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Masato Kurihara

For an elliptic curve over the rational number field and a prime number
p, we study the structure of the classical Selmer group of p-power torsion
points. In our previous paper [12], assuming the main conjecture and the
non-degeneracy of the p-adic height pairing, we proved that the structure
of the Selmer group with respect to p-power torsion points is determined
by some analytic elements δ̃m defined from modular symbols (see Theorem
1.1.1 below). In this paper, we do not assume the main conjecture nor
the non-degeneracy of the p-adic height pairing, and study the structure of
Selmer groups (see Theorems 1.2.3 and 1.2.5), using these analytic elements
and Kolyvagin systems of Gauss sum type.

1 Introduction

1.1 Structure theorem of Selmer groups

Let E be an elliptic curve over Q. Iwasawa theory, especially the main
conjecture gives a formula on the order of the Tate Shafarevich group by
using the p-adic L-function (cf. Schneider [24]). In this paper, as a sequel
of [10], [11] and [12], we show that we can derive more information than the
order, on the structure of the Selmer group and the Tate Shafarevich group
from analytic quantities, in the setting of our paper, from modular symbols.

In this paper, we consider a prime number p such that
(i) p is a good ordinary prime > 2 for E,
(ii) the action of GQ on the Tate module Tp(E) is surjective where GQ is
the absolute Galois group of Q,
(iii) the (algebraic) μ-invariant of (E,Q∞/Q) is zero where Q∞/Q is the
cyclotomic Zp-extension, namely the Selmer group Sel(E/Q∞, E[p∞]) (for
the definition, see below) is a cofinitely generated Zp-module,
(iv) p does not divide the Tamagawa factor Tam(E) = Π�:bad(E(Q�) :
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E0(Q�)), and p does not divide #E(Fp) (namely not anomalous).

We note that the property (iii) is a conjecture of Greenberg since we are
assuming (ii).

For a positive integer N > 0, we denote by E[pN ] the Galois module
of pN -torsion points, and E[p∞] =

⋃
N>0E[pN ]. For an algebraic extension

F/Q, Sel(E/F,E[pN ]) is the classical Selmer group defined by

Sel(E/F,E[pN ]) = Ker(H1(F,E[pN ]) −→
∏
v

H1(Fv , E[pN ])/E(Fv)⊗Z/pN ),

so Sel(E/F,E[pN ]) sits in an exact sequence

0 −→ E(F ) ⊗ Z/pN −→ Sel(E/F,E[pN ]) −→ X(E/F )[pN ] −→ 0

where X(E/F ) is the Tate Shafarevich group over F . We define Sel(E/F,E[p∞]) =
lim−→ Sel(E/F,E[pN ]).

Let P(N) be the set of prime numbers � such that � is a good reduction
prime for E and � ≡ 1 (mod pN ). For each �, we fix a generator η� of

(Z/�Z)× and define logF�
(a) ∈ Z/(�− 1) by η

logF�
(a)

� ≡ a (mod �).
Let f(z) = Σane2πinz be the modular form corresponding to E. For

a positive integer m and the cyclotomic field Q(μm), we denote by σa ∈
Gal(Q(μm)/Q) the element such that σa(ζ) = ζa for any ζ ∈ μm. We
consider the modular element

∑m
a=1,(a,m)=1[

a
m ]σa ∈ C[Gal(Q(μm)/Q)] of

Mazur and Tate ([16]) where [ am ] = 2πi
∫ a/m
∞ f(z)dz is the usual modular

symbol. We only consider the real part

θ̃Q(μm) =
m∑
a=1

(a,m)=1

Re([ am ])
Ω+
E

σa ∈ Q[Gal(Q(μm)/Q)] (1.1)

where Ω+
E =

∫
E(R) ωE is the Néron period. Suppose that m is a squarefree

product of primes in P(N). Since we are assuming the GQ-module E[p] of p-
torsion points is irreducible, we know θ̃Q(μm) ∈ Zp[Gal(Q(μm)/Q)] (cf. [27]).
We consider the coefficient of θ̃Q(μm) of “

∏
�|m(ση� − 1)”, more explicitly we

define

δ̃m =
m∑
a=1

(a,m)=1

Re([ am ])
Ω+
E

(
∏
�|m

logF�
(a)) ∈ Z/pN (1.2)

where logF�
(a) means the image of logF�

(a) under the canonical homomor-
phism Z/(� − 1) −→ Z/pN . Let ordp : Z/pN −→ {0, 1, ...,N − 1,∞} be
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the p-adic valuation normalized as ordp(p) = 1 and ordp(0) = ∞. We note
that ordp(δ̃m) does not depend on the choices of η� for �|m. We define
δ̃1 = θQ = Re([0])/Ω+

E = L(E, 1)/Ω+
E .

