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Abstract. In this paper we study some problems related to a
refinement of Iwasawa theory, especially questions about the Fit-
ting ideals of several natural Iwasawa modules and of the dual of
the class groups, as a sequel to our previous papers [8], [3]. Among
other things, we prove that the annihilator of Zp(1) times the Stick-
elberger element is not in the Fitting ideal of the dualized Iwasawa
module if the p-component of the bottom Galois group is elemen-
tary p-abelian with p-rank ≥ 4. Our results can be applied to the
case that the base field is Q.

1. Introduction

1-1. Suppose that k is a totally real number field, and at first suppose
that L/k is a finite abelian extension of totally real number fields. We
fix an odd prime number p and denote by k∞/k, L∞/L the cyclotomic
Zp-extensions. We assume L ∩ k∞ = k. Suppose that S is a finite
set of primes of k, which contains all ramifying primes in L∞. Note
that S automatically contains Sp, the set of primes of k above p. Let
XL,S be the S-ramified Iwasawa module, namely the Galois group of
LL∞,S/L∞ which is the maximal abelian pro-p extension unramified
outside S. Then the main conjecture which was proved by Wiles in [14]
Theorem 1.3 can be stated in terms of XL,S. Indeed the main conjecture
(roughly) says that for any character χ of Gal(L/k) the characteristic
ideal of the χ-quotient of XL,S is generated by the χ-component of the
S-truncated p-adic L-function ΘL∞/k,S (for the precise statement, see
§4). Since the characteristic ideal of a power series ring is closely related
to the Fitting ideal, we are naturally led to the question whether (the
annihilator of Zp times) the S-truncated p-adic L-function ΘL∞/k,S is in
the Fitting ideal of the ΛL-module XL,S where ΛL = Zp[[Gal(L∞/k)]]
(concerning general properties of Fitting ideals, see [10]). Using our
previous results, we can show that the answer is always No if the p-
component of Gal(L/k) is not cyclic. Actually, we can describe the
Fitting ideal of XL,S, using ΘL∞/k,S (see Theorem 4.1). Theorem 4.1
gives a more precise link between the S-ramified Iwasawa module XL,S

and the p-adic L-function ΘL∞/k,S than the usual main conjecture.
1
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When we take S to be minimal, namely the set of the ramifying
primes of k in L∞, we simply write ΘL∞/k for ΘL∞/k,S. Next we study
the p-ramified Iwasawa module, namely the Galois group of LL∞,Sp/L∞
which is the maximal abelian pro-p extension unramified outside p. We
write XL = Gal(LL∞,Sp/L∞), and study the Fitting ideal of the ΛL-
module XL, especially the problem whether (γ − 1)ΘL∞/k is in the
Fitting ideal of XL or not, where γ is a generator of Gal(L∞/L). Our
main theorem in this direction is Theorem 5.1 in §5.

We are interested in this problem because it is equivalent to a prob-
lem on the minus class group, which we will explain in the next sub-
section.

1-2. For a number field F , we denote by ClF the class group and
AF = ClF ⊗ Zp. Let µp be the group of p-th roots of unity in an
algebraic closure, and put L′ = L(µp). Suppose that L/k is a finite
abelian p-extension, for simplicity, in this subsection. Hence L is still
totally real and L′ is a CM-field; we keep the assumption that k is
totally real all the time. Let ω : Gal(L′/k) −→ Z×

p be the Teichmüller
character, which gives the action on µp. We denote by L′

∞/L′ the
cyclotomic Zp-extension, and define AL′

∞ to be the inductive limit of
AL′

n
where L′

n is the n-th layer of L′
∞/L′. Consider the ω-component

Aω
L′
∞
. Then the Kummer pairing gives a well-known isomorphism

(Aω
L′
∞
)∨(1) ≃ XL

of Galois modules (see [13] Proposition 13.32), where (Aω
L′
∞
)∨ is the

Pontrjagin dual and (1) is the Tate twist. Put ΛL′ = Zp[[Gal(L′
∞/k)]].

We consider the cogredient action of the Galois group on the Pontrja-
gin dual (AL′

∞)∨, and regard it as a ΛL′-module. Let γ be a generator
of Gal(L′

∞/L′) and κ the cyclotomic character, and θL′
∞/k the Stick-

elberger element (the projective limit of θL′
n/k for n ≫ 0 ; for more

details, see §6). Then (γ − κ(γ))θL′
∞/k is in ΛL′ . Using a consequence

of Theorem 5.1 and the above duality isomorphism, we prove in §6 the
following as a part of Theorem 6.1.

Theorem. Suppose that Gal(L/k) ≃ (Z/pZ)⊕s with s ≥ 4. Then we
always have

(γ − κ(γ))θL′
∞ ̸∈ FittΛL′ ((AL′

∞)∨) .

In previous work, see [3], it was shown: If L/k is unramified outside
p and Gal(L/k) is not cyclic, then we always get this negative result.
In this paper, we prove the above theorem with no assumption on the
ramification in L′/k.

It was a surprise for us that the above Theorem can be applied to the
case k = Q. In our previous work, if L/k is unramified outside p and
Gal(L/k) is not cyclic, then k cannot be Q.
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A key result in the proof of Theorems 6.1 and 5.1 is Theorem 3.1
which determines the structure of (XL)Gal(L/k) for elementary p-abelian
Gal(L/k). In particular, we prove that the Zp-torsion part of (XL)Gal(L/k)

is annihilated by p in this setting.

1-3. We study finite abelian extensions over Q in §§7 and 8. As a
corollary of the above Theorem, we prove in Corollary 7.1 a similar
negative result at finite level; especially for a certain cyclotomic field
L = Q(µm) we can show that

(AnnZ[Gal(L/Q)](µm)θL/Q)⊗ Zp ̸⊂ FittZp[Gal(L/Q)](A
∨
L)

(see Corollary 7.2 and Remark 7.3). Note that the main result of [9]
implies

(AnnZ[Gal(L/Q)](µm)θL/Q)⊗ Zp ⊂ FittZp[Gal(L/Q)](AL)

for any m and p. Such a negative result is surprising because people
sometimes thought that the Pontrjagin dual of the class group behaved
better than the class group. We also note that the above result shows
that the Fitting ideal of the dual of the class group of a cyclotomic
field does not coincide with the Stickelberger ideal of Iwasawa-Sinnott
in [11], in general.

Combining the main results in [1] and [9], we know that

FittZp[Gal(L/Q)]((A
−
L)

∨) = FittZp[Gal(L/Q)](A
−
L)

for any finite abelian L/Q such that µp ̸⊂ L. But the above negative
result shows that this equality does not hold in general if µp ⊂ L. We
discuss this problem in §8 in the case µp ⊂ L and s = 2 (the latter
simply meaning that the p-component of Gal(L/Q) is (Z/pZ)⊕2). We
give in Proposition 8.1 a very simple criterion for this equality to hold
for a certain family of abelian fields. We also study a numerical example
in detail in Remark 8.4 for which

FittZp[Gal(L/Q)]((A
−
L)

∨) ⊊ FittZp[Gal(L/Q)](A
−
L)

holds.
Concerning the Stickelberger ideal for cyclotomic fields, the book

[6], which was based on the lectures by K. Iwasawa and W. Sinnott at
Princeton in 1976, has been a well-received and widely read reference in
Japan. As we see from the acknowledgement in that book, K. Shinoda
suggested its publication, read the manuscript thoroughly, and gave
many helpful comments. The authors believe that the importance and
the arithmetical content of the Stickelberger ideal stem to a consider-
able extent from its beautiful relation to the Fitting ideal of the class
group (cf. [7], [1]). In this sense, the theory of Stickelberger ideals has
seen some new developments since the time this book was written. It
is our great pleasure to dedicate this paper to K. Shinoda.



4 CORNELIUS GREITHER AND MASATO KURIHARA

2. A fundamental exact sequence

In this paper, we fix an odd prime p. For a number field F , we denote
by F∞/F the cyclotomic Zp-extension.

Suppose that L/K is a finite abelian extension and putG = Gal(L/K).
Consider the maximal abelian pro-p extension LL∞,Sp/L∞ which is un-
ramified outside p, and put XL = Gal(LL∞,Sp/L∞). We are interested

in the Tate cohomology Ĥ i(G,XL). The goal of this section is to prove
the following proposition, which we call the fundamental exact sequence
for XL in this paper.

