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Rubin-Stark elements and ideal class groups

By

Masato Kurihara∗

Abstract. This article is a survey of the Galois module structure of the class

groups of number fields, and of their relation with the L-values. After we explain

several classical results, e.g., the order of a character component of a class group, etc.,

we introduce the Rubin-Stark conjecture in Rubin [27], which asserts the existence of

certain algebraic elements related to the L-values. We also explain some new properties

of Rubin-Stark elements obtained in a joint work of the author with D. Burns and

T. Sano [7], including the description of the Fitting ideals of class groups and certain

cohomology groups. We also give several concrete examples.

.

§ 1. Introduction

§ 1.1. the class number formula

The history of the arithmetic meaning of the values of zeta functions began with

the celebrated class number formula by Dirichlet in the early 19th century, which was

later developed by Kummer and Dedekind. For a number field K, the Dedekind zeta

function ζK(s) has a simple pole at s = 1 with residue

(1.1) 2r1(2π)r2
hKRK

wK

√
dK

where hK is the order of the ideal class group, RK the regulator, wK the number of

roots of unity in K, and dK the absolute value of the discriminant. By the functional

equation, this is equivalent to the fact that ζK(s) has a zero at s = 0 of order r1+r2−1

and

(1.2) lim
s→0

ζK(s)

sr1+r2−1
= −hKRK

wK
.
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If K/k is an abelian extension, ζK(s) decomposes into L-functions, but it is not easy in

general to obtain the corresponding formula which describes the arithmetic meaning of

the values of L-functions.

§ 1.2. the order of a character component of a class group

Let us consider a simple and classical case that K = Q(µp) is the field of p-th

roots of unity for an odd prime number p, k = Q, and G = Gal(K/k). Then we

know that the Dedekind zeta function ζK(s) decomposes into Dirichlet L-functions;

ζK(s) = Πχ∈ĜL(s, χ). Comparing the class number formulae of K and the maximal

real subfield K+, we have

(1.3) 2
p−3
2

1

p
h−
K =

∏
χ(−1)=−1

L(0, χ)

where h−
K = hK/hK+ and χ runs over all odd characters of G. Let Cl(K) be the ideal

class group of K. We study the Z[G]-module Cl(K) later, but in this subsection we

only consider the p-component and put AK = Cl(K)⊗Zp. Then AK is decomposed as

a Zp[G]-module into AK =
⊕

χ∈Ĝ Aχ
K where χ is regarded as a character whose values

are in Z×
p , and Aχ

K is the subgroup consisting of elements x with σ(x) = χ(σ)x for all

σ ∈ G. For the Teichmüller character ω which gives the action of G on the group µp of

p-th roots of unity, we know ordp L(0, ω
−1) = −1 and Aω

K = 0, so (1.3) suggests that

(1.4) #Aχ
K = #(Zp /L(0, χ

−1))

for any odd χ with χ ̸= ω. After Kummer, Stickelberger, Herbrand and Ribet, this final

form on the order of the character component of the class group was proved by Mazur

and Wiles ([23] Chapter 1 §10 Theorem 2) as a corollary of the main conjecture. We note

that if χ = ωi such that i is odd and 1 < i < p− 1, we know L(0, χ−1) ≡ Bp−i/(p− i)

(mod p) where Bp−i is the Bernoulli number, so (1.4) implies the following famous

Herbrand-Ribet’s theorem;

Aωi

K ̸= 0 ⇐⇒ p|Bp−i.

For a ∈ Z which is prime to p, we define σa ∈ G by σa(ζp) = ζap where ζp is a

primitive p-th root of unity. Let

θK/Q =

p−1∑
a=1

(
1

2
− a

p
)σ−1

a ∈ Q[G]

be the Stickelberger element of K/Q. Note that θK/Q is in the minus part Q[G]− which

consists of elements on which the complex conjugation acts as −1. If χ is a character

of G with χ ̸= 1, the image of θK/Q under the ring homomorphism χ̃ : Q[G] −→ Qp
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that is defined by σ 7→ χ(σ) is L(0, χ−1). We know (c− σc)θK/Q ∈ Z[G] for any c ∈ Z
which is prime to 2p. We take g ∈ Z such that g is prime to 2p, σg is a generator of G,

and p2 does not divide g − ω(g). We also consider the decomposition AK = A+
K ⊕ A−

K

where A±
K is the subgroup of elements on which the complex conjugation acts as ±1

(A+
K equals AK+). Since Zp[G] is a product of discrete valuation rings, the assertion

(1.4) together with information on Aω
K is equivalent to

(1.5) Fitt0,Zp[G]−(A
−
K) = ((g − σg)θK/Q)

where Zp[G]− is the ring consisting of elements of Zp[G] on which the complex conjuga-

tion acts as −1, the left hand side is the initial Fitting ideal whose definition we explain

in §5, and the right hand side is the principal ideal of Zp[G]− generated by (g−σg)θK/Q.

Next, we consider even characters χ. First of all, if χ = 1, we know A1
K = AQ = 0.

Let ζp be a primitive p-th root of unity and consider the cyclotomic unit 1− ζp, which

is a p-unit ∈ OK [1/p]×. The group OK [1/p]× ⊗ Zp decomposes into OK [1/p]× ⊗ Zp =⊕
χ(OK [1/p]× ⊗ Zp)

χ, and we denote by cχK ∈ (OK [1/p]× ⊗ Zp)
χ the χ-component of

1− ζp. For an even character χ ̸= 1, we know cχK is in (O×
K ⊗Zp)

χ = (OK [1/p]×⊗Zp)
χ.

Since the cyclotomic unit is related to the L-values, the class number formula for K+ =

Q(cos(2π/p)) suggests

(1.6) #Aχ
K = ((O×

K ⊗ Zp)
χ : ⟨cχK⟩)

for χ ̸= 1 where ⟨cχK⟩ is the Zp-submodule generated by cχK . This was known as Gras’

conjecture, and proved by Mazur and Wiles ([23] Chapter 1 §10 Theorem 1) also as a

corollary of the main conjecture. Let CK+,p be the intersection of the Zp[G]-module

generated by 1− ζp and ζp with O×
K+ ⊗ Zp where O×

K+ is the unit group of K+. Then

(1.6) is equivalent to

(1.7) Fitt0,Zp[G]+(A
+
K) = Fitt0,Zp[G]+((O

×
K+ ⊗ Zp)/CK+,p) .

