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Refined Iwasawa theory and Kolyvagin systems of Gauss sum type

Masato Kurihara

Abstract

In this paper, we establish a refinement of the usual Iwasawa main conjecture for the ideal class
groups of CM-fields over a totally real field, using higher Fitting ideals.

1. Introduction

In this paper, we generalize the results in our previous paper [10], and prove a more refined
relationship between algebraic objects and analytic objects than the usual Iwasawa main
conjecture.

Suppose that p is an odd prime number, and consider at first a finite abelian extension K/Q
such that p does not divide [K : Q]. Let χ be an odd Dirichlet character of Gal(K/Q) such
that the conductor of χ coincides with that of K. When the group of pth roots of unity μp is in
K, we assume χ �= ω where ω is the Teichmüller character that gives the action of Gal(K/Q)
on μp. Suppose AK = ClK ⊗ Zp is the p-component of the ideal class group of K and AχK is the
χ-component of AK (for the precise definition, see § 3.2). Then Mazur and Wiles [13] proved
the celebrated Iwasawa main conjecture and also proved

#AχK = #Oχ/B1,χ−1Oχ (1.1)

as a corollary of the main conjecture where Oχ = Zp[Imageχ] and B1,χ−1 is the generalized
Bernoulli number.

This is an equality on the orders, but we can get more information on AχK as an Oχ-module
from the values of zeta functions. Using the Euler system of Gauss sums, Kolyvagin and Rubin
proved an isomorphism

AχK �
⊕
i�1

Θ(δ),χ
i,K /Θ(δ),χ

i−1,K (1.2)

as Oχ-modules where (Θ(δ),χ
i,K )i�0 is an increasing sequence of ideals of Oχ, Θ(δ),χ

0,K = B1,χ−1Oχ,
and the ideals Θ(δ),χ

i,K are determined by some arguments of Euler systems from some
Stickelberger elements (Kolyvagin [8, Theorem 7] and Rubin [16, Theorem 4.4]; in [16] only
the case K = Q(μp) was studied but the same argument works for K with p � [K : Q]). For the
precise definition of these ideals Θ(δ),χ

i,K , see § 8.
In our previous paper [10], we generalized the above result to a finite and abelian extension

K/k such that p does not divide [K : k] where k is a totally real base field and K is a CM-field.
We also assume χ �= ω when μp is in K. We obtained an isomorphism [10, Theorem 0.1]

AχK �
⊕
i�1

Θχ
i,K/k/Θ

χ
i−1,K/k (1.3)

as Oχ-modules (under certain mild assumption on χ), using an increasing sequence (Θχ
i,K/k)i�0

of ideals of Oχ. The ideals Θχ
i,K/k are determined by some Stickelberger elements of fields
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over k, so determined by some analytic information coming from zeta values. (We can also
define Θ(δ),χ

i,K/k by the argument of Euler systems over k, and in our case Θ(δ),χ
i,K/k = Θχ

i,K/k holds.

The ideal Θχ
i,K/k is better than Θ(δ),χ

i,K/k for numerical computations. For the definition of these
ideals, see § 8.) More precisely, an idea in [10] was to use the higher Fitting ideals (for the
definition, see § 9), and we proved in [10] that

Fitti,Oχ(AχK) = Θχ
i,K/k, (1.4)

for all i � 0 where the left-hand side is the ith Fitting ideal. The equality (1.4) immediately
implies the isomorphism (1.3). In the following, we fix a totally real base field k, and omit k
from the notation and write Θχ

i,K for Θχ
i,K/k.

In this paper, we generalize the above result (1.4), and study the Iwasawa theoretic version.
Let K/k and χ be as above. We consider the Iwasawa module XK∞ = lim← AKm for the
cyclotomic Zp-extension K∞ of a CM-field K (Km is the mth layer of K∞/K), and the
χ-component Xχ

K∞ . The Iwasawa main conjecture proved by Mazur and Wiles [13] in the
case k = Q and by Wiles [23] in general is the Iwasawa theoretic version of (1.1), and can be
stated as

Fitt0,Λ(Xχ
K∞) = (θχK∞), (1.5)

since Fitt0,Λ(Xχ
K∞) is equal to the characteristic ideal of Xχ

K∞ in this case (cf. Theorem 9.6 and
Lemma 9.1). Here, Λ = Zp[[Gal(K∞/k)]]χ is the χ-component of Zp[[Gal(K∞/k)]], and θχK∞ is
the projective limit of the χ-component θχKm of the Stickelberger element of Km (see § § 3.4
and9.3) and is essentially the p-adic L-function of Deligne and Ribet [2]. In this paper, we
study the higher Fitting ideal Fitti,Zp[[Gal(K∞/k)]](X

χ
K∞) for any i � 0, and will prove that it is

equal to some higher Stickelberger ideal Θχ
i,K∞ (see § 8 for the definition) which is generated

by some elements coming from the p-adic L-function. Our main theorem is Theorem 2.1 in § 2,
which is stated as

(Theorem 2.1) Fitti,Λ(Xχ
K∞) = Θχ

i,K∞ ,

for any i � 0. The case i = 0 of Theorem 2.1 is nothing but (1.5), and so our Theorem 2.1
is a refinement of the usual main conjecture. We mention here that we do not give a new
proof of the main conjecture because we use the main conjecture as an important ingredient
of the proof.

Our Theorem 2.1 is regarded as the Iwasawa theoretic version of the structure theorem (1.3),
and so is also a generalization of (1.2) by Kolyvagin [8] Theorem 7 and Rubin [16] for abelian
fields over Q. We will also obtain another structure theorem; see Corollary 2.4.

An essential difference in our case from [10] is that, here, we have to work over group rings
while one worked over discrete valuation rings in [10]. A key new ingredient is Kolyvagin
systems of Gauss sum type, especially those which do not come from Euler systems.

More precisely, the key of the proof of our main theorem is the construction of some element
xn,l (cf. § 8) in the multiplicative group having good properties (for the key property of xn,l, see
Lemma 10.2). The essential ingredient of xn,l is the Kolyvagin system κn,l of Gauss sum type.

The notion of Kolyvagin systems was introduced by Mazur and Rubin [12]. The first
important property is ‘κn ∈ H1

F(n)’ in the terminology of Mazur and Rubin (cf. [12, Definition
3.1.3]), which had not been recognized before [12]. A more important and beautiful property of
our Kolyvagin system κn,l is that they are related to the values of L-functions (see the properties
(ii) and (iv) below). Without explaining the notation, we gather here the properties of κn,l. We
prove (under the assumption that κn,l is defined and n l is well-ordered; see Propositions 5.2,
6.4, 6.5 and also Corollary 6.2 for the details)

(i) for each prime r dividing n, divr(κn,l) = φr(κn/r,l);
(ii) divl(κn,l) = δn;



REFINED IWASAWA THEORY Page 3 of 42

(iii) for each prime r dividing n, φr(κn,l) = 0;
(iv) φl(κn,l) = −δn l.
Here, φl is defined from the reciprocity map (see § 3.3 for the definition), and δn, δn l are

defined from the values of L-functions. The property (i) is a usual property of Kolyvagin
systems (Euler systems), and the property (iii) corresponds to ‘κn ∈ H1

F(n)’ in the terminology
of Mazur and Rubin. The properties (ii) and (iv) are new, and are beautiful relations between
the L-values and the Kolyvagin system of Gauss sum type.

The idea in this paper can be applied to a more general case, namely, to the Iwasawa theory
for more general p-adic representations, for example, for elliptic curves (see [11]). In this paper,
we study only the minus class groups because this case is the most typical and simplest case
in this theory.

In § 2, we state our main theorem. In § 3, we fix notation in this paper and prove basic
lemmas. We review in § 4 the Euler system of Gauss sum type in [10]. Suppose that k is a
totally real number field, and K is a CM-field such that K/k is finite and abelian. For a prime l
which splits completely in K, we consider the Euler system gKl of Gauss sum type constructed
in [10]. This element gKl is related to the values of L-functions, namely, the image of gKl under
the ‘divisor’ map is related to L-values by definition (see § 4.2), and we prove that the image
of gKl under the reciprocity map of local class field theory is also related to L-values (see
Proposition 6.1). In § 4, we also prove the congruence relation (Proposition 4.2) which is not
trivial since our Euler system is a ‘finite’ Euler system (see § 4.2). Using some abelian extension
K(n)/k, we can define the Kolyvagin derivative κn,l(∈ K×/(K×)p

N

) from g
K(n)
l by the usual

argument of Euler systems if the prime l splits completely in K(n). But we need κn,l for more
general l which does not split in K(n). In § 5, we construct κn,l for more general primes l, and
prove the above properties (i)–(iv) in § 6. We introduce in § 7 the element xn,l, which plays an
important role in the proof of Theorem 2.1. In § 8, we define two higher Stickelberger ideals
Θ(δ),χ
i,K and Θχ

i,K . The former is related to the theory of Euler systems, but the latter is better
in general (cf. Remark 8.2). In § 9, after we gather known facts on Fitting ideals, we prove that
Θχ
i,K∞ is in the higher Fitting ideal of the Iwasawa module (Corollary 9.12). In § 10, we prove

Theorem 2.1. We also give some numerical examples in Remark 10.5.

Notation. For an abelian group A and an integer n, A[n] and A/n denote the kernel
and cokernel, respectively, of the multiplication by n. The notation A/n will be used even for
multiplicative groups. For example, for the multiplicative group K× of a field K, K×/n means
K×/(K×)n. For a group G and a G-module M , MG denotes the G-invariant part of M (the
maximal subgroup of M on which G acts trivially), and MG denotes the G-coinvariant of M
(the maximal quotient of M on which G acts trivially). For a prime number p, we denote
by ordp the additive discrete valuation of Q associated to p, which is normalized such that
ordp(p) = 1. For a positive integer n, μn denotes the group of all nth roots of unity in an
algebraic closure of the field we are considering. For a number field or a local field F , OF
denotes the ring of integers.

2. Main result

Throughout this paper, k is the base field which is a totally real number field of finite degree
over Q. We assume that p is an odd prime number, and suppose that K0 is a CM-field such that
K0/k is finite and abelian, and [K0 : k] is prime to p. In this § 2, we denote byK∞ the cyclotomic
Zp-extension of K0. (In §§ 3–7, we consider more general K, and K∞ denotes the cyclotomic
Zp-extension of K.) We put XK∞ = lim← AK0,m where AK0,m is the p-component of the ideal
class group of K0,m for the intermediate field K0,m of K∞/K0 such that [K0,m : K0] = pm.
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This Zp[[Gal(K∞/k)]]-module XK∞ , which is isomorphic to the Galois group of the maximal
unramified abelian pro-p extension of K∞, is often called the Iwasawa module.

Since [K0 : k] is prime to p, XK∞ is decomposed into the character components for characters
of Gal(K0/k) (see § 3, Subsection 3.2). Let χ be an odd character of Gal(K0/k). When k(μp) ⊂
K0, we assume χ �= ω where ω is the Teichmüller character which gives the action of Gal(K0/k)
on the group of pth roots of unity. We also assume that the conductor of χ is equal to the
conductor ofK0/k, and consider the χ-componentXχ

K∞ (see § 3.2) which is a Zp[[Gal(K∞/k)]]χ-
module. (When we are interested in the χ-component, we may assume that the conductor of
K0/k equals that of χ; cf. Subsection 3.2.) We put Λ = Zp[[Gal(K∞/k)]]χ = Oχ[[Gal(K∞/K0)]]
where Oχ = Zp[Imageχ].

Let θχK∞ be the projective limit of the χ-component θχK0,m
of the Stickelberger element

of K0,m (see §§ 3.4 and 9.3). As we explained in § 1, the main conjecture states that the
characteristic ideal of Xχ

K∞ is generated by θχK∞ . In this paper, we prove that more information
on the structure of Xχ

K∞ can be derived from the p-adic zeta functions, more precisely from
the Stickelberger elements of abelian extensions that contain K∞. In § 8, we define the higher
Stickelberger ideals Θχ

i,K0,m
for any i � 0 and m � 0, using the Stickelberger elements of several

fields L which contain K0,m such that L/k is finite and abelian. We define the Stickelberger
ideal Θχ

i,K∞ ⊂ Λ of K∞ to be the projective limit of Θχ
i,K0,m

(see § 9.5). In particular, Θχ
0,K∞

is a principal ideal generated by θχK∞ (the ideals Θχ
i,K∞ for i � 1 are not principal ideals, in

general).
To state our main theorem, we use higher Fitting ideals (see § 9 for the definition and the

basic properties of higher Fitting ideals). The following is our main theorem.

Theorem 2.1. We assume that the μ-invariant of Xχ
K∞ is zero (namely, Xχ

K∞ is finitely
generated over Zp), and that χ(p) �= 1 for any prime p of k above p. Then we have

Fitti,Λ(Xχ
K∞) = Θχ

i,K∞ , (2.1)

for all i � 0.

Remark 2.2. (1) The left-hand side of the above equation is an algebraic object and the
right-hand side is a p-adic analytic object. The above theorem gives a more refined relationship
between them than the usual main conjecture.

(2) If we know all Fitting ideals Fitti,Λ(Xχ
K∞), then we can determine the pseudo-

isomorphism class of Xχ
K∞ (Lemma 9.2). So the above theorem says that the information

on the p-adic L-functions determines the pseudo-isomorphism class of Xχ
K∞ . For example, it

determines whetherXχ
K∞ contains Λ/(f2) or Λ/(f) ⊕ Λ/(f) when f2 | θχK∞ for some irreducible

f ∈ Λ, although a generator of char(Xχ
K∞) is conjectured to have only simple roots.

(3) In the case rankOχ X
χ
K∞ � 2, if we know all Fitti,Λ(Xχ

K∞), then we can determine the
isomorphism class of Xχ

K∞ (Lemma 9.3). If rankOχ X
χ
K∞ � 3, then the isomorphism class is

not determined (Remark 9.4).
(4) We can remove the assumption χ(p) �= 1 in Theorem 2.1, which will be treated in [11].

Put RK0,m = Zp[Gal(K0,m/K0)]χ = Oχ[Gal(K0,m/K0)]. As a corollary of Theorem 2.1, we
prove in § 10.3 the following theorem.

Theorem 2.3. Under the same assumption as Theorem 2.1, for any m � 0, we have

Fitti,RK0,m
(AχK0,m

) = Θχ
i,K0,m

,

for all i � 0.
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Let ψ be a character of Gal(K0,m/K0) of order pm where m � 0. We define Oχψ = Oχ[μpm ].
The ring homomorphism RK0,m −→ Oχψ induced by σ 	→ ψ(σ) (σ ∈ Gal(K0,m/K0)) is denoted
by the same letter ψ. We regard Oχψ as an RK0,m-module by the ring homomorphism ψ :
RK0,m −→ Oχψ. We define AχψK0,m

= AχK0,m
⊗RK0,m

Oχψ which is an Oχψ-module. Put Θχψ
i =

ψ(Θχ
i,K0,m

). From Theorem 2.3 we immediately have the following corollary (see § 10.3).

Corollary 2.4. There is an isomorphism

AχψK0,m
�
⊕
i�1

Θχψ
i /Θχψ

i−1

of Oχψ-modules.

Taking m = 0 and ψ = 1 in Corollary 2.4, we obtain [10, Theorem 0.1], which is (1.3) in § 1.
Hence, Corollary 2.4 is a generalization of (1.2) and (1.3) in § 1.

Theorem 2.1 also says that [9, Conjecture 8.2] is true. In Theorem 2.1, the case i = 0 is
nothing but the main conjecture proved by Wiles, and the case i = 1 can be proved by the
same method as [9, Theorem 8.4] if we use the Euler system constructed in [10]. Hence, what
is essentially new is the case i � 2.

In the paper [9], we studied the initial Fitting ideal Fitt0,Zp[[Gal(K∞/k)]](XK∞) for a general
CM-field K. In this paper, concerning the higher Fitting ideals, we only consider the case
K = K0,m for some m.

3. Notation and preliminary lemmas

3.1.

For a finite prime l of k, we denote by κ(l) the residue field of l, and by N(l) the absolute norm
of l (so N(l) = #κ(l)). We define nl by nl = ordp(N(l) − 1). We fix a positive integer N > 0
in §§ 3–7.

Lemma 3.1. There are infinitely many primes l of degree 1 such that nl � N and that
there is a cyclic extension k(l)/k of degree pnl which is unramified outside l and which is
totally ramified at l.

We denote by S the set of all finite primes l of k that satisfy the conditions of Lemma 3.1.
If p divides the class number of k, then k(l) is not unique. But we take a k(l) satisfying the
above conditions for each prime l ∈ S, and fix it throughout this paper.

Correction: In [10, Lemma 4.3], it is stated that there exists a unique such extension, but
clearly we do not have the uniqueness if k has an unramified abelian extension of degree p.
The word ‘unique’ in the statement in [10, Lemma 4.3] should be deleted.

Proof of Lemma 3.1. Suppose that the p-primary component Ak of the ideal class group of
k is generated as an abelian group by the classes of prime ideals q1, . . . , qs. Suppose that the
order of the class [qj ] in Ak is paj . We take ξj ∈ k× such that qp

aj

j = (ξj) for each j. We denote
by U the subgroup of k× generated by the unit group Ek = O×k and ξ1, . . . , ξs.

We take n sufficiently large such that n � N and k(μpn) �= k(μpn+1). The Galois group
Gal(k(μp)/k) acts on Gal(k(μpn+1)/k(μpn)) trivially, and on Gal(k(μpn ,U1/pn)/k(μpn)) via
ω where ω : Gal(k(μp)/k) −→ Z×p is the Teichmüller character which gives the action on μp.
Hence, k(μpn+1)/k(μpn) and k(μpn ,U1/pn)/k(μpn) are linearly disjoint, and k(μpn ,U1/pn) �=
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k(μpn+1 ,U1/pn). We take a prime l of k of degree 1, which is prime to pq1 · . . . · qs, which splits
completely in k(μpn ,U1/pn), and which does not split completely in k(μpn+1 ,U1/pn). By the
Chebotarev density theorem, there are infinitely many such l. We will show that l satisfies the
conditions of Lemma 3.1.