Proposition 2.1. (Fundamental exact sequence for XL)
Let L/K be a finite abelian p-extension of totally real number fields
such that L ∩ K∞ = K and G = Gal(L/K). Then we have an exact
sequence

0 −→
2∧
G −→ Ĥ−1(G,XL) −→

⊕
v∈S′

K∞

Iv

−→ G −→ Ĥ0(G,XL) −→ 0 ,

where S ′
K∞ is the set of non p-adic primes of K∞ which are ramified

in L∞/K∞, and Iv is the inertia subgroup of v in G = Gal(L∞/K∞).

Remark 2.2. Put K ′ = K(µp) and L′ = L(µp). We denote by L′
n

the n-th layer of L′
∞/L′ and by Aω

L′
n
the Teichmüller part of the p-

component of the ideal class group of L′
n. Then, by the well-known

duality (see [13] Proposition 13.32), XL is isomorphic to the Pontrjagin
dual of the direct limit lim

→
Aω

L′
n
for which we write Aω

L′
∞
. Namely we

have

XL ≃ (Aω
L′
∞
)∨(1)

where (1) is the Tate twist. If we use this isomorphism, Proposition
2.1 is a consequence of Lemma 1.1 in [8]. But we give here a different
proof (though we use the above isomorphism to prove the following
Proposition 2.3).

Before we prove Proposition 2.1, we need the following description
of Ĥ−1(G,XL).

Proposition 2.3. Let L′′
∞/K∞ be the maximal subextension of L∞/K∞,

which is unramified outside p. We put G = Gal(L′′
∞/K∞). Then there

is an exact sequence

0 −→ Ĥ−1(G,XL) −→ (XL)G −→ XK −→ G −→ 0

where (XL)G is the module of G-coinvariants of XL, and (XL)G −→
XK is induced by the restriction map.
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Proof. Let L′
n be as in Remark 2.2, and define K ′

n similarly. Then the
cokernel of the norm map ClL′

n
−→ ClK′

n
between the class groups of

L′
n and K ′

n is isomorphic to the Galois group of the maximal unram-
ified subextension of L′

n/K
′
n. In particular, it is a quotient of G, and

independent of n when n is sufficiently large. Therefore, the cokernel
of the norm map Aω

L′
∞

−→ Aω
K′

∞
is finite. Using the above duality,

we know that the kernel of the canonical map XK −→ XL is finite.
On the other hand, by Theorem 18 in Iwasawa [4] we know that XK

has no nontrivial finite Zp[[Gal(K∞/K)]]-submodule. This shows that

XK −→ XL is injective. Therefore, Ĥ−1(G,XL) coincides with the
kernel of (XL)G −→ XK . By definition, the cokernel of this map is
G. □

Now we prove the fundamental exact sequence (Proposition 2.1). Let
Sp be the set of p-adic primes of K, and S ′ the set of non p-adic rami-
fying primes of K in L. We put S = Sp ∪ S ′. Let OK∞,S be the ring of
S-integers in K∞. We denote by H i(OK∞,S,Qp/Zp) the étale cohomol-
ogy H i

et(Spec OK∞,S,Qp/Zp), which is the same as the Galois cohomol-
ogy H i(M/K∞,Qp/Zp) where M/K∞ is the maximal extension un-
ramified outside S. We define H i(OK∞,Sp ,Qp/Zp), H

i(OL∞,S,Qp/Zp),
H i(OL∞,Sp ,Qp/Zp), similarly. Suppose that v0 ∈ S ′ and v is a prime of
K∞ above v0. Since v0 is ramified in L, we must have N(v0) ≡ 1 (mod
p) where N(v0) is the norm of the prime v0. Therefore, the residue field
κ(v) of v contains all p-power roots of unity in an algebraic closure of
κ(v). Let Iv(M/K∞) be the inertia group of v in Gal(M/K∞). Since
v is prime to p, Iv(M/K∞) is isomorphic to Zp(1) where (1) means the
Tate twist, and

H0(κ(v), H1(Iv(M/K∞),Qp/Zp)) = H0(κ(v),Qp/Zp(−1))

= Qp/Zp(−1).

Since the weak Leopoldt conjecture is true, we knowH2(OK∞,Sp ,Qp/Zp)
= 0. Therefore, the localization sequence of étale cohomology gives a
short exact sequence

0 −→ H1(OK∞,Sp ,Qp/Zp) −→ H1(OK∞,S,Qp/Zp)(1)

−→
⊕

v∈S′
K∞

Qp/Zp(−1) −→ 0 .
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Using the same exact sequence for L∞ and the spectral sequence, we
have a commutative diagram of exact sequences

0 0 0
↓ ↓ ↓
G∨ H1(G,Qp/Zp)

⊕
v Z/evZ(−1)

↓ ↓ ↓
0 → H1(OK∞,Sp ,Qp/Zp) → H1(OK∞,S ,Qp/Zp) →

⊕
v Qp/Zp(−1) → 0

↓ ↓ ↓
0 → H1(OL∞,Sp ,Qp/Zp)

G → H1(OL∞,S ,Qp/Zp)
G f→ (

⊕
w Qp/Zp(−1))G

↓ ↓ ↓
Ĥ−1(G,XL)

∨ H2(G,Qp/Zp) 0
↓ ↓
0 0 .

Here, H1(OK∞,Sp ,Qp/Zp), H
1(OL∞,Sp ,Qp/Zp)

G are the Pontrjagin du-
als of XK and (XL)G, respectively, so Proposition 2.3 assures the ex-
actness of the first vertical sequence. The second vertical sequence
is exact by the Serre-Hochschild spectral sequence. We note that
S contains all primes which ramify in L∞/K∞. We also note that
H1(G,Qp/Zp), H

2(G,Qp/Zp) are the Pontrjagin duals of G and
∧2G,

respectively. In the third vertical sequence, v runs over S ′
K∞ and w

runs over S ′
L∞ which is the set of primes of L∞ above S ′. We have

(
⊕

w Qp/Zp(−1))G ≃
⊕

v Qp/Zp(−1) and the third vertical map is the
multiplication by ev for the v-component. This shows that the third
map in the third vertical sequence is surjective. This implies that f
(which is the third horizontal map in the second horizontal sequence)
is surjective. Therefore by the snake lemma and dualization, we obtain
an exact sequence

0 −→
2∧
G −→ Ĥ−1(G,XL) −→

⊕
v∈S′

K∞

Z/evZ(1) −→ G −→ G −→ 0.

We note that the inertia group Iv of v in G is isomorphic to Z/evZ(1).
Hence, in order to prove Proposition 2.1, we have only to prove

(2) Ĥ0(G,XL) ≃ G .

We need the following lemma.

Lemma 2.4. We have an isomorphism

XK
≃−→ XG

L

where the right hand side is the G-invariant part of XL.

Proof. By induction on #G, we may assume that #G = p, namely
G ≃ Z/pZ. Let XK,S be the Galois group of LK∞,S/K∞ which is the
maximal abelian pro-p extension unramified outside S. Taking the dual
of the exact sequence (1), we have an exact sequence

0 −→
⊕

v∈S′
K∞

Iv(MS/K∞) −→ XK,S −→ XK −→ 0
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where Iv(MS/K∞) ≃ Zp(1) is the inertia group of v in XK,S. As we
proved in the proof of Proposition 2.3, XK −→ XL is injective. We de-
fine XL,S similarly. Then the above injectivity implies that the canon-
ical map XK,S −→ XL,S is also injective. Taking the dual, we know

that the corestriction map H1(OL∞,S,Qp/Zp)
Cor−→ H1(OK∞,S,Qp/Zp)

is surjective.
By the Serre-Hochschild spectral sequence, we have an isomorphism

H1(G,H1(OL∞,S,Qp/Zp)) ≃ H3(G,Qp/Zp).

The latter group is isomorphic to H1(G,Qp/Zp) because G is cyclic.
Therefore, we have

H1(G,H1(OL∞,S,Qp/Zp)) ≃ Z/pZ .