§ 1.3. an annihilation result

We introduce a classical theorem on the Galois module structure of the ideal class

groups of cyclotomic fields, which was obtained in the 19-th century by Stickelberger

after works by Gauss, Jacobi, Cauchy and Kummer. Consider a cyclotomic field K =

Q(µm) for some m ∈ Z>0 (we take m to be the conductor of K), and its Stickelberger

element

(1.8) θK/Q =

m∑
a=1

(a,m)=1

(
1

2
− a

m
)σ−1

a ∈ Q[G]
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where G = Gal(Q(µm)/Q) and σa is the element of G such that σa(ζ) = ζa for any

ζ ∈ µm. Then for c ∈ Z which does not divide 2m, (c − σc)θK/Q is in Z[G], and

Stickelberger’s theorem asserts that

(1.9) (c− σc)θK/Q ∈ AnnZ[G](Cl(K))

where AnnR(M) is the annihilator ideal of an R-module M . This theorem is proved

by using the prime decomposition of Gauss sums. More precisely, for a prime ideal

p which is prime to m, we can construct ϵ ∈ K× such that the prime decomposition

of ϵ is p(c−σc)θK/ Q , using Gauss sums. The prime decomposition of a Gauss sum was

important in the study of reciprocity laws, and was done by Kummer for Q(µp) with a

prime p. Stickelberger generalized it to general cyclotomic fields.

Stickelberger elements, cyclotomic units, and Gauss sums are typical examples of

Rubin-Stark elements, which we will explain in §2.
In §4 we discuss a generalization of the formulae on the orders of the character

components of the class group of the cyclotomic field in §1.2, and a generalization of the

annihilation result by Stickelberger in §1.3, to general finite abelian extensions K/k.

Remark 1. (1) For any finitely presented R-module M , we know Fitt0,R(M) ⊂
AnnR(M), so we have a natural question whether

(c− σc)θK/Q ∈ Fitt0,Z[G](Cl(K))

holds for K = Q(µm). This was proved in [19] except the 2-component, namely

(c− σc)θK/Q ∈ Fitt0,Z′[G](Cl(K)⊗ Z′)

holds where Z′ = Z[1/2]. In fact, we proved in [19] Theorem 0.1 that Fitt0,Z′[G]((Cl(K)⊗
Z′)−) coincides with the Stickelberger ideal of Iwasawa-Sinnott over Z′ (cf. Sinnott [30]).

In general, Fitt0,Z[G](Cl(K)) is not a principal ideal.

(2) For a prime number ℓ which is prime to 2m, we denote by Cl{ℓ}(K) the ray class

group modulo Πv|ℓv ofK. We define in §3 the Selmer module SS∞,{ℓ}(K) which contains

Cl{ℓ}(K)∨ as a submodule, where Cl{ℓ}(K)∨ is the Pontrjagin dual of Cl{ℓ}(K). We

will see in (4.1) in §4.3 a stronger result

((ℓ− σℓ)θK/Q)
# ∈ Fitt0,Z[G](SS∞,{ℓ}(K))

than (1.9) where x 7→ x# is the involution induced by σ 7→ σ−1 for σ ∈ G. This implies

(ℓ− σℓ)θK/Q ∈ AnnZ[G](Cl
{ℓ}(K)),

so implies (1.9) since Cl(K) is a quotient of Cl{ℓ}(K).
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§ 2. Rubin-Stark conjecture

Let k be a number field or a function field of one variable over a finite field, and

K/k a finite abelian extension with Galois group G. In this section we introduce and

explain the Rubin-Stark conjecture formulated in Rubin [27]. A fundamental reference

of Stark’s conjecture is a book by Tate [31].

§ 2.1. (S, T )-modified L-functions

We denote by S∞ the set of all infinite places of k, and by Sram(K/k) (or simply by

Sram if there is no confusion) the set of all ramifying places of k in K. For a character

χ of G and a non-empty finite set S of places which contains S∞ ∪ Sram, we define the

S-truncated L-function by

LS(s, χ) =
∏
v ̸∈S

(1− χ(Frobv)Nv−s)−1,

which is analytically continued to the whole complex plane (except s = 1 in the case

χ = 1). Let Gv be the decomposition subgroup of v in G for v ∈ S. The L-function

LS(s, χ) has order #{v ∈ S | χ(Gv) = 1} at s = 0 if χ ̸= 1, and order #S − 1 if χ = 1.

Suppose that T is a non-empty finite set of places of k such that S ∩ T = ∅. The

(S, T )-modified L-function is defined by

LS,T (s, χ) =
∏
t∈T

(1− χ(Frobt)Nt1−s)
∏
v ̸∈S

(1− χ(Frobv)Nv−s)−1

= (
∏
t∈T

(1− χ(Frobt)Nt1−s))LS(s, χ).

The first person who made this kind of modification is Euler. He computed the special

values of the Riemann zeta function at negative integers, using this kind of modification.

This L-function is now often used in the study of the Stark conjecture. An advantage of

this modification is that LS,T (s, χ) is holomorphic over C. We consider the equivariant

L-function

θK/k,S,T (s) =
∑
χ∈Ĝ

LS,T (s, χ
−1)eχ ∈ C[G]

for each s ∈ C where eχ = (#G)−1Σσ∈Gχ(σ)σ
−1.

We denote by SK , TK the set of places of K above S, T , respectively. We define a

ring OK,S by

OK,S = {a ∈ K | ordw(a) ≥ 0 for all finite places w of K not contained in SK}

where ordw denotes the normalized additive valuation at w. We define the (S, T )-unit

group of K by

O×
K,S,T = {a ∈ O×

K,S | a ≡ 1 (mod w) for all w ∈ TK},
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which is a subgroup of O×
K,S of finite index. We take T such that O×

K,S,T is Z-torsion-
free. If k has positive characteristic, any non-empty T with S ∩ T = ∅ satisfies this

condition. When char(k) = 0, the condition on T is satisfied if S ∩ T = ∅ and T

contains two primes of distinct residual characteristics, for example.