First of all, since l splits in k(μpn) and does not split in k(μpn+1), it is clear that nl = n.
Let Hk be the p-Hilbert class field of k (hence Ak � Gal(Hk/k)), and k{l} be the maximal

p-extension of k in the ray class field mod l. We know by class field theory Gal(k{l}/Hk) �
(κ(l)×/(Ek mod l)) ⊗ Zp where (Ek mod l) is the image of Ek in κ(l)×. Since l splits completely
in k(E1/pn

k ) and n = nl, we have (Ek mod l) = {1}, and Gal(k{l}/Hk) � Z/pnl .
Furthermore, since l splits completely in k(U1/pn), by class field theory we can show that

the sequence

0 −→ Gal(k{l}/Hk) −→ Gal(k{l}/k) −→ Gal(Hk/k) −→ 0

splits as an exact sequence of abelian groups (see the proof of Kurihara [10, Lemma 4.3]). This
shows that k has a cyclic extension of degree pnl , which is unramified outside l and which is
totally ramified at l.

3.2.

Suppose that K/k is a finite and abelian extension, and K is a CM-field (hence K is totally
imaginary and there is an intermediate field K+ of K/k such that K+ is totally real, and
[K : K+] = 2). We write Gal(K/k) = Δ(K/k) × Γ(K/k) where the order of Δ(K/k) is prime
to p, and Γ(K/k) is a p-group.

Suppose that χ : Δ(K/k) −→ Q
×
p is a character of Δ(K/k) whose values are in an algebraic

closure of Qp. For a Zp[Gal(K/k)]-module M we define Mχ by

Mχ = M ⊗Zp[Δ(K/k)] Oχ,

where Oχ = Zp[Imageχ] is the Zp[Δ(K/k)]-module on which Δ(K/k) acts via χ. Since we can
also write Mχ = M ⊗Zp[Gal(K/k)] Oχ[Γ(K/k)], it is an Oχ[Γ(K/k)]-module. For any element
x ∈M we denote by xχ the image of x in Mχ (namely, xχ = x⊗ 1).

Since #Δ(K/k) is prime to p, the group algebra Zp[Δ(K/k)] is a direct sum of discrete
valuation rings, more precisely, Zp[Δ(K/k)] =

⊕
χOχ where χ runs through all Qp-conjugate

classes of characters of Δ(K/k) (we say that two Q
×
p -valued characters χ1 and χ2 of

Δ(K/k) are Qp-conjugate if σ ◦ χ1 = χ2 for some σ ∈ Gal(Qp/Qp)). Hence, Zp[Gal(K/k)] =⊕
χOχ[Γ(K/k)] and

M =
⊕
χ

Mχ

hold for any Zp[Gal(K/k)]-module M . Therefore, to study M , it suffices to study each Mχ.
Throughout this paper, we assume that χ is odd. Also, when K contains μp, we assume χ �= ω
where ω is the Teichmüller character.

For any number field F we denote by ClF the ideal class group of F , and by AF the
p-component ClF ⊗ Zp. For a field K as above, we are interested in the Zp[Gal(K/k)]-module
AK = ClK ⊗ Zp. We denote by K0 the subfield of K corresponding to Γ(K/k) by Galois theory,
hence Gal(K/K0) = Γ(K/k) and Gal(K0/k) = Δ(K/k). Without loss of generality, we may
assume that the conductor of χ is equal to the conductor of K0/k. In fact, let Δχ ⊂ Δ(K/k) be
the kernel of χ : Δ(K/k) = Gal(K0/k) −→ Q

×
p , and K0,χ be the subfield of K0 corresponding

to Δχ. We also regard Δχ as a subgroup of Gal(K/k) = Δ(K/k) × Γ(K/k), and denote by
Kχ the subfield of K corresponding to Δχ ⊂ Gal(K/k). Since [K : Kχ] = #Δχ is prime to
p, AKχ is isomorphic to the Δχ-coinvariant (AK)Δχ

by the usual norm argument. So AχKχ is
isomorphic to AχK = ((AK)Δχ

)χ. Hence, when we study AχK , we may regard χ as a character of
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Gal(K0,χ/k), and may assume K0 = K0,χ. So in the following, we assume that the conductor
of χ is equal to the conductor of K0/k.

3.3.

In this subsection, we define two important homomorphisms divl and φl. Let K be a field as
in § 3.2. We denote by DivK the divisor group of K written additively. So, an element of DivK
is of the form Σniρi where ni ∈ Z and ρi is a finite prime of K. Suppose that

div : K× −→ DivK

is the homomorphism that maps an element of K× to its principal divisor, namely, for x ∈ K×,
div(x) = Σ ordρ(x)ρ ∈ DivK where ordρ is the normalized additive valuation associated to the
prime ideal ρ.

Let S be the set of finite primes of k defined in § 3.1. For each l ∈ S we fix a prime lk of an
algebraic closure k above l throughout this paper. For any subfield F ⊂ k the prime of F below
lk is denoted by lF . So, when we consider finite extensions F1/k, F2/k such that F1 ⊂ F2, we
are always taking (and fixing) primes such that lF2 | lF1 .

Suppose K ⊂ k is as above. We define S(K) by

S(K) = {l ∈ S | l splits completely in K}.
Hence, lK is a prime of degree 1.

Assume that l is a prime in S(K). We consider a map K× −→⊕
ρ| l Z defined by x 	→

Σρ| l ordρ(x)ρ. Using the fixed prime lK of K above l, we regard
⊕

ρ| l Z as a free Z[Gal(K/k)]-
module of rank 1 generated by lK , and regard the above map as

divl : K× −→ Z[Gal(K/k)].

Taking (−⊗ Z/pN )χ, we obtain

divl : (K×/pN )χ −→ Oχ/p
N [Γ(K/k)],

which we also denote by the same notation divl.
We next define φl. We assume l ∈ S. Recall that in § 3.1 we took and fixed the field k(l)

such that k(l)/k is a cyclic extension of degree pnl which is unramified outside l and is totally
ramified at l. We define Gl by

Gl = Gal(k(l)/k).

Let l̃ = lk(l) be the unique prime of k(l) above l. Suppose that kl and k(l)̃l are the completions
of k and k(l) at the primes l and l̃, respectively. We consider the reciprocity map

φkl
: k×l −→ Gal(k(l)̃l/kl) = Gl

of local class field theory. Since the characteristic of the residue field κ(l) of kl is prime to p, kl

contains a primitive pnlth root of unity. We can write k(l)̃l = kl( pnl
√
πl) for some prime element

πl of kl. We identify Gl with the group μpnl of pnlth roots of unity by

Kum : Gl
�−→ μpnl , σ 	→ (σ − 1)( pnl

√
πl).

Note that (σ − 1)( pnl
√
πl) means, of course, σ( pnl

√
πl)/ pnl

√
πl, and that this map does not depend

on the choice of πl. We have

Kum ◦ φkl
(u) = u(1−N(l))/p

nl ∈ μpnl (3.1)

(Serre [19, Chapter XIV, Proposition 6 and Corollaire to Proposition 8]) for all units u ∈ Ukl
=

O×kl
where N(l) = #κ(l) is the absolute norm (κ(l) is the residue field of l), u = umod l ∈ κ(l)

and we regard here μpnl as a subgroup of κ(l)×. The extension k(l)̃l/kl is tamely ramified, and
the above map is known as the tame symbol. (Note that some authors are using the inverse of
our φkl

as the reciprocity map.)
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Lemma 3.2. Let φkl,(N) : k×l −→ Gl ⊗ Z/pN be φkl
mod pN . Suppose that β ∈ k(l)×

l̃
, σ ∈

Gal(k(l)̃l/kl) = Gl, and that

(σ − 1)β =
σ(β)
β

≡ u(1−N(l))/p
N

(mod l̃)

holds for some u ∈ Ukl
= O×kl

. Then we have

φkl,(N)(u) = σp
N ordl(β),

where we extended to k(l)̃l the normalized additive valuation ordl of kl.

Proof. Let

Kum(N) : Gl ⊗ Z/pN �−→ μpN

be the mod pN of the homomorphism Kum, namely σ 	→ (σ − 1)( pN
√
πl). Then, by (3.1),

we have

Kum(N) ◦ φkl,(N)(u) = u(1−N(l))/p
N

.

Since

u(1−N(l))/p
N ≡ σ(β)

β
≡
(
σ( pN

√
πl)

pN
√
πl

)pN ordl(β)

≡ σp
N ordl(β)( pN

√
πl)

pN
√
πl

,

we obtain φkl,(N)(u) = σp
N ordl(β).

By the definition of S and local class field theory, we know that k×l /p
N = k×l /(k

×
l )p

N

is
a direct sum of the kernels of ordl and φkl

. More precisely, we have the following lemma,
immediately.

Lemma 3.3. For any l ∈ S, k×l /p
N is a free Z/pN -module of rank 2. We define V1 and V2 to

be the kernel of the map ordl,(N) : k×l /p
N −→ Z/pN , which is the normalized additive valuation

mod pN and of the map φkl,(N) : k×l /p
N −→ Gl ⊗ Z/pN which is φkl

mod pN , respectively .
Then both V1 and V2 are free of rank 1 over Z/pN and

k×l /p
N = V1 ⊕ V2.

Furthermore, V2 is the image of (k(l)
(N)

l̃
)×

N
(N)
l−→ k×l −→ k×l /p

N where k(l)
(N)

l̃
is the intermedi-

ate field of degree pN of k(l)̃l/kl, and N
(N)
l is the norm map of k(l)

(N)

l̃
/kl.

Suppose that l is in S(K). Since l splits completely in K, the natural inclusion map k −→ K
induces an isomorphism kl −→ Kρ for any prime ρ of K above l, where Kρ is the completion
of K at ρ. We consider the reciprocity map K×ρ −→ Gl. We define φl by the composition

φl : K× −→
⊕
ρ| l

K×ρ −→
⊕
ρ| l

Gl =

⎛
⎝⊕

ρ| l
Z

⎞
⎠⊗Gl � Z[Gal(K/k)] ⊗Gl,

where the first map is the diagonal inclusion, the second map consists of the reciprocity maps
and the third isomorphism is defined by the identification of

⊕
ρ| l Z with Z[Gal(K/k)] using

lK . This map φl is a Z[Gal(K/k)]-linear homomorphism.
Again, taking (−⊗ Z/pN )χ, we obtain

φl : (K×/pN )χ −→ Oχ/p
N [Γ(K/k)] ⊗Gl,
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which we also denote by the same letter φl. When we fix a generator σl of Gl, we have a
non-canonical isomorphism Oχ/p

N [Γ(K/k)] ⊗Gl � Oχ/p
N [Γ(K/k)], and we define φl to be

the composition of φl with this isomorphism

φl : (K×/pN )χ −→ Oχ/p
N [Γ(K/k)].

Namely, φl(x) = φl(x) ⊗ σl for all x.
We put K(l) = Kk(l). We remark that if x ∈ (K×/pN )χ is a norm from K(l) (namely, x can

be written as x = NK(l)/K(y) for some y ∈ (K(l)×/pN )χ where NK(l)/K is the norm map), we
have φl(x) = 0 by local class field theory and the definition of φl.

3.4.

In this subsection, we define the Stickelberger element for an abelian extension. Let K/k be
a finite and abelian extension. For a non-zero ideal a of OK , we denote by (a,K/k) the Artin
symbol. We define the partial zeta function for σ ∈ Gal(K/k) by

ζ(s, σ) =
∑

(a,K/k)=σ

N(a)−s,

for Re(s) > 1 where N(a) is the absolute norm and a runs through all non-zero integral
ideals that are prime to the ramified primes in K/k. The equivariant zeta function θK/k(s)
is defined by

θK/k(s) =
∑

σ∈Gal(K/k)

ζ(s, σ)σ−1.

Suppose that L/k is a finite and abelian extension such that K ⊂ L. The natural restriction
map Gal(L/k) −→ Gal(K/k) induces

cL/K : C[Gal(L/k)] −→ C[Gal(K/k)].

Using the fact that θK/k(s) and θL/k(s) have the Euler products (Tate [21, Proposition 1.6]),
we can show that

cL/K(θL/k(s)) =

⎛
⎝ ∏

l∈RL/K
(1 −N(l)−sϕ−1

l )

⎞
⎠ θK/k(s),

where RL/K is the set of finite primes of k which are ramified in L and which are unramified
in K, and ϕl is the Frobenius of l in Gal(K/k) (cf. Tate [21, p. 86]).

The partial zeta functions have meromorphic continuation for the whole complex plane, and
we know by Klingen and Siegel that θK/k(0) is in Q[Gal(K/k)] (see [20]). We simply write θK
for θK/k(0). By the above formula, we have

cL/K(θL) =

⎛
⎝ ∏

l∈RL/K
(1 − ϕ−1

l )

⎞
⎠ θK .

Let K be as in § 3.2. We consider the χ-component Zp[Gal(K/k)]χ = Oχ[Γ(K/k)] of
the group ring. As in § 3.1, we assume χ �= ω. Consider the natural map Q[Gal(K/k)] =
Q[Δ(K/k) × Γ(K/k)] −→ Qp(Imageχ)[Γ(K/k)] defined by Σaσ,τ (σ, τ) 	→ Σaσ,τχ(σ)τ . We
define θχK ∈ Qp(Imageχ)[Γ(K/k)] to be the image of θK by this map (see § 3.2 for the general
definition of the element xχ for general x). Since we are assuming χ �= ω, we have

θχK ∈ Oχ[Γ(K/k)]

by Deligne and Ribet [2]. We note that this element θχK is numerically computable in principle.
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Suppose that L/k is finite and abelian such that K ⊂ L and L/K is a p-extension. In the
notation of § 3.2, we have Δ(K/k) = Δ(L/k), and we can define θχL ∈ Oχ[Γ(L/k)]. By the above
equation, we have the following lemma, which will be used many times.

Lemma 3.4. Let cL/K : Oχ[Γ(L/k)] −→ Oχ[Γ(K/k)] be the restriction map. Then we have

cL/K(θχL) =

⎛
⎝ ∏

l∈RL/K
(1 − ϕ−1

l )χ

⎞
⎠ θχK .

4. Euler systems of Gauss sum type

In this section, we review the Euler system of Gauss sum type in [10], and prove some
fundamental properties.

4.1.

From now on, we always assume the following. We consider a number field K as in § 3.2, namely,
K is a CM-field such thatK/k is finite and abelian. We use the same notation Δ(K/k), Γ(K/k),
K0 (recall that K0 is the field such that Gal(K/K0) = Γ(K/k)), and consider an odd character
χ of Δ(K/k). As in § 3.2, we assume χ �= ω, and the conductor of χ is equal to that of K0.
We also assume that χ(p) �= 1 for all primes p of k above p, and that the μχ-invariant of K
is zero. The second assumption means the following. For the cyclotomic Zp-extension K∞/K,
we define XK∞ by XK∞ = lim← AKn where Kn is the intermediate field of degree pn, and the
limit is taken with respect to the norm maps. The assumption that the μχ-invariant of K
vanishes means μ(Xχ

K∞) = 0; namely the χ-component Xχ
K∞ is a finitely generated Oχ-module

(this is always true by a famous theorem of Ferrero and Washington if k = Q (see [3])). We
consider such general K in §§ 4–8 (we do not assume K ⊂ K0,∞). Furthermore, in §§ 4–7 we
also assume that

(*) all primes of k above p are ramified in K, and all primes of K above p are
totally ramified in K∞.

4.2.

We next review the result in [10, § 4]. We consider abelian p-extensions L/K, more precisely, put

F = {L | K ⊂ L,L/k is finite and abelian, and L/K is a p-extension},
and consider L ∈ F . Note that Gal(L/k) = Δ(L/k) × Γ(L/k), Γ(L/k) = Gal(L/K0) and
Δ(L/k) = Δ(K/k) = Gal(K0/k) (recall that K0 is the field such that K/K0 is a p-extension
and [K0 : K] is prime to p). Note that L is a CM-field because K is a CM-field, L/K is a
p-extension (p �= 2) and L/k is an abelian extension.

We regard χ as a character of Δ(L/k), and consider the χ-components (L× ⊗ Zp)χ,
(DivL⊗Zp)χ and so on. Let AχL be the χ-component of the p-component of the ideal class group
of L. We denote by O×L and DivL the unit group of L and the divisor group of L, respectively.
As in § 3.3, we define div : L× −→ DivL to be the homomorphism that maps an element of
L× to its principal divisor. Then we have an exact sequence 0 −→ O×L ⊗ Zp −→ L× ⊗ Zp

div−→
DivL⊗Zp −→ AL −→ 0. Taking the χ-component, we obtain the following lemma.

Lemma 4.1. For L ∈ F ,
0 −→ (L× ⊗ Zp)χ

div−→ (DivL⊗Zp)χ −→ AχL −→ 0

is exact.
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Proof. This follows from (O×L ⊗ Zp)χ = 0, which can be easily checked by our assumption
that χ is odd and χ �= ω.

We use the same notation as in § 3.3 for L. Recall that S(L) is the subset of finite primes of
k defined by

S(L) = {l ∈ S | l splits completely in L},
and we consistently fixed a prime lL of L above l for each l ∈ S(L).

By Kurihara [10, Corollary 2.4] (note that the μ-invariant of L vanishes because of our
assumption of the vanishing of the μ-invariant of K and the fact that L/K is a p-extension
(Iwasawa [6, Theorem 2])), we have

θχLA
χ
L = 0.

For l ∈ S(L) the class of lL in AχL is denoted by [lL]χ. Then θχL[lL]χ = 0 holds. By the exact
sequence in Lemma 4.1, there is a unique element gLl in (L× ⊗ Zp)χ such that

div(gLl ) = θχL l
χ
L (4.1)

(note that l
χ
L is the image of lL in (DivL⊗Zp)χ).

Suppose that M is a subfield such that K0 ⊂M ⊂ L (where K0 is the subfield such that
Gal(K0/k) = Δ(K/k) as in § 3.2). Recall that we are taking lM such that lL | lM , so we can
define gMl similarly. Using Lemma 3.4, if l ∈ S(L), namely, if l ∈ S splits completely in L, then
we have (see [10, Lemma 4.1])

NL/M (gLl ) =

⎛
⎝ ∏
ρ∈RL/M

(1 − ϕ−1
ρ )χ

⎞
⎠ (gMl ), (4.2)

where NL/M is the norm map and RL/M is defined similarly for L/M as in § 3.4. Note that if
l does not split completely in L, then (4.2) does not hold (the residue degree appears in the
formula; cf. [10, Lemma 4.1]). Thus, for l ∈ S(L), for any intermediate field M of L/K0, we
obtain an Euler system (gMl ). But this is a ‘finite’ Euler system in the terminology of Mazur
and Rubin [12] because it is defined only on the finite set {M | K0 ⊂M ⊂ L}. For more details
on this Euler system, see [10, § 4].