This shows that the kernel of

H1(OL∞,S,Qp/Zp)G
Cor−→ H1(OK∞,S,Qp/Zp)

Res−→ H1(OL∞,S,Qp/Zp)

is of order p whereMG means the module of G-coinvariants ofM . Since
the kernel of the restriction mapH1(OK∞,S,Qp/Zp) −→ H1(OL∞,S,Qp/Zp)
isH1(G,Qp/Zp) which is of order p, we know that the corestriction map
gives an isomorphism

H1(OL∞,S,Qp/Zp)G ≃ H1(OK∞,S,Qp/Zp) .

Consider the commutative diagram

H1(OL∞,Sp ,Qp/Zp)G −→ H1(OL∞,S,Qp/Zp)G
↓ ↓

H1(OK∞,Sp ,Qp/Zp) −→ H1(OK∞,S,Qp/Zp) .

We have just seen that the right vertical arrow is bijective. The lower
horizontal arrow is injective by definition. The upper horizontal ar-
row is also injective because of the surjectivity of f in the previous
commutative diagram and of the cyclicity of G. Therefore, we get the
injectivity of the left vertical arrow. Taking the dual, we know that
XK −→ XG

L is surjective.
As we have mentioned, we proved the injectivity of XK −→ XL

in the proof of Proposition 2.3. Therefore, we get the bijectivity of
XK −→ XG

L . □

We go back to the proof of (2). By Lemma 2.4, we have

Ĥ0(G,XL) ≃ Coker(XL −→ XK) .

Therefore, Proposition 2.3 implies (2). This completes the proof of (2)
and Proposition 2.1.

Remark 2.5. We note that we did not assume the vanishing of the µ-
invariant of L to prove the fundamental exact sequence in Proposition
2.1. The argument becomes much simpler if one is willing to assume
µ = 0.
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3. The torsion submodule of (XL)G

In this section, we assume the same condition as in Proposition 2.1.
Namely, L/K is a finite abelian p-extension of totally real number
fields such that L ∩ K∞ = K. Recall that XK , XL are the Galois
groups of the maximal abelian pro-p extensions unramified outside p
overK∞, L∞, respectively. We also use the notation G = Gal(L′′

∞/K∞)
in the previous section where L′′

∞/K∞ is the maximal subextension of
L∞/K∞, which is unramified outside p.

Theorem 3.1. Let L/K be as above and G = Gal(L/K). We assume
that G is elementary abelian and G ≃ (Z/pZ)⊕s for some s ∈ Z>0. We
assume that the µ-invariant of XK is zero, and denote the λ-invariant
by λK. Let S ′

K∞ be the set of primes of non p-adic primes of K∞
that are ramified in L∞, n(L/K) = #S ′

K∞, and ϵ(L/K) = dimFp G.
Then the structure of the module (XL)G of Galois coinvariants as a
Zp-module is as follows:

(XL)G ≃ (Z/pZ)⊕t ⊕ Z⊕λK
p ,

where

t =
s(s− 3)

2
+ n(L/K) + ϵ(L/K) .

In particular, the Zp-torsion subgroup of (XL)G is annihilated by p.

Proof. Since we assumed the vanishing of the µ-invariant of XK , it
is a free Zp-module by Theorem 18 in [4], and XK ≃ Z⊕λK

p as Zp-
modules. By Proposition 2.3, (XL)G is a finitely generated Zp-module

with rank λK , and the Zp-torsion part of (XL)G is Ĥ−1(G,XL). Thus

our aim is to determine Ĥ−1(G,XL). By the fundamental exact se-
quence (Proposition 2.1) and the isomorphism (2), we know that the

order of Ĥ−1(G,XL) is p
t where

t =
s(s− 1)

2
+ n(L/K) + ϵ(L/K)− s =

s(s− 3)

2
+ n(L/K) + ϵ(L/K).

Therefore, it suffices to prove that Ĥ−1(G,XL) is killed by p, or that
it needs t elements as its minimal generators as a Zp-module.

Step 1 (the case s = 1). Suppose that G = Z/pZ. In this case, since

the order of G is p, we have pĤ−1(G,XL) = 0, which implies the con-
clusion of Theorem 3.1.

Step 2 (the case s = 2). Suppose that G = Z/pZ ⊕ Z/pZ. At first,

we assume that L∞/K∞ is unramified outside p, namely n(L/K) = 0.

Then the fundamental exact sequence implies Ĥ−1(G,XL) = Z/pZ.
Therefore, we get the theorem in this case. So we may assume n(L/K) >
0. This implies ϵ(L/K) = 0, or 1.
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(i) We first assume that ϵ(L/K) = 1. We take an intermediate field
M with [L : M ] = p and L∞/M∞ is unramified outside p. Put G1 =
Gal(L/M) and write G = G1 ⊕G2. We identify Gal(M/K) with G2.

By the fundamental exact sequence, we have Ĥ−1(G1, XL) = 0. This
shows that (XL)G1 is a submodule of XM with index p by Proposition
2.3. In particular, (XL)G1 is a free Zp-module, so we can write

(XL)G1 ≃ Zp[G2]
⊕a ⊕ Z⊕b

p ⊕ (Zp[G2]/(NG2))
⊕c

as Zp[G2]-modules for some integers a, b, c where NG2 = Σσ∈G2σ. Tak-
ing the G2-coinvariant, we have

(XL)G = ((XL)G1)G2 ≃ Z⊕(a+b)
p ⊕ (Z/pZ)⊕c.

Therefore, pĤ−1(G,XL) = 0. This implies the conclusion as we ex-
plained.

By the way, we can determine a, b, c. We have proved that Ĥ−1(G,XL) =
(Z/pZ)⊕n(L/K), which implies c = n(L/K). By the fundamental ex-

act sequence for M/K, we get Ĥ−1(G2, XM) = (Z/pZ)⊕n(M/K)−1 =

(Z/pZ)⊕n(L/K)−1 and Ĥ0(G2, XM) = 0, which imply

XM = Zp[G2]
⊕λK ⊕ (Zp[G2]/(NG2))

⊕(n(L/K)−1).

(This procedure is the same as the proof of Kida’s formula in Iwasawa
[5].) Comparing the Zp-ranks of XM and (XL)G1 together with a+ b =
λK , we get b = 1 and a = λK − 1.

(ii) We next assume that ϵ(L/K) = 0. We take an intermediate field
M such that [M : K] = p, S ′(M∞/K∞) ̸= ∅, and S ′(L∞/M∞) ̸= ∅
where S ′(M∞/K∞) is the set of non p-adic ramifying primes of K∞ in
M∞, and S ′(L∞/M∞) is the set of non p-adic ramifying primes of M∞
in L∞. Put n(M/K) = #S ′(M∞/K∞) and n(L/M) = #S ′(L∞/M∞).
If v is in S ′(M∞/K∞), v is not a p-adic prime and the inertia group in
G is cyclic. So the prime of M∞ above v is not in S ′(L∞/M∞). If w
is in S ′(L∞/M∞) and v is the prime of K∞ below w, then v is not in
S ′(M∞/K∞) and it splits completely in M∞. Thus we have

n(L/K) = n(M/K) +
1

p
n(L/M).

We again write G = G1 ⊕ G2 with G1 = Gal(L/M). By the funda-
mental exact sequence for L/M , we have an exact sequence

0 −→ Ĥ−1(G1, XL) −→ Fp[G2]
⊕n(L/M)/p −→ G1 −→ 0.

Therefore, we have an isomorphism

Ĥ−1(G1, XL) ≃ Fp[G2]
⊕(n(L/M)/p)−1 ⊕ Fp[G2]/(NG2)

as G2-modules. As we saw in the case (i), we have an isomorphism

XM = Zp[G2]
⊕λK ⊕ (Zp[G2]/(NG2))

⊕(n(M/K)−1)
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as G2-modules by the fundamental exact sequence for M/K. From the
exact sequence

0 −→ Ĥ−1(G1, XL) −→ (XL)G1 −→ XM −→ 0,

we have an exact sequence

0 −→ Fp[G2]
⊕(n(L/M)/p)−1 ⊕ Fp[G2]/(NG2) −→ ((XL)G1)⊗ Fp

−→ Fp[G2]
⊕λK ⊕ (Fp[G2]/(NG2))

⊕(n(M/K)−1) −→ 0 .