Suppose that r ∈ Z≥0 and LS,T (s, χ) has a zero of order ≥ r at s = 0 for all χ ∈ Ĝ.

We define

(2.1) θ
(r)
K/k,S,T = lim

s→0
s−rθK/k,S,T (s).

When r = 0, θ
(0)
K/k,S,T = θK/k,S,T (0) is the (generalized) Stickelberger element, which

we denote by θK/k,S,T . We know ([27] Theorem 3.3)

θK/k,S,T = θK/k,S,T (0) ∈ Z[G]

(an essential case is that k is totally real and K is a CM-field, and we need a theorem

of Deligne and Ribet [11] or of P. Cassou-Noguès [8] to show the above). For general r,

one can see that θ
(r)
K/k,S,T ∈ R[G].

§ 2.2. regulator isomorphisms and Rubin-Stark elements

Let S be a finite set of places of k containing S∞ ∪ Sram. As above, we denote

by SK the set of places of K above S. We define XK,S to be the subgroup of the free

abelian group on the set SK comprising elements whose coefficients sum to zero, namely

XK,S = Ker(
⊕

w∈SK
Z −→ Z). We define the Dirichlet regulator map

λK,S : O×
K,S ⊗ R ≃−→ XK,S ⊗ R

by λK,S(x) = −
∑

w∈SK
log |x|ww, which is an isomorphism. We take T such that

O×
K,S,T is Z-torsion-free as in the previous subsection. For each place v ∈ S, we fix

a place w of K above v. We write S = {v0, v1, ..., vs}. We take r ∈ Z≥0 such that

r ≤ #{v ∈ S | v splits completely in K}. By convention, we assume that each place vi

with 1 ≤ i ≤ r splits completely in K and put V = {v1, ..., vr} (in the case r = 0, we

take V to be the empty set). Then LS,T (s, χ) has a zero of order ≥ r at s = 0 for all

χ ∈ Ĝ.

For a Z[G]-module M , we denote by
∧r

Z[G] M the r-th exterior power of the Z[G]-

module M . The above regulator isomorphism induces an isomorphism

λK,S : (
r∧

Z[G]

O×
K,S,T )⊗ R ∼−→ (

r∧
Z[G]

XK,S)⊗ R,

which we also denote by λK,S . We define the Rubin-Stark element

ϵVK/k,S,T ∈ (
r∧

Z[G]

O×
K,S,T )⊗ R
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by

(2.2) λK,S(ϵ
V
K/k,S,T ) = θ

(r)
K/k,S,T

r∧
i=1

(wi − w0).

Here, wi is the place we fixed above vi (0 ≤ i ≤ r). This element ϵVK/k,S,T does not

depend on the choice of v0 ∈ S \ V .

When r = 0, λK,S is the identity map on (
∧0

Z[G] O
×
K,S,T )⊗R = (

∧0
Z[G] XK,S)⊗R =

R[G] and ϵVK/k,S,T is the Stickelberger element θK/k,S,T .

Next, suppose that k = Q and K = Q(µm)+ with conductor m > 0, and take r = 1

and V = {∞}. We take a place w above ∞ and regard K as a subfield of R by the

embedding w. Put ζm = e2πi/m ∈ C. We know the classical formula

L′(0, χ) = −1

2

∑
σ∈G

log |(1− ζσm)(1− ζ−σ
m )|wχ(σ)

for any character χ of G (Tate [31] p.79). We take S = {p | p divides m} ∪ {∞} and

T to be a finite set of primes containing an odd prime such that T ∩ S = ∅. Using the

above formula, we can prove that

λK,S(cT ) = θ
(1)
K/k,S,T (w − w0)

where cT = (1−ζm)δT with δT =
∏

ℓ∈T (1−ℓσ−1
ℓ ) (see [31] p.79 and [25] §4.2). Note that

since the complex conjugation fixes cT , it is in K and we can show that cT ∈ O×
K,S,T .

In this case, we have ϵVK/k,S,T = cT .

Thus the Rubin-Stark elements can be regarded as generalization of the Stickel-

berger elements and of the cyclotomic units.

§ 2.3. Rubin’s lattice

We need a theory of integral lattices in R[G]-modules.

Let M be a Z[G]-module. For any G-homomorphism φ : M −→ Z[G] and any

r ∈ Z>0, we define

φ :
r∧

Z[G]

M −→
r−1∧
Z[G]

M

by m1∧ ...∧mr 7→
∑r

i=1(−1)i−1φ(mi)m1∧ ...∧mi−1∧mi+1∧ ...∧mr (we use the same

notation φ for this homomorphism). We note that
∧0

Z[G] M = Z[G].

For φ1,..,φj ∈ HomG(M,Z[G]), we define

φ1 ∧ ... ∧ φj :
r∧

Z[G]

M −→
r−j∧
Z[G]

M
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to be the composite homomorphism φj ◦ ... ◦φ1. Thus, for Φ ∈
∧j

HomG(M,Z[G]) and

x ∈
∧r

M , Φ(x) ∈
∧r−j

M is defined. If j = r, we know

(φ1 ∧ ... ∧ φr)(m1 ∧ ... ∧mr) = det(φi(mj)) ∈ Z[G].

Let M be a finitely generated Z[G]-module such that M is Z-torsion-free. Then we

define Rubin’s lattice
∩r

G M by

(2.3)

r∩
G

M = {x ∈ (

r∧
Z[G]

M)⊗Q | Φ(x) ∈ Z[G] for all Φ ∈
∧r

HomG(M,Z[G])},

which is a lattice in (
∧r

Z[G] M)⊗Q.

Note that
∩r

G M is bigger than the image of
∧r

Z[G] M in (
∧r

Z[G] M)⊗Q, in general.