4.3.

In this subsection, we recall the usual argument of Euler systems to construct the Kolyvagin
derivative κn,l. Recall at first that in § 3.1, for each r ∈ S, we took and fixed a field k(r) such
that k(r)/k is a cyclic extension of degree pnr , which is unramified outside r and is totally
ramified at r. We define Gr by Gr = Gal(k(r)/k). As in the usual argument of Euler systems,
taking a generator σr of Gr, we put

Nr =
pnr−1∑
i=0

σir ∈ Z[Gr] and Dr =
pnr−1∑
i=0

iσir ∈ Z[Gr].

A fundamental equation is Dr(σr − 1) = pnr −Nr.
We define N and N (K) to be the sets consisting of all square-free products of primes in S

and S(K), respectively (we denote by 1 the ideal (1) = Ok and suppose that 1 is both in N
and N (K)). For any n ∈ N with n = r1 · . . . · rm, define k(n) to be the compositum of the fields
k(r1), . . . , k(rm), and Gn = Gr1 × . . .×Grm which is isomorphic to Gal(k(n)/k).

For n ∈ N (K) we write K(n) = Kk(n). Clearly, we have Gal(K(n)/K) = Gal(k(n)/k) = Gn.
Note that K(n) ∈ F where F is the set defined in § 4.2. We put Nn = Πr|nNr and Dn = Πr|nDr,
which are elements of Z[Gn].

We use the standard argument of Euler systems [ 15, § 2; 22, § 15.3]. For l ∈ S(K(n)),
Dng

K(n)
l mod pN is in the Gn-invariant part of (K(n)× ⊗ Z/pN )χ. We define κn,l ∈ (K× ⊗
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Z/pN )χ to be the unique element whose image in (K(n)× ⊗ Z/pN )χ isDng
K(n)
l . The uniqueness

comes from the bijectivity of the natural map

(K× ⊗ Z/pN )χ −→ ((K(n)× ⊗ Z/pN )χ)Gn ,

which follows from our assumption χ �= ω. Note that κ1,l = gKl for n = 1.
We next consider Stickelberger elements. Suppose that n ∈ N (K). In § 3.4, we defined

θχK ∈ Oχ[Γ(K/k)]. We define θχK(n) ∈ Oχ[Γ(K(n)/k)] by the same method. Since Γ(K(n)/k) =
Γ(K/k) ×Gn, we have Oχ[Γ(K(n)/k)] = Oχ[Γ(K/k)][Gn]. The multiplication by Nn gives an
injective homomorphism

Nn : Oχ/pN [Γ(K/k)] −→ Oχ/p
N [Γ(K/k)][Gn]

of Gal(K(n)/k)-modules, whose image is the Gn-invariant part. Since Dnθ
χ
K(n) mod pN is in

the Gn-invariant part of Oχ/pN [Γ(K(n)/k)] (which follows from the standard argument of
the Euler system as above), it is in the image of Nn. Hence, there is a unique element δn in
Oχ/p

N [Γ(K/k)] such that Nnδn = Dnθ
χ
K(n) mod pN . Note that δ1 = θχK for n = 1.

Suppose n = r1 · . . . · rm. We know

θχK(n) ≡ (−1)mδn(σr1 − 1) · . . . · (σrm − 1)

(mod pN , (σr1 − 1)2, . . . , (σrm − 1)2) (4.3)

by Kurihara [10, Lemma 4.4].
Suppose again that n = r1 · . . . · rm ∈ N (K) and l ∈ S(K(n)). We defined κn,l ∈ (K×/pN )χ

above, but this does depend on the choice of a generator σr of Gr for each r | n. Put

Gn = Gr1 ⊗ . . .⊗Grm .

Following Mazur and Rubin [12], we consider elements in (K×/pN )χ ⊗ Gn, and define

κ̃n,l = κn,l ⊗ σr1 ⊗ . . .⊗ σrm ∈ (K×/pN )χ ⊗ Gn,

which does not depend on the choice of σri . In the same way, we define

δ̃n = δn ⊗ σr1 ⊗ . . .⊗ σrm ∈ (Oχ/pN [Γ(K/k)]) ⊗ Gn,

which is also independent of the choice of σri .

4.4.

We next prove a famous relation called congruence relation of Euler systems (cf. Rubin [17,
Corollary 4.8.1]). We are dealing with a ‘finite’ Euler system, and cannot apply the usual
argument directly, so we will give here a proof. A special case was proved and used in [10], but
here we give a general version and its proof.

Proposition 4.2 (Congruence relation). Suppose r ∈ S is unramified inK and l ∈ S(K(r))
where K(r) = Kk(r). (Note that we do not assume r ∈ S(K).) Then, for any prime ρr of K(r)
above r, we have

(gKl )(1−N(r)−1)/pnr ≡ g
K(r)
l (mod ρr),

where N(r) is the absolute norm #κ(r) of r.

Proof. Let κ(ρr) be the residue field of ρr, and put n′ = ordp(#κ(ρr)×). Obviously, n′ � nr

and n′ does not depend on the choice of ρr and only on K because K/k is a Galois extension.
Put L = K(r). By the Chebotarev density theorem, we can take a prime l′ ∈ S(L(μpn′+nr )) such
that the class [l′L]χ and the class [lL]χ coincide in AχL. In fact, we take n � n′ + nr sufficiently



REFINED IWASAWA THEORY Page 13 of 42

large such that L(μpn) �= L(μpn+1). Let HL be the maximal subfield of the Hilbert p-class
field of L such that Δ(L/k) acts on Gal(HL/L) via χ (namely, HL is the subfield such that
AχL � Gal(HL/L) is bijective). We also consider U in the proof of Lemma 3.1. Using the action
of Δ(L(μp)/k), we know L(μpn+1 ,U1/pn) ∩HL = L and L(μpn ,U1/pn) ∩ L(μpn+1) = L(μpn).
Hence, we can take l′ ∈ S(L(μpn)) satisfying the above property.

We put L′ = L(μpn′+nr ) andK ′ = K(μpn′+nr ). We write R(L′) for (
⊕

v|r κ(v)
× ⊗ Zp)χ where

κ(v) is the residue field of a prime v of L′ above r, and denote by

rL′ : ({x ∈ L′× | (x) is prime to r} ⊗ Zp)χ −→ R(L′),

the natural homomorphism. We define R(K ′) and rK′ similarly. Consider the images of gK
′

l′

and gL
′

l′ in R(L′). Note that the natural map gives an isomorphism R(K ′) �−→ R(L′) because
all primes of K ′ above r are totally ramified in L′. We identify R(L′) with R(K ′) by this
isomorphism. Then it follows from [L′ : K ′] = pnr that the norm map induces the pnrth power
map on R(L′). On the other hand, by the norm property of the Euler system (see (4.2) in § 4.2)
we have NL′/K′(gL

′
l′ ) = (gK

′
l′ )(1−ϕ

−1
r )χ . Hence, on R(L′) we get rL′(gL

′
l′ )p

nr = rK′(gK
′

l′ )1−N(r)−1
.

For each prime v of L′ above r, κ(v) contains a primitive pn
′+nτ th root of unity, so we have

ordp(#κ(v)×) � n′ + nr. Therefore, the above equality implies

rL′(gL
′

l′ ) ≡ rK′(gK
′

l′ )(1−N(r)−1)/pnr
(mod pn

′
)

(the congruence means the equality in R(L′)/pn
′
). Since both L′/L and K ′/K are unramified

outside p and all primes above p of k are ramified in L and K by the assumption (*) in § 4.1,
we have

NL′/L(gL
′

l′ ) = gLl′ and NK′/K(gK
′

l′ ) = gKl′

by the norm property (4.2) in § 4.2. Taking the norm NL′/L of both sides of the above
congruence, we get

rL(gLl′ ) ≡ rK(gKl′ )(1−N(r)−1)/pnr
(mod pn

′
). (4.4)

Since R(L) is a free Oχ/pn
′
-module, the above congruence is the equality in R(L). This shows

that Proposition 4.2 is true for l′.
By our assumption on l′, we can take an element a ∈ (L× ⊗ Zp)χ such that div(a) =

(l′L− lL)χ. Then we have div gLl′ /a
θχL = div gLl , which implies, by Lemma 4.1, that gLl′ /a

θχL = gLl
in (L× ⊗ Zp)χ. In the same way, putting b = NL/K(a), we have div gKl′ /b

θχK = div gKl , which
implies gKl′ /b

θχK = gKl in (K× ⊗ Zp)χ by Lemma 4.1. Since Gr acts on R(L) trivially, by
Lemma 3.4 we have

rL(aθ
χ
L) = rL(a)(1−ϕ

−1
r )χθχK = rL(a)θ

χ
K(1−N(r)−1) = rL(ap

nr
)θ
χ
K(1−N(r)−1)/pnr

= rK(NL/K(a))θ
χ
K(1−N(r)−1)/pnr

= rK(bθ
χ
K )(1−N(r)−1)/pnr

. (4.5)

Combining (4.4) and (4.5), we get

rL(gLl ) = rL

(
gLl′

aθ
χ
L

)
= rK

(
gKl′

bθ
χ
K

)(1−N(r)−1)/pnr

= rK(gKl )(1−N(r)−1)/pnr
.

This completes the proof of Proposition 4.2.

We consider a homomorphism

div : (K×/pN )χ ⊗ Gn −→ (DivK /pN )χ ⊗ Gn

induced by the homomorphism div, and denote it also by the same notation div. For r ∈ S(K)
we also use

divr : (K×/pN )χ ⊗ Gn −→ (Oχ/pN [Γ(K/k)]) ⊗ Gn,
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which is obtained from divr : (K×/pN )χ −→ Oχ[Γ(K/k)]/pN defined in § 3.3. There, we also
defined

φr : (K×/pN )χ −→ Oχ/p
N [Γ(K/k)] ⊗ Gr,

for r ∈ S(K) though we used l instead of r in § 3.3. If r divides n, then the above homomorphism
induces

φr : (K×/pN )χ ⊗ Gn/r −→ Oχ/p
N [Γ(K/k)] ⊗ Gn,

which we also denote by φr.

Proposition 4.3. Suppose that l ∈ S(K(n)).
(0) If ρ is a prime of K that does not divide n l, then it is not in the support of div(κ̃n,l).
(1) For any prime r dividing n, we have divr(κ̃n,l) = φr(κ̃n/r,l).
(2) We have divl(κ̃n,l) = δ̃n.

Proof. The property (0) follows from the fact that ρ is unramified in K(n), and gK(n)
l is a

unit outside l. The property (2) is immediate from the definitions of κ̃n,l and δ̃n. The property
(1) is a standard property of Euler systems (cf. Rubin [17, Theorem 4.5.4]) and can be proved
by the usual argument (see Rubin [15, Proposition 2.4]). We shall give here a proof to clarify
where we use Proposition 4.2 and Lemma 3.2.

We take a lifting κ∧n,l ∈ (K× ⊗ Zp)χ of κn,l ∈ (K×/pN )χ. By definition we can write
κ∧n,l = Dng

K(n)
l /βp

N

for some β ∈ (K(n)× ⊗ Zp)χ. In the same way we write κ∧n/r,l =

Dn/rg
K(n/r)
l /(β′)p

N

for some β′ ∈ (K(n/r)× ⊗ Zp)χ. Since κ∧n,l, κ
∧
n/r,l

are elements of (K× ⊗
Zp)χ, we compute

(σr − 1)β = ((σr − 1)Dng
K(n)
l )1/p

N

= ((pnr −Nr)Dn/rg
K(n)
l )1/p

N

= (Dn/rg
K(n)
l )p

nr−N
/((1 − ϕ−1

r )Dn/rg
K(n/r)
l )1/p

N

= (Dn/rg
K(n)
l )p

nr−N
/(1 − ϕ−1

r )β′.

We apply Proposition 4.2 to K(n/r) to get gK(n)
l ≡ (gK(n/r)

l )(1−N(r)−1)/pnr (mod ρr) for any
prime ρr of K(n) above r. Therefore, we have

(σr − 1)β ≡ (Dn/rg
K(n/r)
l )(1−N(r)−1)/pN /(β′)1−N(r)−1

(mod ρr)

= (Dn/rg
K(n/r)
l /(β′)p

N

)(1−N(r)−1)/pN = (κ∧n/r,l)
(1−N(r)−1)/pN

≡ (κ∧n/r,l)
(N(r)−1)/pN (mod rK).

Here, we used the fact that ϕr is the N(r)th power map on the residue field of ρr to get the
first congruence, and that the N(r)th power map is the identity map on the residue field of rK
to get the last congruence.

By Lemma 3.2 we have φr(κ∧n/r,l) = φr(κn/r,l) = σ
−pN divr(β)
r . Therefore, we get

φr(κn/r,l) = σ
−pN divr(β)
r = −divr(βp

N

) ⊗ σr = divr(κ∧n,l) ⊗ σr = divr(κn,l) ⊗ σr,

which implies φr(κ̃n/r,l) = divr(κ̃n,l).

Remark 4.4. In § 5, we will give a more general definition of κ̃n,l, for which we will prove
the same properties in Proposition 5.2.
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5. Kolyvagin systems of Gauss sum type I

5.1.

In the argument to define κn,l in the previous section, the assumption l ∈ S(K(n)) is needed

because we need the norm property (4.2) in § 4.2 for L = K(n), M = K to define gK(n)
l , and

(4.2) holds only when l splits in L = K(n) as we explained after (4.2). But the theory of
Kolyvagin systems by Mazur and Rubin [12] suggests that there would exist κn,l for more
general l. They studied their theory mainly over principal ideal domains in [12], so we cannot
apply it directly to our case. We shall construct in this section the elements κn,l explicitly
under some (mild) assumptions on l.

We shall explain a little more what we need. When we define κn,l, l has to be chosen from
S(K(n)), and hence taken after we have taken n. But we need later elements κn,l where we
take n after we have taken l (see § 10.2 where we define xn,l, taking n after we have taken l).
We sometimes need both κl1,l2 and κl2,l1 (see Remark 10.6); namely, we need κn,l for more
general (n, l). In the following, we define a certain subset N[ε(n)](K) of N (K), and define
κn,l ∈ (K×/pN )χ for all (n, l) such that n l ∈ N[ε(n)](K), though it seems that κn,l could be
defined for more general (n, l) (cf. Remark 5.4 and § 6.3).

Suppose that c is the exponent of AχK , namely, the smallest integer such that pcAχK = 0. The
following lemma is easy to prove, but is useful in § 5.2.

Lemma 5.1. Let g, g′ be elements in (K×/pN+c)χ. Suppose div(g) ≡ div(g′) (mod pN+c).
Then we have gmod pN = g′mod pN in (K×/pN )χ.

Proof. Consider the exact sequence

0 −→ AχK [pN+c] −→ (K×/pN+c)χ −→ (DivK /pN+c)χ −→ AχK/p
N+c −→ 0.

Since (K× ⊗ Zp)χ is p-torsion free, (K×/pN+c)χ is a free Oχ/pN+c-module. Hence, the image of
AχK [pN+c] = AχK in (K×/pN+c)χ is in pN (K×/pN+c)χ. This shows that gmod pN = g′mod pN .

5.2.

For any integer m � N we define Sm(K) = {l ∈ S(K)|nl � m}. For any integer n > 0 we put

S[n](K) = SN+nc(K),

and define N[n](K) to be the set consisting of all square-free products of primes in S[n](K).
For n ∈ N we define ε(n) to be the number of primes which divide n (namely, ε(n) = m for

n = r1 · . . . · rm in § 4.3), and consider N[ε(n)](K). For n = 1 we define ε(1) = 0.
Suppose that n l ∈ N[ε(n)](K), and r is a prime factor of n. Replacing N by N + ε(n)c, we

can define φr : (K×/pN+ε(n)c)χ −→ Oχ/p
N+ε(n)c[Γ(K/k)] ⊗Gr. By the same method as in the

proof of Proposition 4.2, using the Chebotarev density theorem, we can take l′ ∈ S[ε(n)](K(n))
such that the classes [l′K ]χ and [lK ]χ in AχK coincide. By the exact sequence in Lemma 4.1, there
is a unique element b ∈ (K× ⊗ Zp)χ such that div(b) = (l′K − lK)χ. Replacing N by N + ε(n)c,
we define δ̃(N+ε(n)c)

n ∈ Oχ/p
N+ε(n)c[Γ(K/k)] ⊗Gn, and κ̃

(N+ε(n)c)
n,l′ ∈ (K×/pN+ε(n)c)χ ⊗ Gn by

the usual Euler system argument in § 4.3. Using induction on ε(n), we define

κ̃′n,l = κ̃
(N+ε(n)c)
n,l′ − δ̃

(N+ε(n)c)
n b−

∑
r | n

(κ̃′n/r,r ⊗ φr(b)) ∈ (K×/pN+ε(n)c)χ ⊗ Gn.
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Here, we wrote the group law of (K×/pN+ε(n)c)χ ⊗ Gn additively though K× is a multiplicative
group. The element δ̃(N+ε(n)c)

n b means αb⊗ τ ∈ (K×/pN+ε(n)c)χ ⊗ Gn if δ̃(N+ε(n)c)
n = α⊗ τ ∈

Oχ/p
N+ε(n)c[Γ(K/k)] ⊗ Gn. The sum is taken over all primes dividing n. Note that κ̃′n/r,r

is defined by induction because of ε(n/r) < ε(n). We regard κ̃′n/r,r ⊗ φr(b) as an element of
(K×/pN+ε(n)c)χ ⊗ Gn by the identification

((K×/pN+ε(n)c)χ ⊗ Gn/r) ⊗Oχ/pN+ε(n)c[Γ(K/k)] (Oχ/pN+ε(n)c[Γ(K/k)] ⊗ Gr)

= (K×/pN+ε(n)c)χ ⊗ Gn.

We put
κ̃n,l = κ̃′n,l mod pN ∈ (K×/pN )χ ⊗ Gn.