For a squarefree product m of primes, we define ε(m) to be the number
of prime divisors of m, namely ε(m) = r if m = �1 · ... · �r. Let N (N) be the
set of squarefree products of primes in P(N). We suppose 1 is in N (N). For
each integer i ≥ 0, we define the ideal Θi(Q)(N,δ) of Z/pN to be the ideal
generated by all δ̃m such that ε(m) ≤ i for all m ∈ N (N);

Θi(Q)(N,δ) = ({δ̃m | ε(m) ≤ i and m ∈ N (N)}) ⊂ Z/pN . (1.3)

We define ni,N ∈ {0, 1, ...,N−1,∞} by Θi(Q)(N,δ) = pni,N (Z/pN ) (we define
ni,N = ∞ if Θi(Q)(N,δ) = 0).

Theorem 1.1.1 ([12] Theorem B, Theorem 9.3.1 and (9.14)) We assume
that the main conjecture for (E,Q∞/Q) (see (2.5)) and the p-adic height
pairing is non-degenerate.
(1) ni,N does not depend on N when N is sufficiently large (for example,
when N > 2 ordp(η0) where η0 is the leading term of the p-adic L-function,
see §9.4 in [12]). We put ni = ni,N for N 
 0. In other words, we define
ni by

lim←−Θi(Q)(N,δ) = pniZp ⊂ Zp.

We denote this ideal of Zp by Θi(Q)(δ).
(2) Consider the Pontrjagin dual Sel(E/Q, E[p∞])∨ of the Selmer group.
Suppose that

rankZp Sel(E/Q, E[p∞])∨ = r(∈ Z≥0), and dimFp Sel(E/Q, E[p])∨ = a.

Then we have

Θ0(Q)(δ) = ... = Θr−1(Q)(δ) = 0 and Θr(Q)(δ) �= 0.

For any i ≥ r, ni is an even number, and

pnr = #(Sel(E/Q, E[p∞])∨)tors,

na = 0, and

Sel(E/Q, E[p∞])∨ � Z⊕rp ⊕(Z/p
nr−nr+2

2 )⊕2⊕(Z/p
nr+2−nr+4

2 )⊕2⊕...⊕(Z/p
na−2−na

2 )⊕2

hold.

In particular, knowing Θi(Q)(δ) for all i ≥ 0 completely determines the
structure of Sel(E/Q, E[p∞])∨ as a Zp-module. Namely, the modular sym-
bols determine the structure of the Selmer group under our assumptions.
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1.2 Main Results

We define
P(N)

1 = {� ∈ P(N) | H0(F�, E[pN ]) � Z/pN}.
This is an infinite set by Chebotarev density theorem since we are assuming
(ii) (see [12] §4.3). We define N (N)

1 to be the set of squarefree products of
primes in P(N)

1 . Again, we suppose 1 ∈ N (N)
1 . We propose the following

conjecture.

Conjecture 1.2.1 There is m ∈ N (N)
1 such that δ̃m is a unit in Z/pN ,

namely
ordp(δ̃m) = 0.

Numerically, it is easy to compute δ̃m, so it is easy to check this conjec-
ture.

Theorem 1.2.2 ([12] Theorem 9.3.1) If we assume the main conjecture and
the non-degeneracy of the p-adic height pairing, Conjecture 1.2.1 holds true.

In fact, we obtain Conjecture 1.2.1, considering the case i = a in Theo-
rem 1.1.1 (cf. i = s in Theorem 9.3.1 in [12]).

From now on, we do not assume the main conjecture (2.5) nor the non-
degeneracy of the p-adic height pairing.

We define the Selmer group Sel(Z[1/m],E[pN ]) by

Sel(Z[1/m],E[pN ]) = Ker(H1(Q, E[pN ]) −→
∏
v � |m

H1(Qv, E[pN ])/E(Qv)⊗Z/pN ).

If all bad primes and p divide m, we know Sel(Z[1/m],E[pN ]) is equal to
the étale cohomology group H1

et(SpecZ[1/m],E[pN ]), which explains the
notation “Sel(Z[1/m],E[pN ])”. (We use Sel(Z[1/m],E[pN ]) for m ∈ N (N)

1

in this paper, but E[pN ] is not an étale sheaf on SpecZ[1/m] for such m.)
Let λ be the λ-invariant of Sel(E/Q∞, E[p∞])∨. We put nλ = min{n ∈

Z | pn − 1 ≥ λ} and dn = nλ +Nn for n ∈ Z≥0. We define

P(N,n)
1 = {� ∈ P(N)

1 | � ≡ 1 (mod pdn)} (1.4)

(then P(N,n)
1 ⊂ P(N)

1 (Q[n]) holds, see the end of §3.1 for this fact, and see

§3.1 for the definition of the set P(N)
1 (Q[n])). We denote by N (N,n)