If r = 0, we have
∩0

G M = Z[G] by definition. If r = 1, we have
∩1

G M = M ([27]

Proposition 1.2).

§ 2.4. Rubin-Stark conjecture

We can interpret Stickelberger elements, cyclotomic units, and Gauss sums as

Rubin-Stark elements. As a generalization of these elements, Rubin formulate in [27]

the following beautiful conjecture.

Conjecture 2.1. (Rubin-Stark conjecture; see Rubin [27] Conjecture B)

Let ϵVK/k,S,T ∈ (
∧r

Z[G] O
×
K,S,T ) ⊗ R be the Rubin-Stark element defined in (2.2), and∩r

G O×
K,S,T be the Rubin’s lattice for O×

K,S,T defined in (2.3). Then

ϵVK/k,S,T ∈
r∩
G

O×
K,S,T

would hold.

Remark 2. (1) The statement ϵVK/k,S,T ∈ (
∧r

Z[G] O
×
K,S,T )⊗Q is equivalent to the

so called Stark’s conjecture for characters χ whose L-functions LS(s, χ) have order r

at s = 0 (see Tate [31] Chap. I §5, and Rubin [27] Proposition 2.3). Rubin’s beautiful

idea is that the element related to the zeta values lies in some integral lattice, which is

a little bigger than
∧r

Z[G] O
×
K,S,T .

(2) In the case r = 0, ϵVK/k,S,T = θK/k,S,T ∈ Z[G], so the Rubin-Stark conjecture

holds. In the case r = 1, the Rubin-Stark conjecture is equivalent to the refined Stark

conjecture formulated in Tate [31] Chap. IV §2 (see Rubin [27] Proposition 2.5).

(3) The system of Rubin-Stark elements becomes an Euler system of rank r (for the

precise statement, see Rubin [27] Proposition 6.1). We note that it is important in the

argument of Euler systems to know that the elements live in an integral lattice.
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Remark 3. (1) Conjecture 2.1 is known to be true if K = k and [K : k] = 2

(Rubin [27] Corollary 3.2 and Theorem 3.5). This can be verified by using the class

number formulae for K and k.

(2) Conjecture 2.1 holds if k = Q or if K is a function field. In fact, in the case k = Q,

the equivariant Tamagawa number conjecture holds for K/k by Burns, Greither and

Flach [6], [12], and Burns proved that the equivariant Tamagawa number conjecture

implies the Rubin-Stark conjecture (Burns [2] Theorem A).

In the function field case, the leading term conjecture for K/k in Burns [2] was

proved by Burns [3], and it implies the Rubin-Stark conjecture (Burns [2] Theorem A).

We know that the equivariant Tamagawa number conjecture is equivalent to the leading

term conjecture in the number field case. In this article, we call both the equivariant

Tamagawa number conjecture and the leading term conjecture ETNC in the following.

In [7] §5, we gave a simplified proof that the ETNC implies the Rubin-Stark con-

jecture, by showing that the Rubin-Stark element ϵVK/k,S,T is the image under a certain

simple map of the zeta element whose existence is asserted by the ETNC.

Question 2.2. The Rubin-Stark conjecture asserts that

{Φ(ϵVK/k,S,T ) | Φ ∈
r∧
HomG(M,Z[G])}

is an ideal of Z[G]. Then, what is the arithmetic meaning of this ideal? We will answer

this question in §4.

§ 3. Canonical Z-structure of Selmer modules

In this section, we explain some integral cohomology groups introduced in [7]. We

suppose that K/k, G are as in §2. We take finite sets S, T of places of k such that

S ⊃ S∞ and S ∩ T = ∅. We do not assume S ⊃ Sram nor that O×
K,S,T is Z-torsion-free

in this section.

§ 3.1. two Selmer modules

Let SK , TK be the sets of places of K above S, T . We define

K×
T = {x ∈ K× : ordw(x− 1) > 0 for all w ∈ TK}

and

(3.1) SS,T (K) = Coker(
∏

w/∈SK∪TK

Z −→ HomZ(K
×
T ,Z))
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where the above homomorphism is defined by

(xw)w 7→ (a 7→
∑

w/∈SK∪TK

ordw(a)xw).

Let ClTS (K) be the ray class group of OK,S modulo Πw∈TKw. Therefore, ClTS (K)

is the cokernel of the divisor map K×
T −→

⊕
w/∈SK∪TK

Z by definition. When T is the

empty set ∅, we write ClS(K) for Cl∅S(K), which is equal to the class group Pic(OK,S)

of OK,S . We have an exact sequence

0 −→ O×
K,S,T −→ O×

K,S −→
⊕

w∈TK

κ(w)× −→ ClTS (K) −→ ClS(K) −→ 0

where κ(w) is the residue field of w.

Using the definition of SS,T (K), we can prove ([7] §2)

Proposition 3.1. We have an exact sequence

(3.2) 0 −→ ClTS (K)∨ −→ SS,T (K) −→ HomZ(O×
K,S,T ,Z) −→ 0

of G-modules where ClTS (K)∨ is the Pontrjagin dual of ClTS (K). In particular, SS,T (K)

is a finitely generated Z-module.

Take S = S∞ and T = ∅. We write Cl(K) for the ideal class group of K, so

Cl∅S∞
(K) = Cl(K). For general T , we also use the notation ClT (K) which means

ClTS∞
(K). Consider the Bloch-Kato Selmer group

H1
f (K,Q /Z(1)) = Ker(H1(K,Q /Z(1)) −→

∏
v

H1(Kv,Q /Z(1))/(O×
Kv

⊗Q /Z))

where v runs over all finite primes. The Pontrjagin dualH1
f (K,Q /Z(1))∨ is a Ẑ-module,

and

(3.3) 0 −→ Cl(K)∨ −→ H1
f (K,Q /Z(1))∨ −→ HomZ(O×

K , Ẑ) −→ 0

is exact. Our Selmer module SS∞,∅(K) gives the canonical Z-structure of the dual of

the Bloch-Kato Selmer group H1
f (K,Q /Z(1))∨.