Proposition 5.2. The element κ̃n,l defined above is well-defined, namely independent of
the choice of l′ (hence independent of the choice of b). This element satisfies the following
properties.

(0) If ρ is a prime of K that does not divide n l, then it is not in the support of div(κ̃n,l).
(1) For any prime r dividing n, we have divr(κ̃n,l) = φr(κ̃n/r,l).
(2) We have divl(κ̃n,l) = δ̃n.

Remark 5.3. In the above proposition, if we further assume that l is in S(K(n)), then
we can take l′ = l and b = 1. Hence, we have φr(b) = 0, and κ̃n,l defined above coincides with
κ̃n,l defined in § 4.3. Therefore, our notation is consistent.

Proof. We prove this proposition by induction on ε(n). We first show that the following
conditions are satisfied.

(0)′ If ρ is a prime which does not divide n l, then it is not in the support of
div(κ̃′n,l)mod pN+c.

(1)′ For any prime r dividing n, we have divr(κ̃′n,l) ≡ φr(κ̃′n/r,l) (mod pN+c).

(2)′ We have divl(κ̃′n,l) ≡ δ̃
(N+ε(n)c)
n (mod pN+c).

By induction on ε(n), N + ε(n)c = N + c+ ε(n/r)c implies that κ̃′n/r,r mod pN+c is well-
defined, that is, it does not depend on the choice of the auxiliary prime for r. Using (0)′,
(1)′, (2)′ for κ̃′n/r,r, we have

div(κ̃′n/r,r) ≡
∑

r′ |n/r
φr′(κ̃

′(N+c)
n/r r′,r) r′K +δ̃(N+ε(n)c)

n/r
rK (mod pN+c).

Therefore, by Proposition 4.3(0), if a prime ρ is prime to n l l′, then ρ is not in the support of
div(κ̃′n,l)mod pN+c. Concerning l′, if l′ �= l, by Proposition 4.3(2) we have

divl′(κ̃
′
n,l) ≡ δ̃

(N+ε(n)c)
n − δ̃

(N+ε(n)c)
n ≡ 0 (mod pN+c).

Hence, we obtain the property (0)′.
For r such that r | n, we can compute

divr(κ̃′n,l) ≡ φr(κ̃
(N+ε(n)c)
n/r,l′ ) − δ̃

(N+ε(n)c)
n/r ⊗ φr(b) −

∑
r′ |n/r

φr(κ̃′n/r r′,r′) ⊗ φr′(b)

≡ φr(κ̃′n/r,l) (mod pN+c),

by Proposition 4.3(1), (2) and the definition of κ̃′n,l, κ̃
′
n/r,l

. Thus, we get the property (1)′.
Concerning the property (2)′, we just note that l is prime to n, and get

divl(κ̃
′
n,l) ≡ −(−δ̃(N+ε(n)c)

n ) ≡ δ̃
(N+ε(n)c)
n (mod pN+c)



REFINED IWASAWA THEORY Page 17 of 42

if l′ �= l. If l′ = l, then we get divl(κ̃′n,l) = δ̃
(N+ε(n)c)
n by Proposition 4.3(2).

The properties (0)′, (1)′, (2)′ imply that div(κ̃′n,l)mod pN+c is independent of the choice of l′.
Hence, by Lemma 5.1, κ̃n,l = κ̃′n,l mod pN is independent of the choice of l′. This completes the
proof of Proposition 5.2.

Remark 5.4. We give another definition of N[ε(n)](K). Let K∞/K be the cyclotomic Zp-
extension, and Km the mth layer. Since we assumed μ(Xχ

K∞) = 0, the map AχKm [pN ] −→
AχK [pN ] induced by the norm map becomes the zero map if m is sufficiently large. We take the
minimal m satisfying the above property, and put K[1] = Km. We define inductively K[n] by
K[n] = (K[n−1])[1] where we applied the above definition to K[n−1] instead of K. For n > 0 we
put

S[n](K) = S(K[n]),

and define N[n](K) to be the set consisting of all square-free products of primes in S[n](K).
We consider N[ε(n)](K).

We assume n �= 1 and n l ∈ N[ε(n)](K). By the Chebotarev density theorem, we can
take l′ ∈ S(K[ε(n)](n)) such that l′K[ε(n)]

and lK[ε(n)] yield the same class in AχK[ε(n)]
. By

Lemma 4.1, for K[ε(n)] there is a unique element b[ε(n)] ∈ (K×[ε(n)] ⊗ Zp)χ such that div(b[ε(n)]) =
(l′K[ε(n)]

− lK[ε(n)])
χ. Put b = NK[ε(n)]/K[1]

(b[ε(n)]). Again, using induction on ε(n), we define

(κ̃K[1]
n,l )′ = κ̃

K[1]
n,l′ − δ̃

K[1]
n b−

∑
r | n

((κ̃K[1]

n/r,r)
′ ⊗ φ

K[1]
r (b)) ∈ (K×[1]/p

N )χ ⊗ Gn,

and κ̃n,l = NK[1]/K((κ̃K[1]
n,l )′) ∈ (K×/pN )χ ⊗ Gn. Then we can prove that this element κ̃n,l does

not depend on the choice of l′ and satisfies the properties in Proposition 5.2. This definition
looks similar to the first definition, but this method is useful when we study more general
Galois representations (see [11]).

5.3.

The following lemma is useful when we choose l′ in the definition of κ̃n,l in the previous
subsection.

Lemma 5.5. Assume n = r1 · . . . · rm ∈ N (K) and that l ∈ S(K) is prime to n. Suppose
that for each i = 1, . . . ,m, σi ∈ Oχ/p

N [Γ(K/k)] ⊗Gri is given. Then there are infinitely many

l′ ∈ S(K(n)) which satisfy the following properties.

(i) The class [l′K ]χ in AχK coincides with the class [lK ]χ.
(ii) For the element z ∈ (K× ⊗ Zp)χ such that div(z) = (l′K − lK)χ, φri(z) = σi holds for

each i = 1, . . . ,m.

Proof. Let K{n} be the maximal abelian p-extension of K which is unramified outside n.
For a prime v of K, we define UKv = O×Kv and U1

Kv
= 1 +mvOKv as usual where mv is the

maximal ideal of OKv . The residue field of v is denoted by κ(v). By class field theory, we have
an isomorphism ∏

v|nK
×
v /U

1
Kv

×⊕v�nK
×
v /UKv

the image of K×
⊗ Zp

�−→ Gal(K{n}/K),
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which yields an exact sequence

0 −→
⎛
⎝⊕

v|n
κ(v)× ⊗ Zp

⎞
⎠
χ

−→ Gal(K{n}/K)χ −→ AχK −→ 0,

where the injectivity of the second arrow follows from (O×K ⊗ Zp)χ = 0. We denote by K{n}χ
the intermediate field of K{n}/K such that Gal(K{n}χ/K) = Gal(K{n}/K)χ.

By a method similar to what we did when we defined φl in § 3.3, we identify (
⊕

v|n κ(v)
× ⊗

Zp)χ with Oχ[Γ(K/k)] ⊗Gr1 ⊕ . . .⊕Oχ[Γ(K/k)] ⊗Grm . We take σχ ∈ (
⊕

v|n κ(v)
× ⊗ Zp)χ

such that σχ mod pN is (σ1, . . . , σm), and regard σχ as an element of Gal(K{n}χ/K).
Let (lK ,K{n}χ/K) ∈ Gal(K{n}χ/K) be the Artin symbol (the Frobenius of lK). Note
that Δ(K/k) acts trivially on Gal(K(n)/K), so K{n}χ ∩K(n) = K. Put L = K{n}χK(n),
which is a subfield of K{n}. We take τ ∈ Gal(L/K) whose image in Gal(K{n}χ/K) is
σ−1
χ (lK ,K{n}χ/K) and whose image in Gal(K(n)/K) is the identity map.
Let U be as in the proof of Lemma 3.1. Considering the action of Gal(K0(μp)/k), we have

K(μpn+1 ,U1/pn) ∩ L = K. Hence, by the Chebotarev density theorem there exist infinitely
many l′ ∈ S(K) such that (l′K , L/K) = τ in Gal(L/K) where (l′K , L/K) is the Frobenius of l′K
in Gal(L/K).

Since the image of (l′K , L/K) in Gal(K(n)/K) is the identity, l′ is in S(K(n)). Let Πl′ be the
idele whose l′K-component is a prime element of l′K and whose other components are trivial.
Let Πl,σχ denote the idele whose (Πv|nK×v ⊗ Zp)χ-component is σ̃−1

χ ∈ (Πv|nK×v ⊗ Zp)χ which
is a lifting of σ−1

χ ∈ (Πv|nUKv/U
1
Kv

⊗ Zp)χ, and whose lK-component is a prime element of lK
and whose other components are trivial. By definition, Πl′ and Πl,σχ have the same class in(∏

v|nK
×
v /U

1
Kv

×⊕v�nK
×
v /UKv

the image of K×
⊗ Zp

)χ
= Gal(K{n}χ/K).

Hence, there is an element z ∈ (K× ⊗ Zp)χ such that Πl′ = zΠl,σχ in ((
∏
v|nK

×
v /U

1
Kv

×⊕
v�nK

×
v /UKv ) ⊗ Zp)χ. Therefore, the class [l′K ]χ in AχK coincides with the class [lK ]χ, and

div(z) = (l′K − lK)χ. Furthermore, φri(z) = σi for all i = 1, . . . ,m.

Remark 5.6. In the definition of κ̃′n,l in § 5.2, using Lemma 5.5, we can take l′ ∈ S(K(n))
and b ∈ (K× ⊗ Zp)χ such that div(b) = (l′K − lK)χ and φKr (b) = 0 in Oχ/p

N+ε(n)c[Γ(K/k)] ⊗
Gn for all r dividing n. Then we have κ̃′n,l = κ̃

(N+ε(n)c)
n,l′ − δ̃

(N+ε(n)c)
n b, which implies that

κ̃n,l = κ̃
(N+ε(n)c)
n,l′ − δ̃

(N+ε(n)c)
n b mod pN .

This fact will be used later.

6. Kolyvagin systems of Gauss sum type II

In this section, we study φr(κ̃n,l) for r dividing n l. We use the same notation K, χ, gχl , κ̃n,l

and so on as in the previous section.

6.1.

Suppose that l ∈ S(K). We consider the homomorphism

φl : (K×/pN )χ −→ Oχ/p
N [Γ(K/k)] ⊗Gl

defined in § 3.3.
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Proposition 6.1. We have φl(gKl ) = −δl ⊗ σl = −δ̃l.

When k = Q, this proposition and the next corollary correspond to Rubin [16, Theorem 2.4]
where it was proved by using the explicit form of Gauss sums. We do not know the explicit
form of our gKl , so we prove this proposition by a completely different method which can be
applied to general k. This proposition can be formulated in a simple form as above, because
the homomorphism φl is defined not only on the l-units but defined on the whole K× by using
the reciprocity map.

Proof of Proposition 6.1. Put L = K(l). As in the proof of Proposition 4.2, using the
Chebotarev density theorem, we can take l′ ∈ S(L) such that the class [l′L]χ in AχL coincides
with the class [lL]χ in AχL where lL is the unique prime of L above lK . We take a ∈ (L× ⊗ Zp)χ

such that div(a) = (l′L− lL)χ.
Let cL/K : Oχ[Γ(L/k)] −→ Oχ[Γ(K/k)] be the natural restriction map. By Lemma 3.4 we

have cL/K(θχL) = (1 − ϕ−1
l )θχK = 0 because l ∈ S(K) implies ϕl = 1. Hence, σl − 1 divides θχL,

and we can write
θχL = α(σl − 1) + β(σl − 1)2,

for some α ∈ Oχ[Γ(K/k)] and β ∈ Oχ[Γ(L/k)]. We have α ≡ −δl (mod pN ) by (4.3) in § 4.3
(see [10, Lemma 4.4]). Since lL is totally ramified in L/K, we have (σl − 1) lL = 0. It follows
from σl − 1 | θχL that θχL(lL)χ = 0 in (DivL⊗Zp)χ. Therefore, we have

div(gLl′ ) = θχL(l′L)χ = θχL(l′L− lL)χ = div(aθ
χ
L),

which implies gLl′ = aθ
χ
L by Lemma 4.1.

Put z = aα+β(σl−1) ∈ (L× ⊗ Zp)χ. Using the congruence relation (Proposition 4.2), we
compute

(σl − 1)z = aθ
χ
L = gLl′ ≡ (gKl′ )(1−N(l)

−1)/pnl

≡ (gKl′ )(N(l)−1)/pnl ≡ (gKl′ )−(1−N(l))/p
nl (mod ρl),

for any prime ρl of L above l.
We denote by

divlL : (L× ⊗ Zp)χ −→
⎛
⎝⊕

ρ|l
Zp

⎞
⎠
χ

�−→ Oχ[Γ(K/k)],

the homomorphism induced by x 	→ Σρ|l ordρ(x)ρ where ρ runs through all primes of L above l,
and the second isomorphism is ϑ(lL)χ 	→ ϑ for ϑ ∈ Oχ[Γ(K/k)]. It follows from Lemma 3.2 that

φl(g
K
l′ ) = −divlL(z) ⊗ σl mod pN

= −(α+ β(σl − 1)) divlL(a) ⊗ σl mod pN

= −α divlL(a) ⊗ σl mod pN = α⊗ σl mod pN

= −δl ⊗ σl.

Put b = NL/K(a) ∈ (K× ⊗ Zp)χ. By the definition of a, we have div(b) = (l′K − lK)χ. Since
div(gKl ) = div(gKl′ /b

θχK ), by Lemma 4.1 we obtain gKl = gKl′ /b
θχK . Since b is a norm from L, by

the remark in the end of § 3.3 (by local class field theory), we know φl(b) = 0. Therefore, we
finally have

φl(g
K
l ) = φl(g

K
l′ ) = −δl ⊗ σl = −δ̃l.

Next, let us consider a map

(K×/pN )χ ⊗ Gn −→ Oχ/p
N [Γ(K/k)] ⊗ Gn l,
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which is obtained from φl : (K×/pN )χ −→ Oχ/p
N [Γ(K/k)] ⊗ Gl by tensoring Gn, and which

we also denote by φl.

Corollary 6.2. We assume that l ∈ S(K(n)). Then we have φl(κ̃n,l) = −δ̃n l.

Proof. We denote δl, φl for K(n) by δK(n)
l , φK(n)

l . We apply Proposition 6.1 to K(n) to get

φ
K(n)
l (gK(n)

l ) = −δK(n)
l ⊗ σl ∈ Oχ/p

N [Γ(K(n)/k)] ⊗Gl = Oχ/p
N [Γ(K/k) ×Gn] ⊗Gl.

Consider the commutative diagram

(K(n)×/pN )χ
φ
K(n)
l−→ Oχ/p

N [Γ(K/k) ×Gn] ⊗Gl�⏐⏐i �⏐⏐Nn

(K×/pN )χ
φl−→ Oχ/p

N [Γ(K/k)] ⊗Gl

where i is the natural inclusion map, and Nn is the multiplication by Nn = NGn = Σσ∈Gnσ.
Since i(κn,l) = Dng

K(n)
l and Dnδ

K(n)
l ⊗ σl = Nnδn l ⊗ σl, we have φl(κn,l) = −δn l ⊗ σl because

Nn is injective. Thus, we get φl(κ̃n,l) = −δ̃n l.

6.2.

The homomorphism φr : (K×/pN )χ −→ Oχ/p
N [Γ(K/k)] ⊗ Gr induces

(K×/pN )χ ⊗ Gn −→ Oχ/p
N [Γ(K/k)] ⊗ Gn ⊗ Gr,

which we also denote by φr. In [12], for completely general n, Mazur and Rubin computed
φr(κ̃n) for each r | n. In this paper, we consider the following special case.

Suppose that n ∈ N (K). We call n well-ordered if n has factorization n = r1 · . . . · rm such
that ri+1 ∈ S(K(r1 · . . . · ri)) for all i = 1, . . . ,m− 1. The next lemma follows from Mazur and
Rubin [12, Theorem A4].

Lemma 6.3 (Mazur and Rubin). Assume that l ∈ S(K(n)) and that n is well-ordered.
Then, for each r | n, we have φr(κ̃n,l) = 0.

Proof. Since we are in a special case, this lemma can be proved simply. Suppose that
n = r1 · . . . · rm, that ri+1 ∈ S(K(r1 · . . . · ri)) for all i = 1, . . . ,m− 1, and that r = rj for some
j. Put m1 = r1 · . . . · rj−1, and m2 = rj · . . . · rm. We denote κ̃m2,l for K(m1) by κ̃

K(m1)
m2,l . Since

φ
K(m1)
r (κ̃K(m1)

m2,l ) = 0 implies φr(κ̃n,l) = 0, to prove Lemma 6.3, we may assume r = r1.
For a prime v of K above r, we will prove

φKv (κn,l) = 0,

where φKv : K×v /p
N −→ Gr ⊗ Z/pN is the reciprocity map of Kv. Let K×v /p

N = V1 ⊕ V2 be
the decomposition in Lemma 3.3. Let v′ be the prime of K(r) above v. Since v is totally ramified
in K(r)/K, the natural map K×v /p

N −→ K(r)×v′/p
N is injective on V1. It follows from this fact

and V2 = KerφKv that it is enough to show that the image of κn,l in K(r)×v′/p
N vanishes, in

order to get φKv (κn,l) = 0.
We note that the image of κn,l in K(r)×/pN is Drκ

K(r)
n/r,l

. Let UK(r)v′ be the unit group of

K(r)v′ . The image of Drκ
K(r)
n/r,l

in K(r)×v′/p
N is in UK(r)v′/p

N . Since Gr acts on UK(r)v′/p
N

trivially, Dr acts on UK(r)v′/p
N as pnr(pnr − 1)/2 = 0. Therefore, the image of Drκ

K(r)
n/r,l

in
UK(r)v′/p

N is zero. Thus, we get φKv (κn,l) = 0, which implies φr(κ̃n,l) = 0.



REFINED IWASAWA THEORY Page 21 of 42

Recall that we defined in § 5 κ̃n,l ∈ (K×/pN )χ ⊗ Gn for n and l such that n l ∈ N[ε(n)](K).

Proposition 6.4. Assume that n l ∈ N[ε(n)](K) and n is well-ordered. Then, for each r | n,
we have φr(κ̃n,l) = 0.