We take a generator σ of G2 and put S = σ−1. We identify Fp[G2] with
Fp[[S]]/(S

p). The above exact sequence is a sequence of Fp[[S]]/(S
p)-

modules. We put R = Fp[[π]] in the following Lemma 3.2, where π is an
indeterminate. Then Fp[G2] ∼= R/(πp) and Fp[G2]/(NG2)

∼= R/(πp−1).
From the lemma we obtain that the minimal number of generators of
the Fp[G2]-module ((XL)G1)⊗ Fp is exactly

n(M/K) + (n(L/M)/p) + λK − 1 = n(L/K) + λK − 1.

Now we take G2-coinvariants of ((XL)G1) ⊗ Fp, which of course gives
((XL)G)⊗Fp. On the other hand, taking G2-coinvariants simply means
factoring out by π. Therefore, we obtain

((XL)G)⊗ Fp = ((XL)G1 ⊗ Fp)G2

≃ (Z/pZ)⊕n(L/K)+λK−1 .

This shows that the minimal number of generators of the torsion part
of (XL)G (which is Ĥ−1(G,XL)) as a Zp-module is exactly n(L/K)− 1
by Nakayama’s lemma. This completes the proof in this case.

Lemma 3.2. Let R be a discrete valuation ring and π a uniformizing
element. Suppose that M is an R/(πn)-module with n ≥ 3, and that
there is an exact sequence

0 −→ (R/(πn))⊕a⊕R/(πn−1) −→ M −→ (R/(πn))⊕b⊕(R/(πn−1))⊕c −→ 0

for some nonnegative integers a, b, c. Then the minimal number of
generators of M over R is a+ b+ c+ 1. In more detail, we have

M ≃ (R/(πn))⊕(a+b+δ) ⊕ (R/(πn−1))⊕(c+1−2δ) ⊕ (R/(πn−2))⊕δ

with δ = 0 or 1.

We only sketch the idea of the proof of this lemma. First one uses
that R/(πn) is projective and injective as a module over itself. This
allows to reduce the situation to a = b = 0. The essential case is c = 1.
One shows that an extension of R/(πn−1) by itself which is annihilated
by πn is either split or isomorphic to R/(πn)⊕R/(πn−2). Since n−2 is
still positive, the claim follows. Let us remark that (as the reader may
have noticed) this lemma can be stated and proved more generally, but
we will not go into it since it is not needed here.
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Step 3 (general case). Now we assume G = (Z/pZ)⊕s with s > 2.

Let H be a subgroup of G, and M(H) the intermediate field of L/K
corresponding to H. The restriction map XL −→ XM(H) on the

Galois groups induces the canonical homomorphism Ĥ−1(G,XL) −→
Ĥ−1(G/H,XM(H)) on the cohomology groups by the commutative di-
agram

0 −→ Ĥ−1(G,XL) −→ (XL)G −→ XK

↓ can ↓ Res ↓ id

0 −→ Ĥ−1(G/H,XM(H)) −→ (XM(H))G/H −→ XK

where the horizontal exact sequences are the sequences obtained from
Proposition 2.3, the right vertical arrow is the identity map, the middle
vertical arrow is the restriction map, and the left vertical arrow is
induced by the middle vertical arrow. We call the left vertical arrow
can. The fundamental exact sequences for L/K and M(H)/K give a
commutative diagram

0 −→
∧2 G −→ Ĥ−1(G,XL) −→

⊕
v Iv(L/K)

↓ ↓ can ↓ Res

0 −→
∧2 G/H −→ Ĥ−1(G/H,XM(H)) −→

⊕
v Iv(M(H)/K)

where Iv(L/K), Iv(M(H)/K) are the inertia subgroups of v inG, G/H,
respectively, the left vertical arrow is induced by the natural mapG −→
G/H, and the right vertical is defined by the restriction maps.

Let H be the set of subgroups of G with index p2. Considering all
H ∈ H, we get a commutative diagram of exact sequences:

0 →
∧2

G −→ Ĥ−1(G,XL) −→
⊕

v Iv(L/K)
↓ α ↓ β ↓ γ

0 →
⊕
H∈H

∧2
G/H −→

⊕
H∈H

Ĥ−1(G/H,XM(H)) −→
⊕
H∈H

⊕
v Iv(M(H)/K).

SinceG is elementary abelian, α is injective. It is also easy to see that
γ is injective. Therefore, β is also injective. Since G/H ≃ (Z/pZ)⊕2,
we have shown in Step 2 that the range of β is annihilated by p. This
shows that Ĥ−1(G,XL) is annihilated by p. Therefore, by the funda-

mental exact sequence and the isomorphism (2), we have Ĥ−1(G,XL) ≃
(Z/pZ)⊕t with t as in Theorem 3.1. This completes the proof of The-
orem 3.1. □

4. S-ramified Iwasawa modules and the main conjecture

In this section, we assume that L/k is a finite abelian extension of
totally real number fields such that L ∩ k∞ = k.

We first introduce the p-adic L-function of Deligne-Ribet. We put
ΛL = Zp[[Gal(L∞/k)]]. We fix a generator γ of Gal(L∞/L) ≃ Zp and
put T = γ − 1. Then we have ΛL = Zp[Gal(L/k)][[T ]].
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Suppose that S is a finite set of primes of k which contains all ram-
ifying primes in L∞. For simplicity, we assume that L(µp)

+ = L. We
denote the cyclotomic character by κ : Gal(L(µp)∞/k) −→ Z×

p . For a
character χ of Gal(L/k) and n ∈ Z>0 we regard χκn as a p-adic char-
acter of Gal(L(µp)∞/k). The group homomorphism χκn extends to a

ring homomorphism ΛL(µp) −→ Qp. Furthermore, we can extend it to
the total quotient ring of ΛL(µp) and denote it also by χκn. Then the
p-adic L-function of Deligne-Ribet is the unique element

ΘL∞/k,S ∈ 1

T
ΛL(µp)

satisfying

χκn(ΘL∞/k,S) = LS(1− n, χ)

for all positive integers n ∈ Z>0 and all characters χ of Gal(L/k) where
LS(s, χ) is defined by LS(s, χ) =

∏
v∈S(1−χ(v)N(v)−s)L(s, χ). Since χ

is even, LS(1−n, χ) = 0 for odd positive n, so the complex conjugation
acts on ΘL∞/k,S trivially. Thus we know

ΘL∞/k,S ∈ 1

T
ΛL.

Next we study the algebraic object. Let XL,S be the Galois group of
LL∞,S/L∞, the maximal abelian pro-p extension which are unramified
outside S. Therefore, XL,S is the Pontrjagin dual of the étale coho-
mology H1(OL∞,S,Qp/Zp) (see the proof of Proposition 2.1). Let χ be
a character of Gal(L/k), and Oχ = Zp[Image(χ)] on which Gal(L/k)
acts via χ. For a Zp[Gal(L/k)]-module M , we define the χ-quotient by
Mχ = M ⊗Zp[Gal(L/k)] Oχ. Then (XL,S)χ is a finitely generated torsion
(ΛL)χ = Oχ[[T ]]-module. Let χ̃ : ΛL −→ (ΛL)χ be the ring homomor-
phism induced by χ. The main conjecture which was proved by Wiles
in [14] Theorem 1.3 (at least assuming the vanishing of the µ-invariant)
is

char(ΛL)χ((XL,S)χ) =

{
(χ̃(ΘL∞/k,S)) if χ ̸= 1
(T χ̃(ΘL∞/k,S)) if χ = 1

as ideals of (ΛL)χ where the left hand side is the characteristic ideal. If
M is a finitely generated torsion (ΛL)χ-module with no nontrivial finite
submodule, we know char(ΛL)χ(M) = Fitt(ΛL)χ(M) where the latter is
the (initial) Fitting ideal of M (cf. [10]). Thus the question arises
naturally whether TΘL∞/k,S is in FittΛL

(XL,S) or not. The answer is
No if Gal(L/k)⊗ Zp is not cyclic. But using ΘL∞/k,S, we can describe
the Fitting ideal in the following theorem.

Theorem 4.1. We assume the vanishing of the µ-invariant of XL.
Suppose that the p-Sylow subgroup of Gal(L/k) is generated by exactly
s elements. Then we have

FittΛL
(XL,S) = T 1−sAGal(L/k)ΘL∞/k,S
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where AGal(L/k) is the ideal of ΛL defined in our previous paper [3] as
the Fitting ideal of a certain second syzygy module, which is determined
only by the p-Sylow subgroup of Gal(L/k).