We also introduce a G-module Str
S,T (K) in the next subsection, which sits in an

exact sequence

(3.4) 0 −→ ClTS (K) −→ Str
S,T (K) −→ XK,S −→ 0 .
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§ 3.2. Weil étale cohomology

In [7] we define a Weil étale cohomology complex

C• = RΓc,T ((OK,S)W ,Z),

which is acyclic outside degrees one, two and three. For i = 1, we have H1(C•) =

(
⊕

w∈SK
Z)/∆(Z) where ∆ is the diagonal map, and for i = 3, we have H3(C•) =

Hom((K×
T )tors,Q /Z). For i = 2, we write H2(C•) = H2

c,T ((OK,S)W ,Z). We can prove

that there is an isomorphism

(3.5) H2
c,T ((OK,S)W ,Z) ≃ SS,T (K).

In the function field case, let Xk be the proper smooth curve over a finite field,

corresponding to k, and (Xk)W the Weil étale site on Xk defined by Lichtenbaum [21]

§2. We denote by j : Spec(OK,S) −→ Xk the open immersion for OK,S . Suppose that

RΓc((OK,S)W ,Z) is a complex which gives the Weil étale cohomology Hi((Xk)W , j! Z).
Then RΓc,T ((OK,S)W ,Z) sits in the distinguished triangle

RΓc((OK,S)W ,Z) −→ RΓc,T ((OK,S)W ,Z) −→ (
⊕

w∈TK

κ(w)×)∨[−2].

In the number field case, the Weil étale site has not yet been defined, but we can

define the complex RΓc,T ((OK,S)W ,Z) which gives the “correct Weil étale cohomology

groups”.

We define

D• = RΓT ((OK,S)W ,Gm) = RHomZ(RΓc,T ((OK,S)W ,Z),Z)[−2],

and

(3.6) Str
S,T (K) := H1(D•) = H1

T ((OK,S)W ,Gm).

Then we can prove that Str
S,T (K) sits in the exact sequence (3.4) (see [7] §2).

Suppose that S and T satisfy the condition in §2.2. Then RΓT ((OK,S)W ,Gm)

is perfect. Using it, we can formulate a statement which is equivalent to the ETNC.

Namely, we can define a certain zeta element related to the leading terms of the (S, T )-

modified L-functions at s = 0, and the ETNC is equivalent to the statement that the

zeta element is a basis of detRΓT ((OK,S)W ,Gm) ([7] §3).

§ 4. Main results

In this section, we introduce some results on the Galois module structure of Selmer

modules, obtained in [7]. For other results obtained in [7], see Sano’s article [29] in this

volume.
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§ 4.1. main theorems

We recall our assumptions for the convenience of readers. Let K/k be a finite

abelian extension of number fields or function fields of one variable over a finite field,

and G = Gal(K/k). We suppose that S is a non-empty finite set of places, which

contains S∞ ∪ Sram, and that T is a finite set of places of k such that S ∩ T = ∅ and

that O×
K,S,T is Z-torsion-free. We assume that V is a proper subset of S with r = #V

and each place of V splits completely in K. We denote by ϵVK/k,S,T the Rubin-Stark

element defined in (2.2) and use the Selmer modules SS,T (K), Str
S,T (K) defined in (3.1),

(3.5), (3.6).

For a finitely presented R-module M , we denote by Fittr,R(M) the r-th Fitting

ideal of M (see §5). The involution Z[G] −→ Z[G] induced by σ 7→ σ−1 for σ ∈ G is

denoted by x 7→ x#.

Theorem 4.1. We assume that the ETNC is true for K/k (which implies by [2]

that Conjecture 2.1 holds true). Then we have

Fittr,Z[G](SS,T (K)) = {Φ(ϵVK/k,S,T )
# | Φ ∈

r∧
HomG(O×

K,S,T ,Z[G])}

and

Fittr,Z[G](Str
S,T (K)) = {Φ(ϵVK/k,S,T ) | Φ ∈

r∧
HomG(O×

K,S,T ,Z[G])} .

Though the above theorem deals with the r-th Fitting ideals, it can be regarded as a

statement on the initial Fitting ideals of certain modules. We explain it for the statement

on Str
S,T (K). Put YK,V =

⊕
w∈VK

Z, which is free of rank r over Z[G] and which we

regard as a quotient of XK,S . Let S′ be the kernel of the surjective homomorphism

Str
S,T (K) −→ XK,S −→ YK,V . By the definition of the Fitting ideal, we have

Fitti,Z[G](Str
S,T (K)) = 0 for any i < r,

and Fittr,Z[G](Str
S,T (K)) = Fitt0,Z[G](S

′). Note that ClTS (K) ⊂ S′.

Since ϵVK/k,S,T is an Euler system of rank r and it is very important to pursue

annihilation results for class groups in the theory of Euler systems, we mention one

more theorem, which is proved by using some argument in the proof of Theorem 4.1.

Theorem 4.2. We assume that the ETNC is true for K/k. Then for any Φ ∈∧r
HomG(O×

K,S,T ,Z[G]) and for any v ∈ S \ V , we have

Φ(ϵVK/k,S,T ) ∈ AnnZ[G](Cl
T
S∞∪V ∪{v}(K)).

Moreover, if G is cyclic, we have

Φ(ϵVK/k,S,T ) ∈ Fitt0,Z[G](Cl
T
S∞∪V ∪{v}(K))
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for any Φ and any v as above.

§ 4.2. examples – Cyclotomic fields

We apply Theorem 4.1 to two simple examples. The results in this section are also

new. First of all, we take k = Q and K = Q(µpn) for some odd prime p and some

n ∈ Z>0. We take S = {∞, p} and V = ∅. Since the base field is Q, the ETNC is known

to be true. The condition on T means that T ∩ S = ∅ and T contains at least an odd

prime ℓ ̸= p. We use the notation in §§1,2, and put δT =
∏

ℓ∈T (1− ℓσ−1
ℓ ). We know

ϵ∅Q(µpn )/Q,S,T = θQ(µpn )/Q,S,T = δT θQ(µpn )/Q

= (
∏
ℓ∈T

(1− ℓσ−1
ℓ ))

pn−1∑
a=1

(
1

2
− a

pn
)σ−1

a ∈ Z[G].