Proof. As we remarked in Remark 5.6, in the definition of κ̃′n,l in § 5.2, using
Lemma 5.5, we can take b ∈ (K× ⊗ Zp)χ such that div(b) = (l′K − lK)χ and φr(b) = 0 in
Oχ/p

N+ε(n)c[Γ(K/k)] ⊗Gn for all r dividing n. Then

κ̃n,l = κ̃
(N+ε(n)c)
n,l′ − δ̃

(N+ε(n)c)
n b (mod pN ).

Therefore, by Lemma 6.3 and φr(b) = 0, we obtain

φr(κ̃n,l) = φr(κ̃n,l′) − δ̃nφr(b) = 0.

We next consider

φl : (K×/pN )χ ⊗ Gn −→ Oχ/p
N [Γ(K/k)] ⊗ Gn l,

which is induced by φl : (K×/pN )χ −→ Oχ/p
N [Γ(K/k)] ⊗ Gl.

Proposition 6.5. Assume that n l ∈ N[ε(n)+1](K) and that n l is well-ordered. Then we

have φl(κ̃n,l) = −δ̃n l.

The assumption that n l is well-ordered does not mean l ∈ S(K(n)), but means that n l has
factorization n l = r1 · . . . · rm+1 satisfying the property in the definition of the well-orderedness
in the beginning of § 6.2 (namely, l = ri for some i).

Proof of Proposition 6.5. We take l′ ∈ S[ε(n)+1](K(n l)) = S[ε(n l)](K(n l)) and consider κ̃n l,l′ .
As in Remark 5.6, using Lemma 5.5, we can take an auxiliary prime l′′ ∈ S[ε(n l)](K(n l)) and
b ∈ (K× ⊗ Zp)χ such that div(b) = (l′′K − l′K)χ, φr(b) = 0 for all r dividing n, and φl(b) = 1 ⊗ σl

which is a generator of Oχ/pN [Γ(K/k)] ⊗ Gl. We showed in Proposition 5.2 that κ̃n l,l′ does not
depend on the choice of l′′; that is, we have

κ̃n l,l′ = κ̃n l,l′′ − δ̃n lb− κ̃n,l ⊗ φl(b).

Therefore, using φl(b) = 1 ⊗ σl, we have

φl(κ̃n l,l′) = φl(κ̃n l,l′′) − δ̃n l ⊗ σl − φl(κ̃n,l) ⊗ σl.

On the other hand, Proposition 6.4 tells us that φl(κ̃n l,l′) = φl(κ̃n l,l′′) = 0. Hence, we obtain
φl(κ̃n,l) = −δ̃n l in Oχ/pN [Γ(K/k)] ⊗ Gn l.

6.3.

It seems to the author that one can define κn,l and κ̃n,l in a more general setting. In this paper,
we defined these elements under the assumption n l ∈ N[ε(n)](K) (cf. § 5.2 and Remark 5.4). This
assumption is used to show that κ̃n,l is independent of the choice of l′ and b (cf. Proposition 5.2).

Suppose that n l ∈ N (K). Using Lemma 5.5, we can take l′ ∈ S(K(n)) and b ∈ (K× ⊗ Zp)χ

such that div(b) = (l′K − lK)χ and φr(b) = 0 for all r | n. We write the group law of (K× ⊗
Z/pN )χ ⊗ Gn additively as before. Can one show that κ̃n,l′ − δ̃nb is independent of the choice
of l′, and hence of b (by taking l′ sufficiently close to l)? If the answer is yes, then we can define
κ̃n,l as κ̃n,l′ − δ̃nb.

Concerning this question, currently the author can only show Proposition A.1 in Appendix,
namely he knows the affirmative answer to this question only in case n is a prime.
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Another natural question is the following. Suppose that κ̃n,l is defined. Can one prove
φl(κ̃n,l) = −δ̃n l? In this paper, we proved this property only for (n, l) such that l ∈
S(K(n)) (Corollary 6.2), and for (n, l) such that n l ∈ N[ε(n)+1](K) and n l is well-ordered
(Proposition 6.5).

7. Elements xn,l

In this section, we define elements xn,l ∈ (K× ⊗ Z/pN )χ and x̃n,l ∈ (K×/pN )χ ⊗ Gn for n l ∈
N[ε(n)](K).

7.1.

We write the group law of (K×/pN )χ ⊗ Gn additively. We assume that n l ∈ N[ε(n)](K) and n l is
well-ordered. Suppose that, for each prime r that divides n, an element ar ∈ Oχ/p

N [Γ(K/k)] ⊗
Gr is given (we shall give ar explicitly later in § 10, see the paragraph before Lemma 10.2). For
a divisor d of n we define ad by

ad =
⊗

r|dar ∈ Oχ/p
N [Γ(K/k)] ⊗ Gd,

where, for d = r1 · . . . · rm′ , we identify (Oχ/pN [Γ(K/k)]⊗Gr1)⊗Oχ/pN [Γ(K/k)] . . .⊗Oχ/pN [Γ(K/k)]

(Oχ/pN [Γ(K/k)] ⊗Grm′ ) with Oχ/pN [Γ(K/k)] ⊗ Gd. We put a1 = 1. We define x̃n,l by

x̃n,l =
∑
d|n

ad ⊗ κ̃n/d,l ∈ (K×/pN )χ ⊗ Gn,

where ad ⊗ κ̃n/d,l ∈ (Oχ/pN [Γ(K/k)] ⊗ Gd) ⊗Oχ/pN [Γ(K/k)] (K×/pN )χ ⊗ Gn/d = (K×/pN )χ ⊗
Gn, and the sum is taken over all divisors d of n including 1; namely, x̃n,l is defined as a
sum of 2ε(n) terms.

Proposition 7.1. (0) If ρ is a prime of K that does not divide n l, then it is not in the
support of div(x̃n,l).

(1) For each prime r dividing n, we have divr(x̃n,l) = φr(x̃n/r,l).
(2) For each prime r dividing n, we have φr(x̃n,l) = ar ⊗ φr(x̃n/r,l).

Proof. The property (0) is an immediate consequence of Proposition 5.2(0).
Concerning (1), using Proposition 5.2(0) and (1), we compute

divr(x̃n,l) =
∑
d | n
r | d

ad ⊗ divr(κ̃n/d,l) +
∑
d | n
r�d

ad ⊗ divr(κ̃n/d,l)

=
∑
d | n
r�d

ad ⊗ φr(κ̃n/d r,l)

=
∑

d |n/r
ad ⊗ φr(κ̃n/d r,l)

= φr

⎛
⎝∑

d |n/r
ad ⊗ κ̃n/d r,l

⎞
⎠ = φr(x̃n/r,l).
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We next prove (2). Using Proposition 6.4, we have

φr(x̃n,l) =
∑
d | n
r | d

ad ⊗ φr(κ̃n/d,l) +
∑
d | n
r�d

ad ⊗ φr(κ̃n/d,l)

=
∑
d | n
r | d

ad ⊗ φr(κ̃n/d,l)

= ar ⊗
⎛
⎝∑

d |n/r
ad ⊗ φr(κ̃n/r d,l)

⎞
⎠

= ar ⊗ φr(x̃n/r,l).

Thus, we get Proposition 7.1.

Using Lemma 5.5 as in Remark 5.6, we take l′ ∈ S[ε(n)](K(n)) and b ∈ (K× ⊗ Zp)χ such that
div(b) = (l′K − lK)χ and φr(b) = 0 in Oχ/pN+ε(n)c[Γ(K/k)] ⊗Gr for all r dividing n.

Lemma 7.2.

φl′(x̃n,l) = −
∑
d|n

ad ⊗ (δ̃(n/d) l′ + δ̃n/d ⊗ φl′(b)).

Proof. As in Remark 5.6, we have κ̃n/d,l = κ̃n/d,l′ − δ̃n/db. Therefore, by the definition of
x̃n,l we get x̃n,l = x̃n,l′ − (

∑
d|n ad ⊗ δ̃n/d)b. By Corollary 6.2 we obtain

φl′(x̃n,l) = −
∑
d|n

ad ⊗ δ̃(n/d) l′ −
∑
d|n

ad ⊗ δ̃n/d ⊗ φl′(b),

which completes the proof.

7.2.

Recall that we took a generator σr of Gr for each r ∈ S. We define xn,l ∈ (K× ⊗ Z/pN )χ by

x̃n,l = xn,l ⊗
⊗

r|nσr.

For l ∈ S(K(n)), κ̃n,l was defined by κ̃n,l = κn,l ⊗
⊗

r|n σr in § 4. For any (n, l) with n l ∈
N[ε(n)](K), we define κn,l ∈ (K× ⊗ Z/pN )χ by

κ̃n,l = κn,l ⊗
⊗

r|nσr,

which is consistent with the definition in the case l ∈ S(K(n)). We also use an element ad ∈
Oχ/p

N [Γ(K/k)] which is defined by

ad = ad ⊗
⊗

r|dσr.

Recall that
φr : (K×/pN )χ −→ Oχ/p

N [Γ(K/k)]

is the homomorphism such that φr(x) = φr(x) ⊗ σr for all x.
By Proposition 7.1 and Lemma 7.2, we have the following proposition.

Proposition 7.3. (0) If ρ is a prime of K that does not divide n l, then it is not in the
support of div(xn,l).
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(1) For each prime r dividing n, we have divr(xn,l) = φr(xn/r,l).
(2) For each prime r dividing n, we have φr(xn,l) = arφr(xn/r,l).
(3) We take l′ and b as before Lemma 7.2 . Then we have

φl′(xn,l) = −
∑
d|n

ad(δ(n/d) l′ + δn/dφl′(b)).

8. Higher Stickelberger ideals

Let K, χ, . . . be as in the previous sections, namely as in § 4.1 (recall that we are fixing an odd
character χ of Δ(K/k)). In this section and the next section we do not assume (*) in § 4.1.
In this section, we define the ith Stickelberger ideal Θχ

i,K ⊂ Oχ[Γ(K/k)] of K for all i ∈ Z�0.
More precisely, we define two ideals Θ(δ),χ

i,K , Θχ
i,K such that Θ(δ),χ

i,K ⊂ Θχ
i,K . In the case where

K is a subfield of the cyclotomic Zp-extensions of K0 (namely, K = K0,m for some m in the
notation of § 2), we will prove that they coincide in § 10. In Remark 8.2, we will see that they
do not coincide in general.

8.1.

For n ∈ N (K) we consider δn ∈ Oχ/p
N [Γ(K/k)], which is defined in § 4.3 (note that this is

defined without the assumption (*) in § 4.1). We note that, by definition, all divisors l of
n ∈ N (K) satisfy nl � N . To clarify this, we write NN (K) for N (K). For i � 0 we define
Θ(δ,N),χ
i,K to be the ideal generated by

{δn | n ∈ NN (K), ε(n) � i}.
We define the small ith Stickelberger ideal Θ(δ),χ

i,K by

Θ(δ),χ
i,K := lim← N

Θ(δ,N),χ
i,K ⊂ lim← N

Oχ/p
N [Γ(K/k)] = Oχ[Γ(K/k)].

In particular, Θ(δ),χ
0,K is the principal ideal generated by θχK .

8.2.

We define Θχ
i,K by the same method as in [10, § 3]. Let s and r be positive integers, and put

s′ = min{x ∈ Z : s < px}. We consider a ring

R = Oχ[Γ(K/k)][[S1, . . . , Sr]]/((1 + S1)p
n1 − 1, . . . , (1 + Sr)p

nr − 1)

with n1, . . . , nr � N + s′ − 1. Let f = Σi1,...,ir�0ai1...irS
i1
1 . . . Sirr mod I be an element of R

where ai1...ir ∈ Oχ[Γ(K/k)] and I = ((1 + S1)p
n1 − 1, . . . , (1 + Sr)p

nr − 1). Since ordp(
(
pnl

j

)
) =

ordp(pnl !/(j!(pnl − j)!)) � nl − s′ + 1 for all j with 0 < j < ps
′

(1 � l � r), considering
the coefficients of the expansion (1 + Si)p

nl − 1, we know ai1,...,ir mod pq with q =
min{n1, . . . , nr} − s′ + 1 and i1, . . . , ir � s is well-defined, namely ai1,...,ir mod pq is determined
by f . Hence, ai1,...,ir mod pN is also well-defined. For i ∈ Z�0 and s ∈ Z>0, we define Ii,s(f) to
be the ideal of Oχ/pN [Γ(K/k)] generated by

{ai1,...,ir mod pN | 0 � i1, . . . , ir � s and i1 + . . .+ ir � i}.
Recall that K0 is a subfield of K such that Γ(L/k) = Gal(L/K0) and Γ(K/k) = Gal(K/K0).

We define F ′ by

F ′ = {L0 | K0 ⊂ L0, L0/k is finite and abelian, L0/K0 is a p-extension, L0 ∩K = K0,
and every prime above p is unramified in L0/K0}.
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For L0 ∈ F ′ we put L = L0K; then L ∈ F where F is the set we defined in § 4.2. We have a
canonical isomorphism

Γ(L/k) = Gal(L/K0) = Gal(L/K) × Gal(L/L0) � Gal(L/K) × Γ(K/k).

We fix this isomorphism, and identify Oχ[Γ(L/k)] with Oχ[Γ(K/k)][Gal(L/K)]. For s > 0 we
put

F ′s = {L0 ∈ F ′ | Gal(L0/K0) is of the form Gal(L0/K0) = Z/pn1Z ⊕ . . .⊕ Z/pnrZ

with n1, . . . , nr � N + s′ − 1 for some r > 0} ∪ {K0}.
For n ∈ N (K)(= NN (K)), we have K0(n) ∩K = K0, so K0(n) is in F ′, and is in F ′1. Suppose
that L0 is in F ′s, L = L0K and Gal(L/K) = Gal(L0/K0) = Z/pn1Z ⊕ . . .⊕ Z/pnrZ. Fixing
generators σ1, . . . , σr of Gal(L/K), we have an isomorphism

Oχ[Γ(L/k)] = Oχ[Γ(K/k)][Gal(L/K)]

� Oχ[Γ(K/k)][[S1, . . . , Sr]]/((1 + S1)p
n1 − 1, . . . , (1 + Sr)p

nr − 1),

where σl corresponds to 1 + Sl (1 � l � r). We regard θχL ∈ Oχ[Γ(L/k)] (see § 3.4) as an element
of the lower right ring, and define Ii,s(θ

χ
L) ⊂ Oχ/p

N [Γ(K/k)] as above (we remark that Schoof
studied the coefficients of θχL in the case that Gal(L/K) is cyclic in [18]). It is easy to check that
Ii,s(θ

χ
L) does not depend on the choice of generators σ1, . . . , σr of Gal(L/K) (see [10, Lemma

3.1]; note that the ideal generated by the coefficients of degree i of θχL depends on the choice
of σ1, . . . , σr, but the ideal Ii,s(θ

χ
L) does not). We also note that this ideal Ii,s(θ

χ
L) depends on

the choice of L0. We define Θ(N),χ
i,s,K to be the ideal of Oχ/pN [Γ(K/k)] generated by

{Ii,s(θχL) where L = L0K | L0 ∈ F ′s},
and Θ(N),χ

i,K to be the ideal generated by
⋃
s>0 Θ(N),χ

i,s,K . In Theorem 9.11, we prove a relation
between Θ(N),χ

i,K and the Fitting ideals. Finally, we define

Θχ
i,s,K := lim← N

Θ(N),χ
i,s,K and Θχ

i,K := lim← N
Θ(N),χ
i,K ⊂ Oχ[Γ(K/k)].

Suppose n = r1 · . . . · ri ∈ NN (K). We consider the isomorphism

Oχ[Γ(K(n)/k)] = Oχ[Γ(K/k)][[S1, . . . , Si]]/((1 + S1)p
nr1 − 1, . . . , (1 + Si)p

nri − 1)

defined by the correspondence σrl ↔ 1 + Sl. Then, by (4.3)

θχK(n) ≡ (−1)iδnS1 · . . . · Si (mod pN , S2
1 , . . . , S

2
m).

Hence, δn is in Θ(N),χ
i,1,K , and we obtain Θ(δ,N),χ

i,K ⊂ Θ(N),χ
i,1,K . Therefore, we have

Θ(δ),χ
i,K ⊂ Θχ

i,1,K ⊂ Θχ
i,K . (8.1)

Remark 8.1. Suppose that L0 is in F ′ and L = L0K. We write IL for the kernel of the
restriction map Oχ[Γ(L/k)] −→ Oχ[Γ(K/k)]. Suppose that iL/K : Oχ[Γ(K/k)] −→ Oχ[Γ(L/k)]
is the natural map induced by the homomorphism Γ(K/k) −→ Γ(K/k) × Gal(L/K) = Γ(L/k).
We define the ideal Θ̃χ

i,K to be the minimal ideal in

{J : ideal of Oχ[Γ(K/k)] | for any L0 ∈ F ′, θχL ∈ iL/K(J)Oχ[Γ(L/k)] + Ii+1
L where L = L0K}.

Then we can prove that Θχ
i,K0,m

= Θ̃χ
i,K0,m

for K0,m satisfying the assumptions of Theorem 2.4
(in fact, we can show that both are equal to the ith Fitting ideal of AχK0,m

). So we could adopt
the above definition of Θ̃χ

i,K as the definition of Θχ
i,K . Our definition of Θχ

i,K is more useful for
numerical computation.
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Remark 8.2. In general, we have Θ(δ),χ
i,K �= Θχ

i,K . We will give examples for which Θ(δ),χ
i,K �

Θχ
i,1,K ⊂ Θχ

i,K . For simplicity, we assume Ak = 0, AχK0
= 0 and K0 ∩ k(μp) = k, and l0 ∈ S(K0)

is a principal ideal. We consider K = K0(l0), so K/K0 is a p-extension such that Gal(K/K0) =
Gl0 . Then, by genus theory, AχK is generated by one element over Oχ[Γ(K/k)] = Oχ[Gl0 ] and
AχK �= 0 (cf. [9, Proposition 5.2]).