Proof. This can be proved by the same method as Theorem 3.3 in [3].
In that paper we assumed that S = Sp, so that XL,S agrees with XL.
But this is the only difference; all the arguments carry over unchanged
to general S ⊃ Sp.

We cannot reproduce the proof of the quoted theorem here, but
let us at least say something on the ideal T 1−sAGal(L/k). The precise
definition is to be found in §1 of loc. cit. Let ∆ be the non-p-part
of Gal(L/k) and G be the p-part, in particular, Gal(L/k) ≃ ∆ × G.
The ideal AGal(L/k) is a purely algebraic invariant that depends only
on G. For every character ξ of ∆ except for the trivial character, the
ξ-component of T 1−sAGal(L/k) is the unit ideal. We regard the trivial
character component (T 1−sAGal(L/k))

1 = T 1−s(AGal(L/k))
1 as an ideal of

Λ[G]. The ideal (AGal(L/k))
1 is defined by (AGal(L/k))

1 = FittΛ[G](Ω
2)

with a certain explicit second syzygy Ω2 of the module Z over G with
trivial Gal(k∞/k)-action. □

We explain the ideal (AGal(L/k))
1 a little more. Let IΛ[G] = Ker(Λ[G] =

Zp[[Gal(k∞/k)×G]] −→ Zp) be the augmentation ideal of Gal(k∞/k)×
G. Write G = Z/pn1 × ... × Z/pns with n1 ≤ ... ≤ ns. Define JΛ[G]

to be the ideal generated by IΛ[G] and pn1 . Then (T 1−sAGal(L/k))
1 is

contained, with finite index, in the ideal IΛ[G] of Λ[G]. We also have

(T 1−sAGal(L/k))
1 ⊂ IΛ[G]J

s(s−1)/2
Λ[G]

(see Propositions 1.6 and 1.5 in [3]); one can check this in the following
way. Let IG be the augmentation ideal of Zp[G] and JG the ideal of
Zp[G] generated by IG and pn1 . Then nd in [3] §1 satisfies nd ⊂ Jd

G,
which implies md ⊂ Jd

G by Proposition 1.5 in [3] where md is the ideal
of Zp[G] appearing in Proposition 1.6 in [3]. We also note mt+1 ⊂ IGJ

t
G

for t = s(s− 1)/2, since any monomial appearing in a (t+ 1)-minor of
M̃s can only have t factors of type ν and therefore must have at least
one factor of type τ . Thus Proposition 1.6 in [3] implies the above
inclusion.

5. The Fitting ideal of the p-ramified Iwasawa module
over a totally real number field

In this section, L/k is as in the previous section, but we do not
assume L = L(µp)

+. We put ΛL = Zp[[Gal(L∞/k)]]. As in §2 let XL be
the Galois group of the maximal abelian pro-p extension LL∞,Sp/L∞,
which is unramified outside p. We call XL the p-ramified Iwasawa
module of L∞; it is a module over ΛL.

For L(µp)
+, consider ΘL(µp)

+
∞/k,S defined in the previous section.

When we take S to be minimal, namely the set of ramifying primes
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of k in L(µp)
+
∞, we simply write ΘL(µp)

+
∞/k for ΘL(µp)

+
∞/k,S. We note

that [L(µp)
+ : L] is prime to p, which implies that ΛL can be regarded

as a direct summand of ΛL(µp)+ . We denote by ΘL∞/k ∈ ΛL the ΛL-
component of ΘL(µp)

+
∞/k. We are interested in whether TΘL∞/k is in

the Fitting ideal FittΛL
(XL) or not.

Theorem 5.1. Suppose that L/k is a finite abelian extension of totally
real number fields such that L∩k∞ = k. We assume that L/k contains
an intermediate field K such that K ⊂ k(µp)

+ and Gal(L/K) is ele-
mentary p-abelian. We write Gal(L/K) = (Z/pZ)⊕s for some s ≥ 0.
We also assume the vanishing of the µ-invariant of XL and one of the
following conditions.

(i) s = 2 and L∞/K∞ is unramified outside p.

(ii) s = 3 and L∞/K∞ contains an intermediate field L′′
∞ which is

unramified outside p and [L′′
∞ : K∞] = p.

(iii) s ≥ 4.

Then we have

TΘL∞/k = (γ − 1)ΘL∞/k ̸∈ FittΛL
(XL).

Remark 5.2. When k = Q, then (i) and (ii) never occur. This is be-
cause if L/Q is a finite abelian p-extension which is unramified outside
p, then L is contained in Q∞. But, of course, (iii) does occur.

Proof of Thm. 5.1. We may assume that K = k. In fact, put ∆ =
Gal(K/k), and regard it as a subgroup of Gal(L/k). Let L(∆) be the
intermediate field of L/k such that Gal(L/L(∆)) = ∆, so L(∆)/k is a
p-extension. Then, since #∆ is prime to p, ΛL(∆) is a direct summand
of ΛL. The ΛL(∆)-component of ΘL∞/k is ΘL(∆)∞/k because the set of
primes of k ramifying in L∞ coincides with the set of primes of k rami-
fying in L(∆)∞. Since H1(OL(∆)∞,Sp ,Qp/Zp) −→ H1(OL∞,Sp ,Qp/Zp)

∆

is bijective, the ΛL(∆)-component of XL is XL(∆). Therefore the con-
clusion of Theorem 5.1 for the extension L(∆)/k implies the conclusion
of Theorem 5.1 for L/k.

We supposeK = k from now on. We put Λ = Λk = Zp[[Gal(k∞/k)]] ≃
Zp[[T ]]. We first consider the restriction homomorphism cL∞/k∞ :
ΛL −→ Λ. Let S ′ be the set of non p-adic ramifying primes of k
in L∞. Since only p-adic primes are ramified in k∞/k, we have

cL∞/k∞(TΘL∞/k) = (
∏
v∈S′

(1−N(v)−1φv))TΘk∞/k ∈ Λ

where φv is the Frobenius of v in Gal(k∞/k). By the main conjecture
proved by Wiles [14] (see §4), TΘk∞/k generates the characteristic ideal
of Xk. Therefore, its image modulo p ∈ Λ/p = Fp[[T ]] satisfies

ordT (TΘk∞/k mod p) = λk,
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where λk is the λ-invariant of Xk and ordT is the normalized additive
valuation of Fp[[T ]], because we are assuming the vanishing of the µ-
invariant.

Since v is ramified in L, we know N(v) ≡ 1 (mod p). Therefore, we
have

ordT (
∏
v∈S′

(1−N(v)−1φv) mod p) = ordT (
∏
v∈S′

(1− φv) mod p)

=
∑
v∈S′

ordT ((1− φv) mod p)

= #S ′
k∞

where S ′
k∞

is the set of primes of k∞ above S ′. Thus the image of
TΘL∞/k in Λk ⊗ Fp satisfies

(3) ordT (cL∞/k∞(TΘL∞/k) mod p) = λk +#S ′
k∞ .

Next applying Theorem 3.1 to L/k, we have ((XL)Gal(L/k)) ⊗ Fp ≃
(Z/pZ)⊕t with

(4) t =
s(s− 3)

2
+ #S ′

k∞ + ϵ+ λk,

where ϵ = dimFp Gal(L′′
∞/k∞) with L′′ as in (ii). If (i) is satisfied, then

ϵ = 2 and s(s − 3)/2 + ϵ = 1 > 0. If (ii) is satisfied, then ϵ ≥ 1,
and s(s − 3)/2 + ϵ ≥ 1 > 0. If (iii) is satisfied, then s(s − 3)/2 + ϵ ≥
s(s− 3)/2 > 0. In any case, by the equations (3), (4), we have

t > ordT (cL∞/k∞(TΘL∞/k) mod p).

After these preparations, suppose now that TΘL∞/k is in FittΛL
(XL).

This would imply

cL∞/k∞(TΘL∞/k) mod p ∈ FittFp[[T ]]((XL)Gal(L/k) ⊗ Fp) = (T t).