Let j ∈ G = Gal(Q(µpn)/Q) = Gal(K/k) be the complex conjugation. We have

XK,S ≃
⊕

w|∞ Z ≃ Z[G]/(1− j). Therefore, by the exact sequence (3.4) we get

Fitt0,Z[G](Str
S,T (K)) = (1− j) Fitt0,Z[G](Cl

T
S (K)).

It follows from Theorem 4.1 that we have

Corollary 4.3. Let j ∈ G = Gal(Q(µpn)/Q) be the complex conjugation. For

any finite set T of places, which is disjoint from S = {∞, p}, and which contains an

odd prime, we have

(1− j) Fitt0,Z[G](Cl
T
S (Q(µpn))) = (θQ(µpn )/Q,S,T )

where ClTS (Q(µpn)) is the ray class group of Z[µpn ][1/p] modulo T . In particular, for

the full ideal class group Cl(Q(µpn)), (since Cl(Q(µpn)) is a quotient of ClTS (Q(µpn))

we have

(c− σc)θQ(µpn )/Q ∈ (1− j) Fitt0,Z[G](Cl(Q(µpn)))

where c is any integer prime to 2p, and θQ(µpn )/Q is the classical Stickelberger element

defined in (1.8) with m = pn.

Note that we are working over Z[G] (and do not neglect the 2-component). The

left hand side of the equation in Corollary 4.3 gives the algebraic meaning of the ideal

generated by the Stickelberger element. Also, Corollary 4.3 implies

(c− σc)θQ(µpn )/Q ∈ (1− j) Fitt0,Z[G](Cl(Q(µpn))) ⊂ Fitt0,Z[G](Cl(Q(µpn))).

Therefore, Corollary 4.3 affirmatively answers the question in Remark 1 (1), and gives

a refinement of (1.9) in §1.3 in the case m = pn.
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Next, we consider k = Q and K = Q(µpn)+. We take S = {∞, p} to be minimal

again, and V = {∞}. The condition on T is the same as in Corollary 4.3. We take

ζpn = e2πi/p
n ∈ C, and put δT =

∏
ℓ∈T (1− ℓσ−1

ℓ ). Then the cyclotomic unit (1− ζpn)δT

is in R, and regarded as an element of Q(µpn)+ by the embedding Q(µpn)+ −→ R which

corresponds to our choice of a place above ∞. We also get (1− ζpn)δT ∈ O×
K,S,T , and it

is the Rubin-Stark element (see §2.2);

ϵ
{∞}
Q(µpn )+/Q,S,T = (1− ζpn)δT .

We have XK,S ≃
⊕

w|∞ Z ≃ Z[G]. Therefore, using the exact sequence (3.4), we get

Fitt1,Z[G](Str
S,T (K)) = Fitt0,Z[G](Cl

T
S (K)).

On the other hand, put cT = ϵ
{∞}
Q(µpn )+/Q,S,T and let ⟨cT ⟩ be the Z[G]-submodule of

O×
K,S,T generated by cT . We have an exact sequence

0 −→ HomG(O×
K,S,T ,Z[G]) −→ HomG(⟨cT ⟩,Z[G]) −→ Ext1Z(O

×
K,S,T /⟨cT ⟩,Z) −→ 0.

Thus Ext1Z(O
×
K,S,T /⟨cT ⟩,Z) is isomorphic to

Z[G]/{Φ(cT )# | Φ ∈ HomG(O×
K,S,T ,Z[G])}.

Note that Ext1Z(O
×
K,S,T /⟨cT ⟩,Z) = Hom(O×

K,S,T /⟨cT ⟩,Q /Z) = (O×
K,S,T /⟨cT ⟩)∨ where

(∗)∨ means the Pontrjagin dual. Since G is cyclic, Fitt0,Z[G](M)# = Fitt0,Z[G](M
∨) for

any finite Z[G]-module M (Proposition 1 in the appendix of [23]). Therefore, we have

Fitt0,Z[G](O×
K,S,T /⟨cT ⟩) = {Φ(cT ) | Φ ∈ HomG(O×

K,S,T ,Z[G])}.

From Theorem 4.1 we have

Corollary 4.4. For any finite set T which is disjoint from S = {∞, p}, and

which contains an odd prime, we put cT = ϵ
{∞}
Q(µpn )+/Q,S,T = (1− ζpn)δT . Then we have

Fitt0,Z[G](Cl
T
S (Q(µpn)+)) = {Φ(cT ) | Φ ∈ HomG(O×

Q(µpn )+,S,T ,Z[G])}

=Fitt0,Z[G](O×
Q(µpn )+,S,T /⟨cT ⟩).

Concerning the full ideal class group Cl(Q(µpn)+), we have

Fitt0,Z[G](Cl(Q(µpn)+)) = {Φ(c) | Φ ∈ HomG(O×
Q(µpn )+ ,Z[G]) and c ∈ CQ(µpn )+}

=Fitt0,Z[G](O×
Q(µpn )+/CQ(µpn )+)

where CQ(µpn )+ = ⟨1− ζpn , ζpn⟩∩O×
Q(µpn )+ is the group of cyclotomic units in O×

Q(µpn )+ .
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The statement on Cl(Q(µpn)+) (the latter half) is a theorem of Cornacchia and

Greither in [9] Theorem 1. It can be derived from the first half of Corollary 4.4, namely

from the statement for ClTS (Q(µpn)+) (by considering all T ). Thus Corollary 4.4 is a

generalization of the theorem of Cornacchia and Greither.

§ 4.3. CM-extensions

We suppose that k is totally real, K is a CM-field, and consider the case r = 0,

namely V = ∅. First of all, by definition

ϵ∅K/k,S,T = θK/k,S,T ∈
0∩
G

O×
K,S,T = Z[G].