Concerning the Stickelberger ideals, we can first show that, for any l ∈ S(K), δl is not a
unit in Oχ/p

N [Γ(K/k)] = Oχ/p
N [Gl0 ]. In fact, we put L = K(l), L0 = K0(l) and S = σl −

1 ∈ Oχ/p
N [Γ(L/k)] = Oχ/p

N [Gl0 ×Gl]. We know θχL ≡ −δlS (mod pN , S2) by (4.3). On the
other hand, by Lemma 3.4 we have cL/L0(θ

χ
L) = (1 − ϕ−1

l0 )χθχL0
where cL/L0 : Oχ[Γ(L/k)] =

Oχ[Gl0 ×Gl] −→ Oχ[Gl] = Oχ[Γ(L0/k)] is the restriction map. Since l0 splits completely in
K0, it follows that ϕl0 = (l0, L0/k) is in Gal(L0/K0) = Gl. We write ϕ−1

l0
= σil for some i ∈ Z

in Gal(L0/K0) = Gl. Combining two equations, we obtain

−cL/L0(δl)S ≡ (1 − (1 + S)i)θχL0
≡ −iθχL0

S (mod pN , S2).

Applying [9, Proposition 5.2] (or genus theory) also to L0, we have AχL0
�= 0. By Theorem 9.10

in the next section, θχL0
is in Fitt0,Oχ[Gl](A

χ
L0

). Hence, θχL0
is not a unit. It follows from the

above congruence that cL/L0(δl) is not a unit, which shows that δl is not a unit.
Therefore, we have Θ(δ),χ

1,K � Oχ[Gl0 ] (namely Θ(δ)
1,K is too small).

Next, we consider Θχ
1,K . Suppose l0 = (x) for some x ∈ k×. By the Chebotarev density

theorem, we can take r ∈ S such that r is inert in k( p
√
x) and no prime above r splits in

K0/K
+
0 . We put M = K(r), M0 = K0(r), S = σr − 1, and write θχM ≡ a0 + a1S (mod pN , S2)

with a0, a1 ∈ Oχ/p
N [Gl0 ]. Then we can check that a1 is a unit. In fact, since r is inert in

k( p
√
x), xmod r is not a pth power in the residue field of r. By the Artin reciprocity law, we

know that (l0,M0/k) is not a pth power in Gal(M0/k). In the same way as above, we have
cM/M0(θ

χ
M ) = (1 − ϕ−1

l0
)χθχM0

where ϕl0 = (l0,M0/k). We write ϕ−1
l0

= σjr for some j which is
prime to p. By the same method as above, we have

cM/M0(a0 + a1S) ≡ −jθχM0
S (mod pN , S2).

Since no prime above r splits in K0/K
+
0 , we have AχM0

= 0 (cf. [9, Proposition 5.2]). Again by
Theorem 9.10(1), θχM0

has to be a unit in Oχ[Gr] (because ν1,r(θ
χ
K0

) is not a unit). Therefore,
cM/M0(a0) ≡ 0 and cM/M0(a1) is a unit because both j and θχM0

are units. Hence, a1 is a unit.
Since M0 ∈ F ′, we obtain

Θ(δ),χ
1,K � Θχ

1,1,K = Θχ
1,K = Oχ[Γ(K/k)].

For example, if k = Q, K0 = Q(
√−6), p = 3, N = 1, l0 = 7, K = K0(l0) = K0(cos(2π/7)),

and χ is the non-trivial character of Gal(K0/Q), then all the assumptions we made are satisfied.
We can take M0 = K0(r) with r = 13 ∈ S, for example. In this case, θχM can be computed as

θχM = −(4T + 4T 2) − (14 + 22T + 14T 2)S − (8 + 12 + 8T 2)S2

mod ((1 + T )3 − 1, (1 + S)3 − 1) where we took 1 + S = σr ∈ Gr = (Z/13Z)× ⊗ Z/3Z which
corresponds to 2 ⊗ 1, and 1 + T = σl0 ∈ Gl0 = (Z/7Z)× ⊗ Z/3Z which corresponds to 3 ⊗ 1.
In this example, a1 = −(14 + 22T + 14T 2) is certainly a unit in Oχ/pN [Γ(K/k)].

9. Fitting ideals

In this section, we describe known facts on Fitting ideals.
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9.1.

Suppose that R is a commutative ring, and that M is a finitely presented R-module. By
definition we have an exact sequence

Rm
f−→ Rn −→M −→ 0

of R-modules where m and n are positive integers. (If m < n, then using a projection Rn −→
Rm, we can replace the above sequence by the exact sequence Rn −→ Rn −→M −→ 0, so we
may assume m � n.) For an integer i � 0 the ith Fitting ideal of M is defined to be the ideal of
R generated by all (n− i) × (n− i) minors of the matrix A corresponding to f . If i � n, then
it is defined to be R. This definition depends only on M and does not depend on the choice of
f (cf. Northcott [14, Chapter 3]). The ith Fitting ideal of M over R is denoted by Fitti,R(M).
We have a sequence of ideals

Fitt0,R(M) ⊂ Fitt1,R(M) ⊂ . . . ⊂ Fittn,R(M) = Fittn+1,R(M) = . . . = R.

The 0th Fitting ideal is called the initial Fitting ideal, and the ideals Fitti,R(M) with i � 1
are called higher Fitting ideals.

These ideals give information on the structure of M as an R-module. For example, by
definition, if Fittr,R(M) = R, then M is generated by at most r elements.

9.2.

In this subsection, we suppose that O is a complete discrete valuation ring, and Λ = O[[T ]]. Note
that this is a noetherian unique factorial domain (Bourbaki [1, § 4, Chapter 7, Proposition 8]).
For finitely generated torsion Λ-modules M1 and M2, M1 is said to be pseudo-isomorphic to M2

if there is a Λ-homomorphism M1 −→M2 whose kernel and cokernel are both of finite length as
O-modules. This is an equivalence relation of finitely generated torsion Λ-modules [22, § 13.2].
We write M1 ∼M2 in this case. If M ∼ 0, then M is said to be a pseudo-null module. For
any finitely generated torsion Λ-module M , there is a pseudo-isomorphism M ∼ Λ/(a1) ⊕ . . .⊕
Λ/(ar) (Bourbaki [1, § 4, Chapter 7, Théorème 5]). In this situation, the characteristic ideal
char(M) is defined by char(M) = (a1 · . . . · ar).

The following lemma is well known.

Lemma 9.1. Suppose that M is a finitely generated torsion Λ-module, and it contains no
non-trivial pseudo-null submodule.

(1) For any surjective Λ-homomorphism

ϕ : Λn −→M,

the kernel of ϕ is a free Λ-module of rank n.
(2) The initial Fitting ideal Fitt0,Λ(M) is a principal ideal.
(3) The initial Fitting ideal Fitt0,Λ(M) is equal to the characteristic ideal char(M).

Proof. (1) This follows from the fact that the projective dimension of M is at most 1 (see,
for example, Wingberg [24, Proposition 2.1]).

(2) We have an exact sequence 0 −→ Λn
f−→ Λn −→M −→ 0 by (1). Hence, Fitt0,Λ(M) is

a principal ideal generated by detA where A corresponds to f .
(3) Since Fitt0,Λ(M) is generated by detA, this follows from a well-known property

char(M) = (detA) (Bourbaki [1, § 4, Chapter 7, Corollaire to Proposition 14]).
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Lemma 9.2. Let M be a finitely generated torsion Λ-module such that

M ∼ Λ/(a1) ⊕ . . .⊕ Λ/(ar) with (a1) ⊃ (a2) ⊃ . . . ⊃ (ar).

Then Fitti,Λ(M) = (a1 · . . . · ar−i)Ii for all i with 0 � i < r where Ii is an ideal with
lengthO Λ/Ii <∞. In particular, if we know all Fitti,Λ(M), then we get to know all aj (1 �
j � r), that is, we get to know the pseudo-isomorphism class of M .

Proof. In general, if there is an exact sequence M1 −→M2 −→M3 −→ 0 of R-modules,
then we have Fitti,R(M1) Fitt0,R(M3) ⊂ Fitti,R(M2) by elementary consideration of the matrix
corresponding to M2 (see [14, p. 91]).

Applying this to an exact sequence M −→ Λ/(a1) ⊕ . . .⊕ Λ/(ar) −→ F −→ 0 where F is a
pseudo-null Λ-module, we have

Fitti,Λ(M) Fitt0,Λ(F ) ⊂ Fitti,Λ(Λ/(a1) ⊕ . . .⊕ Λ/(ar)) = (a1 · . . . · ar−i).
Put fi = a1 · . . . · ar−i. We take an arbitrary x ∈ Fitti,Λ(M). Since Λ/Fitt0,Λ(F ) has finite
length as an O-module, we can take y1, y2 ∈ Fitt0,Λ(F ) such that y1 and y2 are relatively
prime. It follows from the above inclusion that fi divides xy1 and xy2, and hence divides x.
Therefore, Fitti,Λ(M) ⊂ (fi), and we can write Fitti,Λ(M) = fiIi for some ideal Ii. We also
have an exact sequence Λ/(a1) ⊕ . . .⊕ Λ/(ar) −→M −→ F ′ −→ 0 with lengthO F ′ <∞, by
which we obtain

Fitti,Λ(Λ/(a1) ⊕ . . .⊕ Λ/(ar)) Fitt0,Λ(F ′) = fi Fitt0,Λ(F ′) ⊂ Fitti,Λ(M) = fiIi.

Hence, Fitt0,Λ(F ′) ⊂ Ii. This shows that Λ/Ii is of finite length as an O-module.

Concerning the isomorphism class of M , we have the following lemma.

Lemma 9.3. Let M be a finitely generated torsion Λ-module such that M is free of rank
2 as an O-module. Then Fitt0,Λ(M) and Fitt1,Λ(M) determine the isomorphism class of M .

Proof. This is [9, Lemma 9.1].

Remark 9.4. If M is free of rank r with r > 2 as an O-module, then the Fitting ideals
Fitti,Λ(M) do not determine the isomorphism class of M , in general.

For example, consider the Λ-modules M1, M2 corresponding to the matrices

A1 =
(
T 2 π2

π3 T

)
, A2 =

(
T π2

π3 T 2

)
,

respectively, where π is a prime element of O. Then both M1 and M2 are free of rank 3 as
O-modules. Clearly, we get Fitt0,Λ(M1) = Fitt0,Λ(M2) = (T 3 − π5), Fitt1,Λ(M1) = Fitt1,Λ
(M2) = (T, π2), and Fitti,Λ(M1) = Fitti,Λ(M2) = Λ for all i � 2. But M1 is not isomorphic
to M2. In fact, put I = (π3, πT, T 2) ⊂ Λ. Then we have lengthO Λ/I = 4, lengthOM1/IM1 =
4 + 4 − 1 = 7 and lengthOM2/IM2 = 4 − 2 + 4 = 6.

Lemma 9.5. We assume that ψ : Λ −→ Oψ is a surjective ring homomorphism such that
Oψ is a discrete valuation ring. For a finitely generated torsion Λ-module M we define Mψ =
M ⊗Λ Oψ and Jψi = ψ(Fitti,Λ(M)). Then we have an isomorphism

Mψ �
⊕
i�1

Jψi /J
ψ
i−1
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as Oψ-modules; namely , if we know all Fitti,Λ(M) for i � 0, then we get to know the
isomorphism class of Mψ for all ψ.

Proof. In fact, by the definition of the Fitting ideals, we have Jψi = Fitti,Oψ (Mψ). If Mψ

is isomorphic to Oψ/(a1) ⊕ . . .⊕Oψ/(ar) such that (a1) ⊃ (a2) ⊃ . . . ⊃ (ar), then we have
Fitti,Oψ (Mψ) = (a1 · . . . · ar−i). Therefore, we obtain the isomorphism stated in Lemma 9.5.

9.3.

LetK,K0, χ and so on be as before, namely, as in § 4.1 (but we do not assume (*) in § 4.1). From
now on, we also assume that K is in the cyclotomic Zp-extension (K0)∞ of K0. We denote by
K0,m the intermediate field of (K0)∞/K0 such that [K0,m : K0] = pm. Our assumption means
K = K0,m for some m � 0. By definition, K∞ = (K0)∞. We study Xχ

K∞ = lim← AχKn . Recall
that we assumed μ(Xχ

K∞) = 0 in § 4.1. Put Λ = Oχ[[Γ(K∞/k)]] = Oχ[[Gal(K∞/K0)]] which is
isomorphic to the formal power series ring Oχ[[T ]], and we can apply the results in the previous
subsection.

By Lemma 3.4, the elements θχKn (∈ Oχ[Gal(Kn/K0)]) for n� 0 become a projective system
and we define θχK∞ ∈ Oχ[[Gal(K∞/K0)]] = Λ as their projective limit, which is the p-adic L-
function of Deligne and Ribet. Since Xχ

K∞ does not have a non-trivial finite Λ-submodule [22,
Proposition 13.28], by the main conjecture proved by Wiles [23] and Lemma 9.1(3), we know
the following theorem.

Theorem 9.6 (Wiles [23]). We have Fitt0,Λ(Xχ
K∞) = (θχK∞).

For any n ∈ N we put K(n) = Kk(n) and consider the cyclotomic Zp-extension K(n)∞ of
K(n). The element θχK(n)∞

∈ Oχ[[Gal(K(n)∞/K0)]] = Λ[Gn] is defined by the same method as
above. For d ∈ N dividing n, we define the norm map

νd,n : Λ[Gd] −→ Λ[Gn]

by Σσ∈Gd
aσσ 	→ Σσ∈Gd

aστ
′ where τ ′ = Στ|K(d)∞=στ (the sum is taken over all τ ∈ Gn whose

restriction to K(d)∞ is σ). Since K0(n) satisfies the condition (Ap) in [9], we have the following.

Theorem 9.7 [9, Theorem 0.9]. We have

Fitt0,Λ[Gn](X
χ
K(n)∞

) = ({νd,n(θχK(d)∞
) | d ∈ N , d divides n}),

where the right-hand side is the ideal of Λ[Gn] generated by all νd,n(θχK(d)∞
).

We note that the Leopoldt conjecture is not needed in the proof of the above theorem because
of χ �= ω (cf. [9, Remark 0.11(1)]). We also note that Fitt0,Λ(Xχ

K∞) is a principal ideal, but
Fitt0,Λ[Gn](X

χ
K(n)∞

) is not principal, in general.
In [4], Greither generalized the above theorem, and determined the initial Fitting ideal

for more general cyclotomic Zp-extensions. By Greither [4, Theorem 7(i)], Fitt0,Λ(Xχ
L∞) is

determined for L = L0K with L0 ∈ F ′ (which was defined in § 8.2).
In particular, we have the following theorem.

Theorem 9.8 (Greither [4, Theorem 7 (i)]). For any L = L0K with L0 ∈ F ′, we have

θχL∞ ∈ Fitt0,Λ[Gal(L/K)](X
χ
L∞).
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Recall that L in the above theorem satisfies the condition that all primes of K∞ above p
are unramified in L∞. If we remove this assumption on the unramifiedness, then there exist
counterexamples of the above property [5, Theorem 1.1].

9.4.

We next study AχK and AχL for L ∈ F .

Lemma 9.9. The norm map induces an isomorphism

(Xχ
L∞)Gal(L∞/L)

�−→ AχL,

for any L ∈ F .

Proof. In fact, by our assumption that χ(p) �= 1 for all primes p of k above p, we have
(
⊕

v|p Zp)χ = 0 where v ranges over primes of K0 above p. Hence, we also have (
⊕

w|p Zp)χ = 0
where w ranges over primes of L above p, and (

⊕
w|p Iw(L∞/L))χ = 0 where Iw(L∞/L) is

the inertia group of w in Gal(L∞/L). Therefore, we obtain the above isomorphism (cf. [9,
Proposition 5.2]).

Suppose L ∈ F . For a prime p of k above p, by our assumption χ(p) �= 1, 1 − χ(p)−1 is a
unit of Oχ. Hence, if p is unramified in L, then (1 − ϕ−1

p )χ is a unit of Oχ[Γ(L/k)] where ϕp

is the Frobenius of p in Gal(L/k). Therefore, by Lemma 3.4, we have

cL∞/L(θχL∞) = uθχL,

for some u ∈ Oχ[Γ(L/k)]×.
Put RK = Oχ[Γ(K/k)]. For n, d ∈ N with d | n, we define the norm map νd,n : RK [Gd] −→

RK [Gn] by the same method as above, and consider νd,n(θχK(d)) ∈ RK [Gn] = Oχ[Γ(K(n)/k)].
In general, for any ideal I of R and an R-module M , by the definition of the Fitting ideals,

Fitti,R/I(M/IM) = Fitti,R(M)mod I ⊂ R/I

holds. Therefore, using Theorems 9.7, 9.8 and Lemma 9.9, we obtain the following theorem.

Theorem 9.10. (1) For any n ∈ N , we have

Fitt0,RK [Gn](A
χ
K(n)) = ({νd,n(θχK(d)) | d ∈ N , d divides n}),

where the right-hand side is the ideal of RK [Gn] = Oχ[Γ(K(n)/k)] generated by all νd,n(θχK(d)).
(2) For any L = L0K with L0 ∈ F ′, we have θχL ∈ Fitt0,RK [Gal(L/K)](A

χ
L).

9.5.

Let K be as above. We defined Θχ
i,K in § 8.2. In this subsection, we prove the following theorem.

Theorem 9.11 (cf. [9, Theorem 8.1]). For any i � 0 we have

Θ(N),χ
i,K ⊂ Fitti,RK/pN (AχK/p

N ) and Θχ
i,K ⊂ Fitti,RK (AχK).

Proof. This is essentially [9, Theorem 8.1]. Suppose that L = L0K with L0 ∈ F ′s for some
s > 0, and Gal(L/K) = Z/pn1Z ⊕ . . .⊕ Z/pnrZ for some r > 0. Put G = Gal(L/K). We take
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generators σ1, . . . , σr of G, and identify Oχ[Γ(L/k)] = RK [G] with

RK [[S1, . . . , Sr]]/((1 + S1)p
n1 − 1, . . . , (1 + Sr)p

nr − 1)

by σl ↔ 1 + Sl (1 � l � r). By the definition of F ′s and the consideration in § 8.2, we have an
isomorphism

RK/p
N [G]/(Ss+1

1 , . . . , Ss+1
r ) � RK/p

N [[S1, . . . , Sr]]/(Ss+1
1 , . . . , Ss+1

r ).