This contradicts the above inequality. Therefore, we have TΘL∞/k ̸∈
FittΛL

(XL). □

6. The Fitting ideal of the dualized Iwasawa module

By the duality we mentioned in Remark 2.2, Theorem 5.1 implies the
result on the minus class group that we explained in the Introduction.
We now give the details of this implication.

For the ideal class group of a number field F , the p-component of
the class group is denoted by AF , namely AF = ClF ⊗ Zp. For a CM-
field L and the cyclotomic Zp-extension L∞/L and the n-th layer Ln,
we define AL∞ = lim

→
ALn , which is a discrete ΛL = Zp[[Gal(L∞/k)]]-

module. We consider the Pontrjagin dual (AL∞)∨ with the cogredient
action of Gal(L∞/k). So it is a compact ΛL-module.
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For a finite abelian extension L/k where k is totally real and L is a
CM-field, the Stickelberger element θL/k ∈ Q[Gal(L/k)] is the unique
element which satisfies

χ(θL/k) = LSL
(0, χ−1)

for all characters χ of Gal(L/k) where we extended χ to the ring ho-
momorphism χ : Q[Gal(L/k)] −→ Q(Image(χ)) and SL is the set of
ramifying primes of k in L. Let L, Ln be as in the previous para-
graph. Then θLn/k becomes a projective system for n ≫ 0. Let γ
be the generator we fixed and κ the cyclotomic character. We know
(γ − κ(γ))θLn/k ∈ Zp[Gal(Ln/k)] and denote the projective limit by
(γ − κ(γ))θL∞/k ∈ ΛL.

Theorem 6.1. Assume exactly the same conditions as in Theorem 5.1,
including the list of conditions (i), (ii), (iii), with the exception that
now K = k(µp) instead of K ⊂ k(µp)

+, and “L is CM” instead of “L
is totally real”. Then we have

(γ − κ(γ))θL∞/k ̸∈ FittΛL
((AL∞)∨).

Remark 6.2. (1) When L/K is unramified outside p (and in particu-
lar when we assume (i)), the above result was already obtained in our
previous papers [8], [3].
(2) It is somewhat surprising that this corollary also applies in the case
k = Q and suitable abelian fields L. Indeed, the paper [7] determines
the Fitting ideal of the non-dualised class group over L∞, and it con-
tains the left hand side of the non-inclusion displayed in the theorem.
In particular, in many cases the Fitting ideals of the class group of an
abelian number field and of its dual cannot be equal. We will see such
cases in §§7,8.

Proof of Thm. 6.1. Suppose that κ : Gal(L∞/k) −→ Z×
p is the cyclo-

tomic character. Let τ , ι be the automorphisms of the total quotient
ring of ΛL induced by σ 7→ κ(σ)σ, σ 7→ σ−1, respectively, for any
σ ∈ Gal(L∞/k). Then we know

ιτ(ΘL∞/k) = θL∞/k

and ιτ(T ) = κ(γ)γ−1−1. Let A−
L∞

be the minus part of AL∞ (the part
on which the complex conjugation acts as −1). The Kummer pairing
gives a natural isomorphism

(A−
L∞

)∨(1) ≃ XL+

(see [13] Proposition 13.32). Therefore, Theorem 5.1 implies

(κ(γ)γ−1 − 1)θL∞/k ̸∈ FittΛL
((A−

L∞
)∨),

which completes the proof. □
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Remark 6.3. Put ∆ = Gal(K/k) and let ω : ∆ −→ Z×
p be the

Teichmüller character. Since the order of ∆ is prime to p, Zp[∆] is
decomposed into character components, so any Zp[∆]-module M is de-
composed into character components, M =

⊕
ξ M

ξ where ξ runs over
Qp-conjugacy classes of characters of ∆. By the same method as the
proof of Theorem 6.1, we see that

((γ − κ(γ))θL∞/k)
ω ̸∈ FittΛω

L
((Aω

L∞)∨)

where the left hand side is the ω-component of the element (γ −
κ(γ))θL∞/k. In fact, taking the ω-component of the isomorphism of
the Kummer pairing in the proof of Theorem 6.1, we have

(Aω
L∞)∨(1) ≃ XL(∆)

where L(∆) is the intermediate field of L/k such that Gal(L/L(∆)) =
∆. Since TΘL(∆)∞/k ̸∈ FittΛL(∆)

(XL(∆)) by Theorem 5.1, we get the
above statement on the ω-component.

7. Results at number field level

In this section, we study some consequences of Theorem 6.1 over
number fields of finite degree. For simplicity, we assume k = Q. We
note that the vanishing of the µ-invariant is proved by Ferrero and
Washington. We repeat that the cases (i) and (ii) in Theorem 6.1
never happen over k = Q, and so we may concentrate on the case (iii).

Corollary 7.1. Suppose that L/Q is a finite abelian extension such
that µp ⊂ L, µp2 ̸⊂ L, and Gal(L/Q(µp)) ≃ (Z/pZ)⊕s for some s ≥ 4.
Let S be the set of prime numbers ramifying in L, and S ′ = S \ {p}.
We take n ∈ Z>0 such that

pn >
∑
ℓ∈S′

pordp(ℓ−1)−1 .

Let Ln be the n-th layer of L∞/L (so Ln = L(µpn+1)), and Rn =
Zp[Gal(Ln/Q)]. Then we have

AnnRn(µpn+1)θLn/Q ̸⊂ FittRn((ALn)
∨),

where AnnRn(µpn+1) is the annihilator ideal of µpn+1 in Rn. More pre-
cisely,

(AnnRn(µpn+1)θLn/Q)
ω ̸⊂ FittRω

n
((Aω

Ln
)∨)

holds.

Proof. As in the previous sections, suppose that γ is a generator of
Gal(L∞/L). We regard γ as a generator of Gal(Ln/L). It is well-known
that (γ−κ(γ))θLn/Q ∈ Rn, and is, of course, in AnnRn(µpn+1)θLn/Q. We
will show that

((γ − κ(γ))θLn/Q)
ω ̸∈ FittRω

n
((Aω

Ln
)∨).
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Put K = Q(µp), ∆ = Gal(K/Q), and G = Gal(L/K). As in
Remark 6.3, we denote by L(∆) the intermediate field of L/Q such
that Gal(L/L(∆)) = ∆. Put G = Gal(L(∆)/Q) = Gal(L/Q(µp)) ≃
(Z/pZ)⊕s. It is well-known that XQ = 0. Therefore, applying Theorem
3.1 for L(∆)/Q, we have

(XL(∆))G = Ĥ−1(G,XL(∆)) ≃ (Z/pZ)⊕t

where

t =
s(s− 3)

2
+ #S ′

Q∞ .

In particular, (XL(∆))G is an Fp-vector space. More precisely, consider
the fundamental exact sequence

0 −→
2∧
G −→ Ĥ−1(G,XL(∆)) −→

⊕
v∈S′

Q∞

Fp −→ G −→ 0.

We regard γ as a generator of Gal(Q∞/Q), and put T = γ−1 as before.

Then γ acts on G trivially, and
⊕

v∈S′
Q∞ ,v|ℓ

Fp ≃ Fp[[T ]]/(T
pr) where r =

ordp(ℓ− 1)− 1 (note that ordp(ℓ− 1) ≥ 1). By our assumption, n > r

holds. Therefore, T pn−1
annihilates

⊕
v∈S′

Q∞
Fp. Since T annihilates∧2 G, we know that (p, T pn) annihilates Ĥ−1(G,XL(∆)).

By the isomorphism (Aω
L∞)∨ ≃ XL(∆)(−1), we have isomorphisms of

Λ = ΛQ∞-modules

((Aω
L∞)G)∨ ≃ (XL(∆))G(−1) = Ĥ−1(G,XL(∆))(−1)

≃ Ĥ−1(G,XL(∆)).

Here, we used pĤ−1(G,XL(∆)) = 0 to get the second isomorphism. Put
Γn = Gal(L∞/Ln), which is generated by γpn . Since (p, T pn) annihilates

Ĥ−1(G,XL(∆)), we have

((Aω
L∞)G×Γn)∨ ≃ Ĥ−1(G,XL(∆))Γn = Ĥ−1(G,XL(∆)).