When S = Sram ∪ S∞ and T = ∅, we simply write θK/k for θK/k,Sram∪S∞,∅. It can be

written as

θK/k =
∑
σ∈G

ζK/k(0, σ)σ
−1 ∈ Q[G]

where ζK/k(s, σ) =
∑

(a,K/k)=σ(Na)−s is the partial zeta function. We know

θK/k,Sram∪S∞,T = δT θK/k

for any T that is disjoint from S = Sram ∪ S∞ where

δT =
∏
t∈T

(1−NtFrob−1
t ).

We can prove that the natural homomorphism SS,T (K) −→ SS∞,T (K) is surjective.

It follows from Theorem 4.1 that the ETNC for K/k implies

(4.1) θ#K/k,Sram∪S∞,T = (δT θK/k)
# ∈ Fitt0,Z[G](SS∞,T (K))

for T satisfying the conditions in the beginning of this section. By Proposition 3.1,

ClT (K)∨ is a subgroup of SS∞,T (K). So it also implies

(4.2) δT θK/k ∈ AnnZ[G](Cl
T (K)).

Namely, the ETNC implies (4.1) and (4.2). Thus, we can recover a known fact that the

ETNC implies the Brumer-Stark conjecture (4.2).

Concerning more precise statements on the Fitting ideals, we can prove (see [7]

Theorem 1.9 and Corollary 1.13)

Corollary 4.5. Suppose that k is totally real, K is a CM-field and the ETNC

holds for K/k.

(1) If G is cyclic,

θK/k AnnZ[G](µ(K)) ⊂ Fitt0,Z[G](Cl(K)).
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(2) Suppose that G is a general finite abelian group. Put Z′ = Z[1/2]. Then for any T

satisfying the above condition, we have

(δT θK/k)
# ∈ Fitt0,Z′[G](((Cl

T (K)⊗ Z′)−)∨)

We first prove (2). It follows from Proposition 3.1 that (ClT (K)∨ ⊗ Z′)− =

(SS∞,T (K)⊗ Z′)−. Therefore, (4.1) implies

(δT θK/k)
# ∈ Fitt0,Z′[G](((SS∞,T (K)⊗ Z′)−)∨) = Fitt0,Z′[G](((Cl

T (K)⊗ Z′)−)∨).

We prove (1), assuming that G is cyclic. We take v ∈ S to be an infinite place.

Then ClTS∞∪{v}(K) = ClTS∞
(K) = ClT (K), so Theorem 4.2 implies that δT θK/k ∈

Fitt0,Z[G](Cl
T (K)). We obtain the conclusion of (1) from the above statement, consid-

ering all T satisfying our conditions.

Remark 4. The statement (2) in Corollary 4.5 can be proved in certain cases

without assuming the ETNC. It was proved by Greither and Popescu ([14] Theorem

6.5) if the Iwasawa µ-invariant of the cyclotomic Zp-extension of K vanishes and no

prime above p splits in K/K+. More generally, if the µ-invariant vanishes and #Σp ≤ 1

where

Σp = {v : a place of k above p | a place of K+ above v splits in K},

we proved the minus part of the ETNC in [7] (see §4.5 below), so the conclusion of (2)

holds unconditionally.

Remark 5. (1) In the terminology of [17] §0, both (SB) and (DSB) hold if G is

cyclic and the ETNC for K/k is true. But if G is not cyclic, (1) in Corollary 4.5 does

not hold, in general (cf. [13] §3, [17] Corollary 0.5).

(2) The statement (2) in Corollary 4.5 does not imply

(δT θK/k)
# ∈ Fitt0,Z[G](((Cl(K)⊗ Z′)−)∨)

because ((Cl(K)⊗ Z′)−)∨ is not a quotient of ((ClT (K)⊗ Z′)−)∨. Actually, the above

statement also has counterexamples (cf. [17] Corollay 0.5, [20]).

§ 4.4. the order of a character component of class groups

Let χ be a one dimensional non-trivial character of the absolute Galois group of

k. We denote by Kχ the field corresponding to the kernel of χ, so Kχ/k is a cyclic

extension such that Gal(Kχ/k) ≃ Imageχ. We suppose that χ is a p-adic character,

namely the image of χ is in an algebraic closure of Qp, and assume that the order of χ

is prime to p.
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We first consider the case K = Kχ, so G = Gal(Kχ/k). For any Zp[G]-module M ,

we define Mχ by Mχ = M ⊗Zp[G] Oχ where Oχ = Zp[Imageχ] is a Zp[G]-module on

which G acts via χ. Since #G is prime to p, Oχ is a direct summand of Zp[G], and Mχ

is a direct summand of M .

We take S to be minimal, namely S = S∞ ∪ Sram, and V = {v ∈ S | v splits

completely in K}, so take it “maximal”. By definition, V consists of infinite places.

We put r = #V and (
∩r

G O×
K,S,T )

χ
p = (

∩r
G O×

K,S,T ⊗ Zp)
χ where we take T as in the

beginning of this section. Since #G is prime to p, we know

(

r∩
G

O×
K,S,T )

χ
p = (

r∧
Z[G]

O×
K,S,T ⊗ Zp)

χ ≃ Oχ.

Since (XK,S ⊗ Zp)
χ ≃ Or

χ, we have Fittr,Oχ
((Str

S,T (K) ⊗ Zp)
χ) = Fitt0,Oχ

((ClT (K) ⊗
Zp)

χ). Therefore, Theorem 4.1 implies

Corollary 4.6. Let K/k be the extension corresponding to χ as above, and S,

T , V as above. We assume that the ETNC holds for K/k. Then we have

#(ClT (K)⊗ Zp)
χ = ((

r∩
G

O×
K,S,T )

χ
p : ⟨ϵVK/k,S,T ⟩)

where ⟨ϵVK/k,S,T ⟩ is the Oχ-submodule generated by the image of ϵVK/k,S,T .

This corollary is a generalization of (1.4), (1.6) in §1.
We remark that Rubin proved in [27] Corollary 5.4 that if the Rubin-Stark conjec-

ture holds for all finite sets S′ which contain S, then we get the conclusion of Corollary

4.6.