We regard AχK as an RK [G]-module, on which G acts trivially. Let RmK
g−→ RnK −→ AχK −→ 0

be an exact sequence of RK-modules, and B be the matrix with m columns and n rows
corresponding to g. We have an exact sequence RK [G]m+rn g′−→ RK [G]n −→ AχK −→ 0 of
RK [G]-modules where g′ corresponds to the matrix⎛

⎜⎜⎜⎜⎜⎜⎝

S1 · · · Sr · · · · · · 0 · · · 0
0 · · · 0 · · · · · · 0 · · · 0
... · · · ... · · · · · · ... · · · ... B
... · · · ... · · · · · · ... · · · ...
0 · · · 0 · · · · · · S1 · · · Sr

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Then we know from the above matrix that

Fitt0,RK [G](A
χ
K) =

n∑
i=0

Fitti,RK (AχK)(S1, . . . , Sr)i.

Since we have a surjective homomorphism AχL −→ AχK of RK [G]-modules [9, Lemma 5.1(1)],
we have

Fitt0,RK [G](A
χ
L) ⊂

n∑
i=0

Fitti,RK (AχK)(S1, . . . , Sr)i.

This implies

Fitt0,RK [G](A
χ
L)mod (pN , Ss+1

1 , . . . , Ss+1
r ) ⊂

n∑
i=0

Fitti,RK/pN (AχK/p
N )(S1, . . . , Sr)i

in RK/p
N [[S1, . . . , Sr]]/(Ss+1

1 , . . . , Ss+1
r ). By Theorem 9.10(2), we have θχL ∈ Fitt0,RK [G](A

χ
L),

hence we obtain Ii,s(θ
χ
L) ⊂ Fitti,RK/pN (AχK/p

N ). Thus, we have

Θ(N),χ
i,K ⊂ Fitti,RK/pN (AχK/p

N ).

Since

Fitti,RK (AχK) = lim← N
Fitti,RK/pN (AχK/p

N ),

from the definition of Θχ
i,K we obtain the conclusion Θχ

i,K ⊂ Fitti,RK (AχK).

We define the Stickelberger ideals over K∞ by

Θ(δ),χ
i,K∞ = lim← Θ(δ),χ

i,Km
and Θχ

i,K∞ = lim← Θχ
i,Km

.

From the inclusion Θ(δ),χ
i,Km

⊂ Θχ
i,Km

, we know Θ(δ),χ
i,K∞ ⊂ Θχ

i,K∞ ⊂ Λ.

Corollary 9.12. For any i � 0 we have

Θ(δ),χ
i,K∞ ⊂ Θχ

i,K∞ ⊂ Fitti,Λ(Xχ
K∞).
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Proof. Suppose that 0 −→ Λn
f−→ Λn −→ Xχ

K∞ −→ 0 is exact and that γm is a gen-
erator of Gal(K∞/Km). Then, by Lemma 9.9, f mod γm − 1 yields an exact sequence
Oχ[Γ(Km/k)]n

f mod γm−1−→ Oχ[Γ(Km/k)]n −→ AχKm −→ 0. Hence, we have

Fitti,Λ(Xχ
K∞) = lim← Fitti,Oχ[Γ(Kn/k)](A

χ
Kn

).

Therefore, Theorem 9.11 implies Corollary 9.12.

Concerning the commutativity of projective limits with Fitting ideals in a more general
setting, see [5, Theorem 2.1].

10. Proof of the main theorem

In this section, we prove Theorem 2.1. In order to get the equality of two ideals, since we
saw in the previous section that one inclusion holds (Corollary 9.12), we have to prove the
other inclusion. Using xn,l in § 7, we shall construct elements in the multiplicative group
which give relations approximating submatrices of a relation matrix of Xχ

K∞ . The properties
of Kolyvagin systems ((iii) and (iv) in § 1; more directly Proposition 7.3) play an important
role (see Lemma 10.2 which is a key lemma).

10.1.

For each l ∈ S, using the prime lk we fixed, we regard μpn ⊂ k
×

as a subgroup of k
×
l for all

n > 0, where kl is an algebraic closure of kl. We fix a generator ζpn ∈ μpn for all n > 0 such
that (ζpn+1)p = ζpn . For each l ∈ S we take σl ∈ Gl to be the element such that Kum(σl) = ζpnl

where Kum is the map defined in § 3.3.
We combine Rubin [15, Theorem 3.1] with Lemma 5.5 to get the following lemma.

Lemma 10.1. Assume n = r1 · . . . · rm ∈ N (K) and that l ∈ S(K) is prime to n. Suppose
that one is given σi ∈ Oχ/p

N [Γ(K/k)] ⊗Gri for each i = 1, . . . ,m, a finite Gal(K/k)-
submodule W of (K×/pN )χ and a Gal(K/k)-equivariant homomorphism

λ : W −→ Oχ/p
N [Γ(K/k)].

Then there are infinitely many l′ ∈ S(K(n)) which satisfy the following properties.
(i) The class [l′K ]χ in AχK coincides with the class [lK ]χ.
(ii) For the element z ∈ (K× ⊗ Zp)χ such that div(z) = (l′K − lK)χ, φri(z) = σi holds for

each i = 1, . . . ,m.
(iii) The submodule W is in the kernel of divl′ : (K×/pN )χ −→ Oχ/p

N [Γ(K/k)], and we
have λ(x) = φl′(x) for all x ∈W .

Proof. We follow the argument of the proof of Rubin [15, Theorem 3.1], and our proof is
a modification of Rubin [15, Theorem 3.1]. So the reader who is not familiar with this kind
of proof should consult the proof of Rubin [15, Theorem 3.1]. Put G = Gal(K/k). We define
ι : Z/pN [G] −→ Z/pN by a11G +

∑
g �=1 agg 	→ a1. Then f 	→ ι ◦ f defines an isomorphism

I : HomZ/pN [G](M,Z/pN [G]) �−→ Hom(M,Z/pN ),

for any Z/pN [G]-module M . In fact, f 	→ (x 	→ Σσ∈Gf(σx)σ−1) gives the inverse of I. Let
ζpN be the primitive pN th root of unity we fixed. We regard W as a Z/pN [G]-module,
Oχ/p

N [Γ(K/k)] as a direct summand of Z/pN [G] and λ as a map from W to Z/pN [G]. We
define λ′ : W −→ μpN by λ′(x) = ζ

−(ι◦λ)(x)

pN
.
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Consider the Kummer pairing

Gal(K(μpN ,W
1/pN )/K(μpN )) ×W −→ μpN ,

which is non-degenerate because of the injectivity of (K×/pN )χ −→ (K(μpN )×/pN )χ. (Here,
we regard χ as a character of Δ(K(μpN )/k) using the natural restriction Δ(K(μpN )/k) −→
Δ(K/k).) Using this pairing, we regard λ′ as an element of Gal(K(μpN ,W 1/pN )/K(μpN )).

Let K{n}χ be as in the proof of Lemma 5.5, and let U and k(μpn+1 ,U1/pn) be as in the proof
of Lemma 3.1. We consider the compositum

L′ = K{n}χK(n)(μpn+1 ,U1/pn ,W 1/pN ).

The Galois group Gal(K0(μp)/k) acts on Gal(K{n}χ/K) via χ, acts on Gal(K(n)(μpn+1)/K)
via the trivial character, acts on Gal(K(μpn ,U1/pn)/K(μpn)) via ω and acts on
Gal(K(μpN ,W 1/pN )/K(μpN )) via χ−1ω. Hence K{n}χ(μpn), K(n)(μpn), K(μpn+1), K(μpn ,
U1/pn) and K(μpn ,W 1/pN ) are all linearly disjoint over K(μpn). Hence, as in the proof of
Lemma 5.5, we can apply the Chebotarev density theorem to L′, and obtain infinitely many
l′ ∈ S(K(n)) having the properties (i), (ii) and (l′K(μpn ),K(μpn ,W 1/pN )/K(μpn)) = λ′.

Since l′ is unramified in K(μpn ,W 1/pN ), W is in the kernel of divl′ : (K×/pN )χ −→
Oχ/p

N [Γ(K/k)]. We write ϕl′ = (l′K(μpn ),K(μpn ,W 1/pN )/K(μpn)). For any x ∈W we have

ζ
−(ι◦λ)(x)

pN
= λ′(x) =

ϕl′( pN
√
x)

pN
√
x

≡ ( pN
√
x)N(l

′)

pN
√
x

= x(N(l
′)−1)/pN ,

where the congruence is mod l′K(μpn ). Let φK
l′K

: K×
l′K

−→ Gl′ ⊗ Z/pN be the reciprocity map,
and Kum(N) be the map defined in the proof of Lemma 3.2. Then, by (3.1), we have

(Kum(N) ◦ φKl′K
(x)) ≡ x−(N(l

′)−1)/pN ≡ ζ
(ι◦λ)(x)

pN
(mod l

′
K(μpn )).

Since Kum(N)(σl′) = ζpN , we have

φK
l′K

(x) = σ
(ι◦λ)(x)

l′ = (ι ◦ λ)(x) ⊗ σl′ .

Since (ι ◦ φl′)(x) ⊗ σl′ = φK
l′K

(x) and I : f 	→ ι ◦ f is an isomorphism, it follows that

φl′(x) = λ(x).

This completes the proof of Lemma 10.1.

10.2.

In this subsection, we prove Theorem 2.1.

Step 1. Preliminary argument on a minor of a relation matrix of Xχ
K∞

By Lemma 9.1(1) there is an exact sequence

0 −→ Λn
f−→ Λn

g−→ Xχ
K∞ −→ 0. (10.1)

Let A be the matrix corresponding to f . Consider the matrix Ai which is obtained from A by
eliminating the n1th row,. . . , the nith row and the m1th column,. . . , the mith column (Ai is
an (n− i) × (n− i) matrix). Our aim is to prove that detAi is in Θ(δ),χ

i,K∞ .
We put A0 = A. By the main conjecture proved by Wiles (Theorem 9.6), we know (detA0) =

(θχK∞). Thus, for i = 0, Θ(δ),χ
0,K∞ = (detA0) holds. In order to make our argument simple, we

take the above exact sequence (10.1) such that detA0 = θχK∞ . We also note that detA0 �= 0.
Suppose i � 1 in the following. We will prove detAi ∈ Θ(δ),χ

i,K∞ by induction on i. First of all,
since 0 ∈ Θχ

i,K∞ is clear, we may assume detAi �= 0. Furthermore, by changing the order of
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m1, . . . ,mi if it is needed, we may assume detAr �= 0 for all r such that 0 � r � i. In fact, let B
be the (n− i+ 1) × n matrix obtained from A by eliminating the n1th row,. . . , and the ni−1th
row. For l such that 1 � l � i, we denote by Bl the matrix obtained from B by eliminating the
mjth columns for all j such that 1 � j � i and j �= l. If detBl = 0 for all l (1 � l � i), then
the rank of Bl is equal to the rank of Ai which is n− i, so rankB = n− i. This shows that
rankA � n− i+ i− 1 = n− 1, which implies detA = 0, and we get a contradiction. Therefore,
one of detBl is non-zero. Replacing mi with ml, we get detAi−1 = detBl �= 0. Proceeding in
this way, we can take Ar such that detAr �= 0 for all r such that 0 � r � i.

Step 2. Definition of a homomorphism βr
Taking m sufficiently large, we may assume that all primes of k above p are ramified in K0,m,

and all primes of K0,m above p are totally ramified in K∞. We take positive integers Nm such
that Nm → ∞ as m→ ∞. To simplify the notation, we put K = K0,m, N = Nm. Note that K
satisfies the conditions of § 4.1 including (*), and we apply the results in §§ 2–9 for K and N .

Put RK = Oχ[Γ(K/k)] = Oχ[Gal(K/K0)], and denote by γm a generator of Gal(K∞/K) =
Gal(K∞/K0,m). Since (Xχ

K∞)Gal(K∞/K) � AχK is bijective by Lemma 9.9, it is finite. Therefore,
γm − 1 is prime to char(Xχ

K∞), and Gal(K∞/K)-invariant (Xχ
K∞)Gal(K∞/K) vanishes. Hence,

taking Gal(K∞/K)-coinvariants of the exact sequence (10.1), by Lemma 9.9 we obtain an exact
sequence

0 −→ RnK
f−→ RnK

g−→ AχK −→ 0, (10.2)

where f corresponds to the matrix Amod γm − 1.
Let (er)1�r�n be the standard basis of Λn in the exact sequence (10.1), and define

c1 = g(e1), . . . , cn = g(en) which are generators of Xχ
K∞ as a Λ-module. We denote by c(m)

r the
image of cr in AχK . The image of er in RnK will be denoted by the same notation er. Hence, we
have g(er) = c(m)

r ∈ AχK for all r. Recall that we defined the set S[i−1](K) in § 5.2. We define

Qr = {l ∈ S[i−1](K) | [lK ]χ = c(m)
r },

for each r where [lK ]χ is the class of lK in AχK . By the Chebotarev density theorem, Qr is
an infinite set. We define Q =

⋃
1�r�nQr. Let QK be the set of primes of K above Q, and

D =
⊕

ρ∈QK Z · ρ be the subgroup of DivK consisting of all divisors whose supports are in QK .
We have a natural surjective homomorphism

α : (D ⊗ Zp)χ −→ RnK

defined by [lK ]χ 	→ er for each l ∈ Qr and each r with 1 � r � n.
Let K denote the preimage of (D ⊗ Zp)χ under the map (K× ⊗ Zp)χ

div−→ (DivK ⊗Zp)χ. The
exact sequence in Lemma 4.1 yields an exact sequence

0 −→ K div−→ (D ⊗ Zp)χ −→ AχK −→ 0.

The homomorphism α induces a surjective homomorphism β : K −→ RnK such that the diagram
of exact sequences

0 −→ K div−→ (D ⊗ Zp)χ −→ AχK −→ 0⏐⏐�β ⏐⏐�α ⏐⏐�=

0 −→ RnK
f−→ RnK

g−→ AχK −→ 0

commutes. We define

βr = prr ◦β : K β−→ RnK
prr−→ RK

to be the composition of β with the rth projection.
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Taking mod pN of the natural homomorphism K −→ (K× ⊗ Zp)χ, we consider

K/pN −→ (K×/pN )χ.

This is injective, and the image coincides with the preimage of (D/pN )χ under the map
(K×/pN )χ div−→ (DivK /pN )χ. These properties can be checked by diagram chasing of the
commutative diagram of exact sequences

0 −→ AχK [pN ] −→ K/pN div−→ (D/pN )χ −→ AχK/p
N −→ 0⏐⏐�=

⏐⏐� ⏐⏐� ⏐⏐�=

0 −→ AχK [pN ] −→ (K×/pN )χ div−→ (DivK /pN )χ −→ AχK/p
N −→ 0

where the map (D/pN )χ −→ (DivK /pN )χ is injective. Using the above map K/pN −→
(K×/pN )χ, we identify K/pN with the preimage of (D/pN )χ under the map div.

For each r with 1 � r � n, we consider βr mod pN : K/pN −→ RK/p
N which we denote simply

by βr.

Step 3. Definition of xn,r and a key Lemma 10.2
For any n ∈ N[i−1](K) whose prime divisors are all in Q, Qn,K denotes the set of all prime

divisors of K dividing n. We define Dn =
⊕

ρ∈Qn,K
Z · ρ which is a subgroup of D, and Kn,N

to be the preimage of (Dn/p
N )χ under the map div : K/pN −→ (D/pN )χ. Note that Kn,N is a

finite submodule of (K×/pN )χ.
Recall that we are studying Ai which is the matrix obtained from A by eliminating the n1th

row,. . . , the nith row and the m1th column,. . . , the mith column. We choose ni+1, . . . , nn such
that {n1, . . . , nn} = {1, . . . , n}. We take lr ∈ Qnr for each r with 1 � r � n, and fix them. Put
L = l1 · . . . · ln. In the case i = 1, we put n = n1 = 1 and l = l1. Suppose i � 2. We consider
KL,N and

βm1 : KL,N −→ RK/p
N .

Applying Lemma 10.1, we can take r2 ∈ S(K(L)) such that r2 ∈ Qn2 , r2 �= l2, and βm1(x) =
φr2(x) for all x ∈ KL,N . For any r such that 2 < r � i+ 1, we take rr by induction on r. Put
nr−1 = r2 · . . . · rr−1. We consider

βmr−1 : KL nr−1,N −→ RK/p
N .

By induction on r, using Lemma 10.1, we take rr ∈ S(K(Lnr−1)) such that
(I) rr ∈ Qnr and rr �= lr;

(II) for the br ∈ (K× ⊗ Zp)χ such that div(br) = (rr,K − lr,K)χ, φrs(br) = 0 holds for any s
such that 2 � s < r and

(III) βmr−1(x) = φrr (x) for all x ∈ KL nr−1,N .
Thus, we have taken r2, . . . , ri+1. (Note that r1 is not defined.)
In the case i � 2, put l = l1, and n = ni = r2 · . . . · ri. In § 7, we defined the element xn,l which

is determined if ar is given for each r dividing n. For each rr with 2 � r � i, we take

arr = φrr (br)

to define xn,l. In the case i = 1, xn,l = xn1,l = x1,l = κ1,l = gKl . Since the elements κn/d,l are
all in K/pN , xn,l is in K/pN .

Lemma 10.2. (i) For r such that 2 � r � i, let βmr−1 be the map defined in Step 2. Then
we have

βmr−1(xn,l) = 0,

for any r such that 2 � r � i.
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(ii) Let αj = prj ◦α : (D/pN )χ α−→ (RK/pN )n
prj−→ RK/p

N be the composition of α with
the jth projection. Then we have

αj(div(xn,l)) = 0,

for any j such that j �= n1, . . . , ni.

Proof of Lemma 10.2. Since xn,l is a unit outside n l (Proposition 7.3(0)), (ii) is immediate
from the definition of xn,l (and the above property (I)). We will prove (i). For any r such
that 2 � r � i, let br ∈ (K× ⊗ Zp)χ be the element such that div(br) = (rr,K − lr,K)χ. By the
definition of α, we have α(div(br)) = 0, hence we know from the definition of β that β(br) = 0
for any r such that 2 � r � i. Put

x = xn,lb
−φrr

(xn/rr,l)
r . . . b

−φri
(xn/ri,l

)

i .

It follows from β(br) = . . . = β(bi) = 0 that

βmr−1(xn,l) = βmr−1(x).