Since the p-adic primes of L+
n are ramified in Ln, the natural map

A−
Ln

−→ (A−
L∞

)Γn is bijective. Therefore, we get

((Aω
Ln
)∨)G ≃ Ĥ−1(G,XL(∆)).

Now we can proceed in the same way as in the proof of Theorem
5.1. Suppose that ((γ− κ(γ))θLn/Q)

ω is in FittRω
n
((Aω

Ln
)∨). This would

imply

T#S′
Q∞+1θωKn

∈ FittFp[[T ]]/(T pn )(Ĥ
−1(G,XL(∆))) = (T t)

where t is as above and satisfies t > #S ′
Q∞ because of our assumption

s ≥ 4. This is a contradiction because TθωKn
is a unit of Zp[Gal(Kn/Q)]ω

and pn >
∑

ℓ∈S′ pordp(ℓ−1)−1 = #S ′
Q∞ . □
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Corollary 7.2. Suppose that p is an odd prime and

m = pn
s∏

i=1

ℓi

satisfying
(i) s ≥ 4,
(ii) ℓi ≡ 1 (mod p) for all i = 1,...,s,

(iii) pn−1 >
s∑

i=1

pordp(ℓi−1)−1 .

We put L = Q(µm). Then we have

(AnnZ[Gal(L/Q)](µm)θL/Q)⊗ Zp ̸⊂ FittZp[Gal(L/Q)](A
∨
L).

In particular, the classical Stickelberger ideal of L by Iwasawa and
Sinnott which contains AnnZ[Gal(L/Q)](µm)θL/Q does not coincide with
FittZ[Gal(L/Q)](Cl

∨
L).

Proof. Clearly, L has a unique subfield L′ such that the conductor of
L′ is m/pn−1, L′ contains Q(µp), and Gal(L′/Q(µp)) ≃ (Z/pZ)⊕s. Put
F = L′(µpn). By Corollary 7.1, we have

(AnnZp[Gal(F/Q)](µpn)θF/Q)
ω ̸⊂ FittZp[Gal(F/Q)]ω((A

ω
F )

∨).

Since the conductor of F is m, the image of θL/Q in Q[Gal(F/Q)] is
θF/Q. Since Gal(L/F ) is generated by the inertia subgroups of the
ramified primes, the natural map A−

F −→ A−
L is injective. Therefore,

cL/F (FittZp[Gal(L/Q)]ω((A
ω
L)

∨)) ⊂ FittZp[Gal(L/Q)]ω((A
ω
F )

∨),

where cL/F : Zp[Gal(L/Q)]ω −→ Zp[Gal(F/Q)]ω is the restriction map.
This implies that

(AnnZp[Gal(L/Q)](µpn)θL/Q)
ω ̸⊂ FittZp[Gal(L/Q)]ω((A

ω
L)

∨),

which implies the conclusion. □

Remark 7.3. For example, m = 27·7·13·19·31 satisfies the conditions
of Corollary 7.2 for p = 3.

8. The case s = 2

We have studied the Fitting ideal of the minus class group of an
abelian field L whose Galois group over Q has p-rank ≥ 4 (namely,
s = dimFp Gal(L/Q)⊗ Fp ≥ 4). In this section, let us examine several
examples in the case s = 2 for k = Q.

Consider the subset P = {ℓ | ℓ ≡ 1(mod p)} of the set of prime
numbers. For ℓ ∈ P , we denote by F (ℓ) the subfield of Q(µℓ) of
degree p. For two primes ℓ1,ℓ2 ∈ P , we define F (ℓ1, ℓ2) to be the
composite field of F (ℓ1) and F (ℓ2), L(ℓ1) = F (ℓ1)(µp) and L(ℓ1, ℓ2) =
F (ℓ1, ℓ2)(µp).
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Proposition 8.1. Let ℓ1, ℓ2 be two primes in P , and assume ℓ1 ̸≡ 1
(mod p2). Put L = L(ℓ1, ℓ2), and G = Gal(L/Q(µp)) = Gal(F (ℓ1, ℓ2)/Q).

(1) We have Aω
L(ℓ1)

= 0.

(2) For any ℓ2 ∈ P , Aω
L is generated by one element as a Zp[G]-

module.
(3) Suppose that ℓ2 satisfies at least one of the following conditions:

(i) ℓ2 ̸≡ 1 (mod p2);
(ii) ℓ2 does not split completely in F (ℓ1).

Then we have

FittZp[G]((A
ω
L)

∨) = FittZp[G](A
ω
L).

(4) Suppose that ℓ2 satisfies neither (i) nor (ii) above. Then NG2

is in FittZp[G](A
ω
L), but not in FittZp[G]((A

ω
L)

∨) where G2 =
Gal(L/L(ℓ1)) and NG2 is the norm element of G2 in Zp[G].
In particular, we have

FittZp[G]((A
ω
L)

∨) ̸= FittZp[G](A
ω
L).

Proof. We first note that the natural maps Aω
L(ℓi)

−→ Aω
L, A

ω
L(ℓi)

−→
Aω

L(ℓi)∞
, Aω

L −→ Aω
L∞ are all injective.

(1) Put G1 = Gal(F (ℓ1)/Q). By our assumption ℓ1 ̸≡ 1 (mod p2), there
is only one prime of F (ℓ1)∞ above ℓ1. It follows from the fundamental

exact sequence for F (ℓ1)/Q that Ĥ−1(G1, XF (ℓ1)) = 0. Since XQ = 0,
this implies that XF (ℓ1) = 0 by Proposition 2.3. Since (Aω

L(ℓ1)∞
)∨(1) ≃

XF (ℓ1), we also have Aω
L(ℓ1)

= 0 .

(2) Let wi be a prime of L(ℓ1, ℓ2) above ℓi. We denote by κ(wi) the
residue field of wi, and by Dℓi the decomposition group of wi in G. We
need the following lemma.

Lemma 8.2. We have an exact sequence

Ĥ0(G,µp) −→ Ĥ0(Dℓ1 , κ(w1)
×)⊕ Ĥ0(Dℓ2 , κ(w2)

×) −→ Ĥ−1(G,Aω
L)

−→ H1(G,µp)
f1−→ H1(Dℓ1 , κ(w1)

×)⊕H1(Dℓ2 , κ(w2)
×) −→ Ĥ0(G,Aω

L)

−→ H2(G,µp)
f2−→ H2(Dℓ1 , κ(w1)

×)⊕H2(Dℓ2 , κ(w2)
×).

where G acts on µp trivially. The map f1 is bijective. The group

Ĥj(Dℓi , κ(wi)
×) is of order p for any i, j ∈ {0, 1, 2}.

Proof of Lemma 8.2. This exact sequence is obtained from the exact
sequence in the last line on page 411 in [8]. We knowH1(Dℓi , κ(wi)

×) =
H1(Dℓi , ULwi

) ≃ Z/ewi
Z = Z/pZ where ULwi

is the unit group of the
integer ring of Lwi

, and ewi
is the ramification index of wi in L/Q(µp).

It is well-known that the kernel of f1 is isomorphic to the kernel of
Aω

Q(µp)
−→ Aω

L(ℓ1,ℓ2)
. But Aω

Q(µp)
= 0, so the kernel of f1 is zero. Since
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both the source and the range of f1 have order p2, the injectivity of f1
implies the bijectivity of f1. Finally, Ĥ0(Dℓi , κ(wi)

×) is isomorphic to
the inertia group of ℓi in G by local class field theory, so it has order
p. This completes the proof of Lemma 8.2.

We go back to the proof of Proposition 8.1. In the exact sequence in
Lemma 8.2, since ℓ1 ̸≡ 1 (mod p2), we have Ĥ0(Dℓ1 , κ(w1)

×) = F×
ℓ1
⊗

Z/pZ ≃ µp, and the natural map Ĥ0(G,µp) = µp −→ Ĥ0(Dℓ1 , κ(w1)
×)

= µp is bijective. Therefore, it follows from Lemma 8.2 that Ĥ−1(G,Aω
L)

is isomorphic to Z/pZ. Since Aω
Q(µp)

= 0, we know that Aω
L is generated

by one element as a G-module.