Next we consider the case that p divides #G (a generalization of Gras’s conjecture

to this case is not studied in [27]). Let χ, Kχ be as above and K/k a finite abelian

extension such that K ⊃ Kχ and K/Kχ is a p-extension. Put Γ = Gal(K/Kχ) which is

an abelian p-group, and ∆ = Gal(Kχ/k) which is of order prime to p by our assumption

on χ. For a Zp[G]-module M , we define Mχ = M ⊗Zp[∆] Oχ where Oχ = Zp[Imageχ]

is a Zp[∆]-module on which G acts via χ. Note that Mχ is not M ⊗Zp[G] Oχ and that

Mχ is an Oχ[Γ]-module.

As a generalization of Corollary 4.6, from Theorem 4.1 we can prove (see [7] §9)

Corollary 4.7. Let K/k, χ be as above. We assume the ETNC for K/k and

that if a place v of k is ramified in K, v does not split competely in Kχ. Then we have

Fitt0,Oχ[Γ]((Cl
T (K)⊗ Zp)

χ) = Ip(ϵ
V
K/k,S,T )

χ
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where Ip(ϵ
V
K/k,S,T ) = {Φ(ϵVK/k,S,T ) | Φ ∈

∧r
HomG(O×

K,S,T ,Zp[G])} and Ip(ϵ
V
K/k,S,T )

χ

is the χ-component Ip(ϵ
V
K/k,S,T )⊗Zp[∆] Oχ.

§ 4.5. the structure of ideal class groups

We do not have enough space in this article to explain the results on the structure of

ideal class groups obtained in [7], so briefly introduce it. Theorem 4.1 gives information

on Fitt0,Z[G](Cl
T
S (K)). In [7] we also study the higher Fitting ideals Fitti,Z[G](Cl

T
S (K)).

In [7] §7, we define the notion of relative higher Fitting ideal, and compute the relative

higher Fitting ideals of the Selmer module Str
S,T (K) from which we obtain information

on Fitti,Z[G](Cl
T
S (K)). We state our structure theorem on the class groups in one of the

simplest cases.

We assume that χ satisfies the conditions in the previous subsection. In particular,

the order is prime to p. We further assume that k is totally real and χ is totally odd.

We take K = Kχ. For simplicity, we also assume χ ̸= ω where ω is the Teichmüller

character. We take T = ∅, and consider ϵ∅K/k,S∞∪Sram,∅ = θK/k. For i ≥ 0, let Θχ
i,K ⊂

Oχ be the higher Stickelberger ideal defined in [16] §3 by using θχF/k for fields F ⊃ K.

We assume that the Iwasawa µ-invariant of the cyclotomic Zp-extension of K van-

ishes. As in Remark 4, put

Σp = {v : a place of k above p | a place of K+ above v splits in K}.

If Σp is empty, it is known that the minus part of the ETNC for K/k holds. If #Σp = 1,

using a recent result on Gross’s conjecture for the p-adic L-functions by Ventullo [32],

which is a generalization of Darmon, Dasgupta and Pollack [10], we can prove that the

minus part of the ETNC for K/k holds (cf. [7]).

Using the computation on the relative higher Fitting ideals of the Selmer module,

our result in [7] on the conjecture by Mazur, Rubin and Sano ([22], [28]), and the result

of Ventullo we mentioned, we obtain the following structure theorem ([7] §9).

Corollary 4.8. Assume that #Σp ≤ 1 and the Iwasawa µ-invariant of K van-

ishes. Then we have

Fitti,Oχ((Cl(K)⊗ Zp)
χ) = Θχ

i,K

for all i ≥ 0. In particular, we have

(Cl(K)⊗ Zp)
χ =

⊕
i≥1

Θχ
i,K/Θχ

i−1,K .

When k = Q, this corollary was essentially proved by Kolyvagin in [15] Theorem

7 and Rubin [26] Theorem 4.4 by using the Euler system of Gauss sums. For a totally

real field k this corollary was proved by the author in [16] under the assumption that

Σp is empty. Corollary 4.8 is a generalization of these theorems.



Rubin-Stark elements and ideal class groups 19

The case that p divides #G is also treated in [7] §9, but we do not explain it here.

§ 5. Appendix – Fitting ideals

Let R be a commutative ring and M be a finitely presented R-module. Suppose

that Rm φ−→ Rn −→ M −→ 0 is exact and φ corresponds to the (n,m)-matrix A. Let

r be a non-negative integer. The r-th Fitting ideal Fittr,R(M) is defined as follows. If

r < n, Fittr,R(M) is the ideal of R generated by all (n − r) × (n − r) minors of A.

If r ≥ n, it is defined to be R. This definition does not depend on the choice of the

presentation ([24] Chapter 3, Theorem 1). We have an increasing sequence of ideals

Fitt0,R(M) ⊂ Fitt1,R(M) ⊂ Fitt2,R(M) ⊂ ... .

We call Fitt0,R(M) the initial Fitting ideal. By definition, we have

Fitt0,R(M) ⊂ AnnR(M).

Also, by definition we have Fitti,R(M) ⊂ Fitti,R(N) for any i ≥ 0 when there is a

surjective homomorphism M −→ N of R-modules. A good reference on Fitting ideals

is a book by Northcott [24].

If R is a discrete valuation ring with maximal ideal m and M is a finitely generated

R-module such that

M ≃ Rt ⊕R/mi1 ⊕ ...⊕R/mis

with i1 ≤ ... ≤ is, we know Fitt0,R(M) = ... = Fittt−1,R(M) = 0, Fittt,R(M) =

mi1+...+is , Fittt+j,R(M) = mi1+...+is−j for any j such that 0 ≤ j ≤ s − 1, and

Fittt+s,R(M) = R. Thus, knowing the structure of M is equivalent to knowing the

higher Fitting ideals Fitti,R(M) for all i ≥ 0. In this case, we have

Mtors ≃
⊕

i≥t+1

Fitti,R(M)/Fitti−1,R(M).

If R is semi-local and a product of discrete valuation rings, for example R = Zp[G]

where G is an abelian group whose order is prime to p, knowing the structure of all

components of M is equivalent to knowing the higher Fitting ideals Fitti,R(M) for all

i ≥ 0.
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