By Proposition 7.3(1) we have divrs(x) = φrs(xn/rs,l) − φrs(xn/rs,l) = 0 for any s such that r �
s � i. This shows that div(x) ∈ (DL nr−1/p

N )χ, which implies x ∈ KL nr−1,N . Hence, applying
the above property (III), we obtain

βmr−1(x) = φrr (x).

By the above property (II), we have φrr (br+1) = . . . = φrr (bi) = 0. Therefore, we get

φrr (x) = φrr (xn,lb
−φrr

(xn/rr,l)
r ).

Now, using Proposition 7.3(2), we have

φrr (xn,lb
−φrr

(xn/rr,l)
r ) = φrr (br)φrr (xn/rr,l) − φrr (xn/rr,l)φrr (br) = 0.

Therefore, we have obtained βmr−1(xn,l) = 0, which completes the proof of Lemma 10.2.

Step 4. Approximation of the minor detAi
We go back to the proof of Theorem 2.1. Since xn,l is in KL ni,N , we note that we also have

βmi(xn,l) = φri+1
(xn,l)

by the property (III).
Put x = β(xn,l) ∈ (RK/pN )n and y = α(div(xn,l)) ∈ (RK/pN )n, which we regard as column

vectors. Since RK/pN = Λ/(γm − 1, pN ), we have

Ax ≡ y (mod (γm − 1, pN )).

Let x′ ∈ (RK/pN )n−i+1 be the vector obtained from x by eliminating the m1th row,. . . ,and
the mi−1th row, and y′ ∈ (RK/pN )n−i+1 the vector obtained from y by eliminating the n1th
row,. . . , and the ni−1th row. It follows from Lemma 10.2 (i) that the mrth row of x is zero in
RK/p

N for all r such that 1 � r � i− 1. Therefore, we have

Ai−1x′ ≡ y′ (mod (γm − 1, pN )).

If i � 2, then the nith component of y is φri(xn/ri,l) = φri(xni−1,l) by Proposition 7.3(1).
Hence, if the n′ith component of y′ is the nith component of y, then by Lemma 10.2(ii) we have

y′ = φri(xni−1,l)en′
i
,

where en′
i

denotes the n′ith standard basis vector of (RK/pN )n−i+1. We saw βmi(xn,l) =
φri+1

(xn,l) above. Therefore, the mith component of x is φri+1
(xn,l). We suppose that the m′ith
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component of x′ is the mith component of x. Let Adj(Ai−1) be the matrix of cofactors (namely,
the (s, t) entry of Adj(Ai−1) is (−1)s+t detPts where Pts is the matrix obtained by eliminating
the tth row and the sth column of Ai−1). Multiplying both sides of Ai−1x′ ≡ φri(xni−1,l)en′

i

by Adj(Ai−1) on the left, we get

(detAi−1)x′ ≡ φri(xni−1,l)Adj(Ai−1)en′
i
.

Hence, we obtain

(detAi−1)φri+1
(xn,l) ≡ (−1)n

′
i+m

′
i(detAi)φri(xni−1,l) (mod (γm − 1, pN )).

Recall that n = ni. We are not concerned with the sign problem, and write the above equation
as

(detAi−1)φri+1
(xni,l) ≡ ±(detAi)φri(xni−1,l) (mod (γm − 1, pN )). (10.3)

If i = 1, then x1,l = gKl , so the n1-th component of y is θχK , and y = θχKen1 . Therefore, by
the same method as above, we obtain

(detA0)φr2(xn1,l) ≡ (−1)n1+m1(detA1)θ
χ
K (mod (γm − 1, pN )). (10.4)

In order to clarify that we are working over K = K0,m, we write φri+1
(xni,l)m for φri+1

(xni,l).

Lemma 10.3. For i � 1 the limit of φri+1
(xni,l)m exists in Λ as m goes to ∞. (Namely, if

φri+1
(xni,l)

′
m ∈ Λ is a lifting of φri+1

(xni,l)m ∈ Λ/(pNm , γm − 1), lim
m→∞φri+1

(xni,l)
′
m exists.) We

denote the limit by lim
m→∞φri+1

(xni,l)m . We also have

lim
m→∞φri+1

(xni,l)m = ±detAi ∈ Λ.

Proof of Lemma 10.3. Recall that we took A0 such that detA0 = θχK∞ in the beginning of
this subsection. We have lim

m→∞θ
χ
K0,m

= θχK∞ = detA0. Hence, the above congruence (10.4) on

φr2(xn1,l) implies that the limit of φr2(xn1,l)m exists, and

lim
m→∞φr2(xn1,l)m = ±detA1

because detA0 �= 0. For general i � 2, by the same method as for i = 1, using (10.3) for
φri+1

(xni,l) and induction on i, we get

detAi−1 lim
m→∞φri+1

(xni,l)m = ±detAi detAi−1

(we note that the sign does not depend on m). Recall that we took Ar such that detAr �= 0
for any r with 1 � r � i. Therefore, the limit of φri+1

(xni,l)m exists, and we get

lim
m→∞φri+1

(xni,l)m = ±detAi.

Step 5. Final step of the proof of Theorem 2.1
We now prove Theorem 2.1. Put Im = (pNm , γm − 1), and ξm = φri+1

(xni,l)m ∈ Λ/Im. Note
that (ξm)m might not be a projective system (namely, (ξm)m ∈ lim← Λ/Im might not hold).
Since ξm converges, the image ξn,m of ξn for sufficiently large n� m under the natural
map πn,m : Λ/In −→ Λ/Im does not depend on the choice of n. We denote it by ξ′m. If the
following Lemma 10.4 holds, then applying it to ξn ∈ Λ/In, we have ξn ∈ Θ(δ,N),χ

i,K0,n
. Since

πn,m(Θ(δ,Nn),χ
i,K0,n

) ⊂ Θ(δ,Nm),χ
i,K0,m

, ξ′m = ξn,m is in Θ(δ,Nm),χ
i,K0,m

. By the construction of ξ′m, (ξ′m)m
becomes a projective system. Hence, we obtain (ξ′m)m ∈ lim← Θ(δ,Nm),χ

i,K0,m
= Θ(δ),χ

i,K∞ . This shows that

detAi = ± lim
m→∞ ξm = ± lim

m→∞ ξ
′
m ∈ Θ(δ),χ

i,K∞ .
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Therefore, we have

Fitti,Λ(Xχ
K∞) ⊂ Θ(δ),χ

i,K∞ .

Combining the above inclusion with the inclusions Θ(δ),χ
i,K∞ ⊂ Θχ

i,K∞ ⊂ Fitti,Λ(Xχ
K∞) in Corol-

lary 9.12, we get

Fitti,Λ(Xχ
K∞) = Θ(δ),χ

i,K∞ = Θχ
i,K∞ . (10.5)

Therefore, our final task is to prove the following lemma.

Lemma 10.4. For any i � 1, φri+1
(xni,l)m is in Θ(δ,Nm),χ

i,K0,m
.

Proof of Lemma 10.4. To simplify the notation, we again write K = K0,m, N = Nm, n = ni
and φri+1

(xn,l) = φri+1
(xni,l)m. Applying Lemma 10.1 to the map φri+1

: Kn l,N −→ RK/p
N ,

we can take l′ ∈ Qn1 which satisfies the properties stated before Lemma 7.2, and

φri+1
(x) = φl′(x),

for any x ∈ Kn l,N . In particular, we have

φri+1
(xn,l) = φl′(xn,l).

Let b ∈ (K× ⊗ Zp)χ be the element such that div(b) = (l′K − lK)χ. By Proposition 7.3(3) we
have

φri+1
(xn,l) = φl′(xn,l) = −

∑
d|n

ad(δn/d l′ + δn/dφl′(b)).

Since ε(n/d) < ε((n/d) l′) � ε(n l′) = i for any d (ε(n) is defined in the beginning of § 5.2), both
δn/d l′ and δn/d are in Θ(δ,N),χ

i,K . Hence, we get

φri+1
(xn,l) ∈ Θ(δ,N),χ

i,K .

This completes the proof of Lemma 10.4 and Theorem 2.1.

10.3.

In this subsection, we prove Theorem 2.3 and Corollary 2.4.
We first prove Theorem 2.3. Let πm : Λ −→ RK0,m be the natural map for any m � 0. By

Lemma 9.9 we have πm(Fitti,Λ(Xχ
K∞)) = Fitti,RK0,m

(AχK0,m
). Since πm(Θ(δ),χ

i,K∞) ⊂ Θ(δ),χ
i,K0,m

by
definition, using (10.5) in the proof of Theorem 2.1, we have

Fitti,RK0,m
(AχK0,m

) = πm(Fitti,Λ(Xχ
K∞)) = πm(Θχ

i,K∞) = πm(Θ(δ),χ
i,K∞) ⊂ Θ(δ),χ

i,K0,m
⊂ Θχ

i,K0,m
.

The last inclusion is (8.1) in § 8. On the other hand, we have the other inclusion Θχ
i,K0,m

⊂
Fitti,RK0,m

(AχK0,m
) by Theorem 9.11, so we get the equality Fitti,RK0,m

(AχK0,m
) = Θ(δ),χ

i,K0,m
=

Θχ
i,K0,m

.
Next, we prove Corollary 2.4. Since we have shown πm(Θχ

i,K∞) = Θχ
i,K0,m

above, Θχψ
i is the

image of Θχ
i,K∞ under the map Λ πm−→ RK0,m

ψ−→ Oχψ. Therefore, Corollary 2.4 is an immediate
consequence of Theorem 2.1 and Lemma 9.5.

10.4.

Finally, we give two remarks in this subsection.
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Remark 10.5. We give some examples of numerical computation. Take k = Q, K0 =
Q(

√−2437), p = 3 and χ to be the character associated to K0. Then all the assumptions
of Theorem 2.1 are satisfied. We identify Λ with Zp[[T ]], using the correspondence between γ
and 1 + T where γ is the generator of Gal(K∞/K0) such that κ(γ) = 1 + p, where κ is the
cyclotomic character. It is easy to check that the λ-invariant of the p-adic L-function θχK∞ is
2, and AK0 = (Z/3Z)⊕2. We have Fitt1,Λ(XK∞) �= Λ because Fitt1,Z3(AK0) = (3) �= Z3. We
regard θχK∞ = θχK∞(T ) as an element of Z3[[T ]]; then we have ord3(θ

χ
K∞(0)) = 2. For a prime

� such that � ≡ 1 (mod p2), K0(�) denotes the maximal p-extension of K0 in K0(μ�), and
G� = Gal(K0(�)/K0). We consider θχK0(�)∞

∈ Λ[G�], and write

θχK0(�)∞
= δ

(�)
0 + δ

(�)
1 (σ� − 1) + δ

(�)
2 (σ� − 1)2 + . . . ,

where δ
(�)
i ∈ Λ for i � 0. We compute the image δ

(�)
1 of δ(�)1 in Λ/(9, T 2) = Z3[T ]/(9, T 2),

and obtain

δ
(19)
1 = 2T + 3 and δ

(37)
1 = 7T.

Hence, Theorem 2.1 implies that Fitt1,Λ(XK∞)mod (9, T 2) contains 2T + 3 and 7T . This
shows that the image of Fitt1,Λ(XK∞) in Λ/(p2, T 2) contains (3, T ), which implies that
Fitt1,Λ(XK∞) ⊃ (3, T ). Since Fitt1,Λ(XK∞) �= Λ, it follows that

Fitt1,Λ(XK∞) = (3, T ).

By Lemma 9.3 the information that Fitt0,Λ(XK∞) = (θχK∞), Fitt1,Λ(XK∞) = (3, T ) and
Fitt2,Λ(XK∞) = Λ determines the isomorphism class of Xχ

K∞ (concerning relation matrices
of Xχ

K∞ , see [9, Lemma 9.1]).
For both K0 = Q(

√−6226) and Q(
√−6910)) with p = 3, the λ-invariant of θχK∞ are also 2,

and AK0 = (Z/3Z)⊕2. We can also compute

δ
(19)
1 = 3 and δ

(37)
1 = 2T + 3 for K0 = Q(

√−6226)

and

δ
(19)
1 = 3T + 3 and δ

(37)
1 = 7T for K0 = Q(

√−6910),

respectively.
Therefore, we get Fitt1,Λ(XK∞) = (3, T ) in these two cases, too. Hence, the isomorphism

class is also determined by these data. In [7], Koike determined the isomorphism classes
for many numerical examples, but in these two cases (Q(

√−6226) and Q(
√−6910)) the

isomorphism classes were not determined by his method.

Remark 10.6. Using the theory in this paper, we can compute in several cases not only
the Fitting ideals but also the matrix corresponding to f in (10.2) in § 10.2. We will give a
simple example.

Suppose K = K0,m, l1 l2 ∈ N[2](K) and l2 ∈ S(K(l1)). We assume that δl1 l2 is a unit in
RK/p

N . (The numerical computation of δn is easy in general.) Then Fitt2,RK (AχK) = RK by
Theorem 2.3, and AχK is generated by two elements over RK (cf. § 9.1). Assume further that AχK
is generated by [l1]χ and [l2]χ. Then Kl1 l2,N is a freeRK/pN -module of rank 2, and κl1,l2 , κl2,l1 is
a basis of Kl1 l2,N . In fact, by Propositions 6.4 and 6.5, we have φl1

(κl1,l2) = 0, φl2
(κl1,l2) = δl1 l2 ,

φl1
(κl2,l1) = δl1 l2 , and φl2

(κl2,l1) = 0. This shows that φl1
⊕ φl2

: Kl1 l2,N −→ (RK/pN )⊕2 is an
isomorphism, and κl1,l2 , κl2,l1 is a basis of Kl1 l2,N . Consider the exact sequence

Kl1 l2/p
N div−→ (Dl1 l2/p

N )χ −→ AχK/p
N −→ 0.
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Using the basis κl1,l2 , κl2,l1 , we can compute the relation matrix of AχK/p
N to be(

φl1
(gKl2 ) δl2
δl1 φl2

(gKl1 )

)

by Proposition 5.2. Note that the entries of the matrix are numerically computable in principle
if k = Q. This is also an example in which both κl1,l2 and κl2,l1 play important roles.

Appendix A.

In this appendix, we prove the following proposition.

Proposition A.1. Suppose that r, l are two distinct primes in S(K). We take l′ ∈
S(K(r)) and b ∈ (K× ⊗ Zp)χ such that div(b) = (l′K − lK)χ and φ

(nr)
r (b) = 0 where φ

(nr)
r :

(K×/pnr)χ −→ Oχ/p
nr [Γ(K/k)] ⊗Gr is the map defined by taking N = nr. Put κ̃r,l = κ̃r,l′ −

δ̃rb. Then κ̃r,l does not depend on the choice of l′.

Proof. Put L = K(r) and G = Gal(L/K). Suppose that we take two primes l1, l2 ∈ S(L)
such that there exist b1, b2 ∈ (K× ⊗ Zp)χ with div(bi) = ((li)K − lK)χ and φ

(nr)
r (bi) = 0 for

i = 1, 2. Put b = b1/b2. We denote by K{r}/K the maximal abelian p-extension which is
unramified outside r. Consider the χ-component Gal(K{r}/K)χ of the Galois group, and define
K{r}χ to be the intermediate field such that Gal(K{r}χ/K) = Gal(K{r}/K)χ. We denote by
L′/L the maximal unramified p-extension such that L′/K is abelian and Δ(K/k) acts on
Gal(L′/L) via χ. Then we have a canonical isomorphism Gal(L′/L) �−→ (AχL)G. Since the
ramification index of a prime above r in L/K is pnr and the ramification index of a prime
above r in any abelian extension M/k is at most pnr , it follows that LK{r}χ/L is unramified
above r and so unramified everywhere. Hence, the restriction map

Gal(L′/L) = (AχL)G
�−→ Gal(K{r}χ/K)

is bijective.
Put Ψ = ((

∏
v|rK

×
v /U

1
Kv

×⊕v�rK
×
v /UKv ) ⊗ Zp)χ. We consider the commutative diagram

((L× ⊗ Zp)χ)G
div−→ ((DivL⊗Zp)χ)G −→ (AχL)G −→ 0⏐⏐�NL/K ⏐⏐�ψ ⏐⏐��

0 −→ (K× ⊗ Zp)χ
i−→ Ψ −→ Gal(K{r}χ/K) −→ 0

where i is the natural map which is injective because of (O×K ⊗ Zp)χ = 0, and ψ is the map
induced by the norm map. Since φ(nr)

r (b) = 0, the v-component of i(b) ∈ ((
∏
v|rK

×
v /U

1
Kv

×⊕
v�rK

×
v /UKv ) ⊗ Zp)χ is trivial for all v | r. Hence, i(b) is in the image of ψ. Therefore, by

the above commutative diagram, there is a ∈ (L× ⊗ Zp)χ such that NL/K(a) = b and div(a) =
l1,L− l2,L +(σr − 1)x for some x ∈ (DivL⊗Zp)χ.

We have div((gLl1/g
L
l2

)(θχLa
−1)) = −θχL(σr − 1)x. Hence,

div

(
Dr

(
gLl1
gLl2

(θχLa
−1)

))
= −Drθ

χ
L(σr − 1)x = (Nr − pnr)θχLx.

By Lemma 3.4 we have Nrθ
χ
L = (1 − ϕ−1

r )θχKNr = 0, hence div(Dr((gLl1/g
L
l2

)(θχLa
−1))) =

−pnrθχLx holds. We take gx ∈ (L× ⊗ Zp)χ such that div(gx) = θχLx. This is possible because
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θχLA
χ
L = 0. Thus, we have div(Dr((gLl1/g

L
l2

)(θχLa
−1))) = −div(gp

nr

x ), which implies

Dr

(
gLl1
gLl2

(θχLa
−1)

)
= g−p

nr

x

in (L× ⊗ Zp)χ by Lemma 4.1. It follows that Dr(gLl1/g
L
l2

) = Drθ
χ
La in (L× ⊗ Z/pN )χ. Hence,

we have in (L× ⊗ Z/pN )χ

κr,l1

κr,l2

= Drθ
χ
La = δrNra = δrb = δr

(
b1
b2

)
.

Therefore, we obtain
κr,l1

δrb1
=
κr,l2

δrb2

in (K× ⊗ Z/pN )χ. This implies κ̃r,l1 − δ̃rb1 = κ̃r,l2 − δ̃rb2, which completes the proof of
Proposition A.1.
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