(3) We prove that (Aω
L)

∨ is generated by one element as a G-module
under the assumption in (3). Let us first assume that the condition (i)
holds. By the fundamental exact sequence for F (ℓ1, ℓ2)/Q,

0 −→
2∧
G −→ Ĥ−1(G,XF (ℓ1,ℓ2)) −→

⊕
v|ℓ1ℓ2

Z/pZ −→ G −→ 0

is exact. Since neither ℓ1 nor ℓ2 splits in Q∞ by our assumption (i),

we know
⊕

v|ℓ1ℓ2 Z/pZ ≃ (Z/pZ)⊕2, which implies Ĥ−1(G,XF (ℓ1,ℓ2)) ≃
Z/pZ by the above exact sequence. Since XQ = 0, XF (ℓ1,ℓ2) is generated
by one element as a G-module by Nakayama’s lemma. Therefore, using
the duality isomorphism as in (1), we get the cyclicity of (Aω

L)
∨.

Next, we assume the condition (ii). Put G2 = Gal(F (ℓ1, ℓ2)/F (ℓ1)).
By the fundamental exact sequence for F (ℓ1, ℓ2)/F (ℓ1),

0 −→ Ĥ−1(G2, XF (ℓ1,ℓ2)) −→
⊕
v|ℓ2

Z/pZ −→ G2 −→ 0

is exact where v runs over primes of F (ℓ1)∞ above ℓ2. By our as-
sumption (ii),

⊕
v|ℓ2 Z/pZ is a quotient of Fp[[Gal(F (ℓ1)∞/F (ℓ1))]] =

Fp[[Gal(Q∞/Q)]] and the third map in the exact sequence is induced
by the augmentation map Fp[[Gal(Q∞/Q)]] −→ Fp. It follows that

Ĥ−1(G2, XF (ℓ1,ℓ2)) is cyclic as a ΛQ-module. Since XF (ℓ1) = 0 by (1),

we have (XF (ℓ1,ℓ2))G2 = Ĥ−1(G2, XF (ℓ1,ℓ2)) by Proposition 2.3. There-
fore, by Nakayama’s lemma, XF (ℓ1,ℓ2) is generated by one element as
a ΛF (ℓ1,ℓ2)-module. Thus, by the same method as above, we get the
cyclicity of (Aω

L)
∨.

By (2) and the above, both Aω
L and (Aω

L)
∨ are cyclic as Zp[G]-

modules. Therefore, we obtain

FittZp[G](A
ω
L) = FittZp[G]((A

ω
L)

∨) = AnnZp[G](A
ω
L).

This completes the proof of (3).
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(4) Since Aω
L(ℓ1)

= 0 by (1), NG2 is in AnnZp[G](A
ω
L). Therefore, it is

also in FittZp[G](A
ω
L) because Aω

L is cyclic by (2).
Consider the homomorphism H2(G,µp) −→ H2(Dℓ2 , κ(w2)

×), which
is obtained by the composition of f2 in Lemma 8.2 and the second
projection. Since ℓ2 splits completely in L(ℓ1) and ramifies in L/L(ℓ1),
κ(w2) = Fℓ2 . Put r2 = ordp(ℓ2 − 1). By our assumption ℓ2 ≡ 1 (mod
p2), we have r2 > 1. Then H2(Dℓ2 , κ(w2)

×) = H2(Dℓ2 , µpr2 ) and the
above map

H2(G, µp) −→ H2(Dℓ2 , κ(w2)
×) = H2(Dℓ2 , µpr2 )

is induced by the natural homomorphisms Dℓ2 −→ G, µp −→ µpr2 . In
particular, it factors through H2(Dℓ2 , µp). Recall that Dℓ2 is cyclic of
order p. Therefore, H2(Dℓ2 , µp) −→ H2(Dℓ2 , µpr2 ) is the zero map. It
follows that the Fp-dimension of the image of f2 in Lemma 8.2 is equal
to or smaller than 1. By Lemma 8.2, we have

dimFp((A
ω
L)

G) ≥ dimFp H
2(G,µp)− 1 = 3− 1 = 2.

Suppose that α ∈ Zp[G] is in FittZp[G]((A
ω
L)

∨). Let c : Zp[G] −→ Zp

be the augmentation map. We have c(α) ∈ FittZp(((A
ω
L)

G)∨), so p2

divides c(α) because dimFp((A
ω
L)

G) ≥ 2. Namely, we get

α ∈ FittZp[G]((A
ω
L)

∨) =⇒ p2|c(α).
This shows that NG2 is not in FittZp[G]((A

ω
L)

∨) because c(NG2) = p.
This completes the proof of Proposition 8.1.

□
Remark 8.3. Suppose that n is a product of primes in P . We define
ηQ(µnp) by

ηQ(µnp) = θQ(µnp)/Q − νθQ(µp)/Q,

where ν is the corestriction map. It is easy to see that ηQ(µnp) ∈
Zp[Gal(Q(µnp)/Q)]. For any field F with conductor np, we define ηF
by the image of ηQ(µnp). Let Θ(L) ⊂ Zp[Gal(L/Q)] be the Stickelberger
ideal in the sense of Sinnott [12] (or in the sense of the second author
[7]). We regard Θ(L) as an ideal of the minus part Zp[Gal(L/Q)]−. We
can check that Θ(L) of L = L(ℓ1, ℓ2) is generated by four elements, to
wit, ηL, νηL(ℓi) with i = 1, 2, and pνθQ(µp)/Q with suitable corestriction
maps ν. By the main theorem in [9] (or Theorem 0.6 in [7]) we have

FittZp[Gal(L/Q)]−(A
−
L) = Θ(L).

We have seen in Proposition 8.1 that

FittZp[Gal(L/Q)]−((A
∨
L)

−) ̸= Θ(L)

if L satisfies the condition of Proposition 8.1 (4).

Remark 8.4. We give numerical examples. Take p = 3 and ℓ1 = 7.
Then all ℓ2 ∈ P with ℓ2 < 127 satisfy the condition of Proposition 8.1
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(3) (more precisely, ℓ2 = 13, 19, 31, 43, 61, 67, 73, 79, 97, 103, 109
satisfy the condition).

The first prime which does not satisfy the condition is ℓ2 = 127. Let
us examine this case in detail. For L = L(7, 127), take a generator
σ of Gal(F (7)/Q) and τ ∈ Gal(F (127)/Q) such that σ(ζ7) = ζ37 and
τ(ζ127) = ζ3127. We write σ = 1 + S and τ = 1 + T , and

Zp[G] = Zp[S, T ]/((1 + S)3 − 1, (1 + T )3 − 1)

where G is as in Proposition 8.1. (Note: the above T has no relation
with T in the previous sections.) Let ηL be as in Remark 8.3. We
regard ηL as an element of Zp[Gal(L/Q)]− = Zp[G]. One can compute

ηL = −2(126+ 126S +42S2 +123T +123ST +44S2T +40T 2 +39ST 2 +15S2T 2).

Let us not write out the others, but note that νηL(7) is 1 + τ + τ 2

times a unit since AQ(µ7) = 0. Then we can compute numerically the
Stickelberger ideal Θ(L) of L. The result is

(5) Θ(L) = (3, S2T, T 2) ⊂ Zp[G].

We know AL+ = 0, so we have AL = A−
L = Aω

L. Since AL is cyclic by
Proposition 8.1 (2), we have

AL ≃ Zp[G]/Θ(L) = Zp[G]/(3, S2T, T 2)

= Fp[S, T ]/(S
3, S2T, T 2).(6)

In particular, as an abelian group, we have AL ≃ (Z/pZ)⊕5. The
structure of AL as an abelian group can be also checked by direct
computation. We thank Jiro Nomura very much for his computing the
structure as an abelian group of AL(ℓ1,ℓ2) for several ℓ1, ℓ2 by Pari-GP.

By the isomorphism (6), we can also compute generators and rela-
tions of A∨

L. We find that A∨
L is generated by two elements and its

Fitting ideal is

(7) FittZp[G](A
∨
L) = (9, 3T, 3S, S2T, T 2).

It follows from (6) and (7) that

FittZp[G](A
∨
L) ⊊ FittZp[G](AL) = (3, S2T, T 2).

By (7) we also see

ηL ∈ FittZp[G](A
∨
L),

but

νηL(7) ̸∈ FittZp[G](A
∨
L)

because νηL(7) is 1 + τ + τ 2 = 3 + 3T + T 2 up to a unit factor.
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