�
Lw;ZpðrÞ

��

! H 2
�
OL½1=p�;ZpðrÞ

�
G
! H 2

�
OK ½1=p�;ZpðrÞ

�
! 0:

Proof of Lemma 12.7. By the localizing sequence,

0! H 2
�
OL½1=p�;ZpðrÞ

�
! H 2

�
OL½1=S �;ZpðrÞ

�
!

L
w A ~SS 0

H 2
�
Lw;ZpðrÞ

�
! 0

is exact. Similarly,

0! H 2
�
OK ½1=p�;ZpðrÞ

�
! H 2

�
OK ½1=S �;ZpðrÞ

�
!
L
v AS 0

H 2
�
Kv;ZpðrÞ

�
! 0
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is exact where S 0 is the set of primes of K below ~SS 0. Since both

H 2
�
OL½1=S �;ZpðrÞ

�
G
!F H 2

�
OK ½1=S �;ZpðrÞ

�
and � L

w A ~SS 0
H 2
�
Lw;ZpðrÞ

��
G
!F
L
v AS 0

H 2
�
Kv;ZpðrÞ

�
are bijective (the p-cohomological dimensions of OK ½1=S � and Kv are 2), taking the
homology of the first exact sequence, we obtain Lemma 12.7.

In several cases, it is not di‰cult to compute H1

�
G;
L
w A ~SS 0

H 2
�
Lw;ZpðrÞ

��
. For

example, instead of Corollary 5.3 we have

Lemma 12.8. Suppose that L=k is a finite abelian extension, and K is a subfield of L

such that L=K is a p-extension. We assume that the primes above p are tamely ramified in

L=k. We denote by S 0 the set of the primes of Ky ramifying in Ly=Ky. Then, the sequence

H1

�
Ly=Ky;H2

�
OLy ½1=S �;ZpðrÞ

��
!
L
v AS 0

Z=evZðrÞ

! H2
�
OLy ½1=p�;ZpðrÞ

�
GalðLy=KyÞ ! H2

�
OKy ½1=p�;ZpðrÞ

�
! 0

is exact where ev is the ramification index of v in Ly=Ky.

Proof of Lemma 12.8. It is enough to compute

H1

�
Ly=Ky;

L
w A ~SS 0

H2
�
Ly;w;ZpðrÞ

��
¼
L
v AS 0

H1

�
Ly;w=Ky; v;H

2
�
Ly;w;ZpðrÞ

��
:

Let v be a prime in S 0, w a prime above v, and l the characteristic of the residue field of v.
By our assumption, we have l3 p. Hence, Ly;w=Ky; v is totally ramified and cyclic. Since
Ly;w 3Ky; v, by local class field theory the residue field of v contains a primitive p-th root
of unity. Thus, by Tate duality

H2
�
Ly;w;ZpðrÞ

�
¼ H 0

�
Ly;w;Qp=Zpð1� rÞ

�4¼ Qp=Zpð1� rÞ4¼ Zpðr� 1Þ:

Hence, we have

H1

�
Ly;w=Ky; v;H

2
�
Ly;w;ZpðrÞ

��
¼ ĤH�2

�
Ly;w=Ky; v;Zpðr� 1Þ

�
¼ ĤH 0

�
Ly;w=Ky; v;Zpðr� 1Þ

�
ð1Þ ¼ Z=evZðrÞ

because Ly;w=Ky; v is cyclic.

Instead of Lemma 5.4, we have

Lemma 12.9. In the situation of Lemma 12.8, we assume that L is totally real,
GalðLy=KyÞ is cyclic, there is a totally ramified prime in Ly=Ky, and the Iwasawa

m-invariant of KðmpÞy vanishes. Then, the natural map
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H2
�
OKy ½1=p�;ZpðrÞ

�
!F H2

�
OLy ½1=p�;ZpðrÞ

�GalðLy=KyÞ

is bijective.

We first need the following lemma.

Lemma 12.10. For a totally real number field K, H2
�
OKy ½1=p�;ZpðrÞ

�
does not have a

non-trivial finite Zp½½GalðKy=KÞ��-submodule.

Proof of Lemma 12.10. By Coates [3], Theorem 11,

H 2
�
OKn
½1=p�;ZpðrÞ

�
! H 2

�
OKnþ1 ½1=p�;ZpðrÞ

�
is injective for all n. Since

H2
�
OKy ½1=p�;ZpðrÞ

�
GalðKy=KnÞ !

F
H 2
�
OKn
½1=p�;ZpðrÞ

�
is bijective, the conclusion of Lemma 12.10 follows from the above injectivity.

Proof of Lemma 12.9. By Lemma 12.10 and our assumption m ¼ 0,
H2
�
OKy ½1=p�;ZpðrÞ

�
is a free Zp-module. Hence, the injectivity follows by the norm argu-

ment.

Consider an exact sequence

0! H2
�
OLy ½1=p�;ZpðrÞ

�
! H2

�
OLy ½1=S �;ZpðrÞ

�
ð�Þ

!
L
w A ~SS 0

H2
�
Ly;w;ZpðrÞ

�
! 0

which is obtained from the localizing sequence. Put G ¼ GalðLy=KyÞ. Using the Serre-
Hochschild spectral sequence, we have

H 2
�
G;H2

�
OLy ½1=S �;ZpðrÞ

��
FH 4

�
G;H1

�
OLy ½1=S �;ZpðrÞ

��
FH 2

�
G;H0

�
Ly;Qp=ZpðrÞ

�
ð�1Þ

�
:

Let v0 be a prime which is totally ramified in Ly=Ky, and w0 be the prime above v0. Simi-
larly, we have

H 2
�
G;H2

�
Ly;w0

;ZpðrÞ
��

FH 2
�
G;H0

�
Ly;w0

;Qp=Zpðr� 1Þ
��
:

Hence,

H 2
�
G;H2

�
OLy ½1=S �;ZpðrÞ

��
! H 2

�
G;
L
w A ~SS 0

H2
�
Ly;w;ZpðrÞ

��

is injective.
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On the other hand, from the isomorphism

� L
w A ~SS 0

H2
�
Ly;w;ZpðrÞ

��
G
!F
L
v AS 0

H2
�
Ky; v;ZpðrÞ

�
;

we have H 1
�
G;
L
w A ~SS 0

H2
�
Ly;w;ZpðrÞ

��
¼ 0. Hence, taking the cohomology of the above

exact sequence ð�Þ, we get H 2
�
G;H2

�
OLy ½1=p�;ZpðrÞ

��
¼ 0. This shows the surjectivity of

the map in Lemma 12.9.

Lemmas 12.9 and 12.10 imply the following lemma which corresponds to Lemma 5.5.

Lemma 12.11. In the situation of Lemma 12.9, for a faithful character c of

GalðLy=KyÞ, H2
�
OLy ½1=p�;ZpðrÞ

�c ¼ H2
�
OLy ½1=p�;ZpðrÞ

�
nZp½G � Zp½c� does not have a

non-trivial finite Zp½c�½½GalðLy=LÞ��-submodule.

We go back to the proof of Theorem 12.2. Let w be a character of GalðF=kÞ (whose
order is not necessarily prime to p), and Fw be the subfield of F which is fixed by the kernel
of w. Consider a Zp½w�½½GalðFw;y=FwÞ��-module H2

�
OFw;y ½1=p�;ZpðrÞ

�w
. Suppose w3or.

The main conjecture proved by Wiles [47] implies that the characteristic ideal of
H2
�
OFw;y ½1=p�;ZpðrÞ

�w
is equal to

�
yFw;y=kð1� rÞw

�
. For w ¼ or, the main conjecture im-

plies that the characteristic ideal is generated by the numerator of yFw;y=kð1� rÞw. Hence,
using above lemmas and Corollary 4.2, we obtain Theorem 12.2 by the same method as the
proof of Theorem 0.9.
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