1 the set

of squarefree products of primes in P(N,n)
1 .
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In this paper, for any finite abelian p-extension K/Q in which all bad
primes ofE are unramified, we prove in §4 the following theorem for Z/pN [Gal(K/Q)]-
modules Sel(E/K,E[pN ]) and Sel(OK [1/m],E[pN ]) (see Corollary 4.1.3 and
Theorem 4.2.1). We simply state it in the case K = Q below. An essential
ingredient in this paper is the Kolyvagin system of Gauss sum type. We
construct Kolyvagin systems κm,� ∈ Sel(Z[1/m�],E[pN ]) for (m, �) satisfy-
ing � ∈ P(N,ε(m�)+1)

1 and m� ∈ N (N,ε(m�)+1)
1 (see §3.4 and Propositions 3.4.2)

by the method in [12]. (We can construct these elements, using the half of
the main conjecture proved by Kato [7].) The essential difference between
our Kolyvagin systems κm,� of Gauss sum type and Kolyvagin systems in
Mazur and Rubin [14] is that our κm,� is related to L-values. In particular,
κm,� satisfies a remarkable property φ�(κm,�) = −δm�t�,K (see Propositions
3.4.2 (4)) though we do not explain the notation here.

Theorem 1.2.3 Assume that ordp(δ̃m) = 0 for some m ∈ N (N)
1 .

(1) The canonical homomorphism

sm : Sel(E/Q, E[pN ]) −→
⊕
�|m

E(Q�)⊗Z/pN �
⊕
�|m

E(Q�)⊗Z/pN � (Z/pN )ε(m)

is injective.
(2) Assume further that m ∈ N (N,ε(m)+1)

1 and that m is admissible (for the
definition of the notion “admissible”, see the paragraph before Proposition
3.3.2). Then Sel(Z[1/m],E[pN ]) is a free Z/pN -module of rank ε(m), and
{κm

�
,�}�|m is a basis of Sel(Z[1/m],E[pN ]).

(3) We define a matrix A as in (4.1) in Theorem 4.2.1, using κm
�
,�. Then A

is a relation matrix of the Pontrjagin dual Sel(E/Q, E[pN ])∨ of the Selmer
group; namely if fA : (Z/pN )ε(m) −→ (Z/pN )ε(m) is the homomorphism
corresponding to the above matrix A, then we have

Coker(fA) � Sel(E/Q, E[pN ])∨.

It is worth noting that we get nontrivial (moreover, linearly independent)
elements in the Selmer groups.

The ideals Θi(Q)(δ) in Theorem 1.1.1 are not suitable for numerical
computations because we have to compute infinitely many δ̃m. On the other
hand, we can easily find m with ordp(δ̃m) = 0 numerically. Since sm is
injective, we can get information of the Selmer group from the image of sm,
which is an advantage of Theorem 1.2.3 and the next Theorem 1.2.5 (see
also the comment in the end of Example (5) in §5.3).

We next consider the case N = 1, so Sel(E/Q, E[p]). Now we regard
δ̃m as an element of Fp for m ∈ N (1)

1 . We say m is δ-minimal if δ̃m �= 0
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and δ̃d = 0 for all divisors d of m with 1 ≤ d < m. Our next conjecture
claims that the structure (the dimension) of Sel(E/Q, E[p]) is determined
by a δ-minimal m, therefore can be easily computed numerically.

Conjecture 1.2.4 If m ∈ N (1)
1 is δ-minimal, the canonical homomorphism

sm : Sel(E/Q, E[p]) −→
⊕
�|m

E(Q�) ⊗Z/p �
⊕
�|m

E(F�)⊗ Z/p � (Z/pN )ε(m)

is bijective. In particular, dimFp Sel(E/Q, E[p]) = ε(m).

Ifm ∈ N (1)
1 is δ-minimal, the above homomorphism sm : Sel(E/Q, E[p]) −→

(Z/pN )ε(m) is injective by Theorem 1.2.3 (1), so we know

dimFp Sel(E/Q, E[p]) ≤ ε(m).

Therefore, the problem is in showing the other inequality.
We note that the analogue of the above conjecture for ideal class groups

does not hold (see §5.4). But we hope that Conjecture 1.2.4 holds for the
Selmer groups of elliptic curves. We construct in §5 a modified version
κq,q

′,z
m,� of Kolyvagin systems of Gauss sum type for any (m, �) with m� ∈

N (N)
1 . (The Kolyvagin system κm,� in §3 is defined for (m, �) with m� ∈

N (N,ε(m�)+1)
1 , but κq,q

′,z
m,� is defined for more general (m, �), namely for (m, �)

with m� ∈ N (N)
1 .) Using the modified Kolyvagin system κq,q

′,z
m,� , we prove

the following.

Theorem 1.2.5 (1) If ε(m) = 0, 1, then Conjecture 1.2.4 is true.
(2) If there is � ∈ P(1) which is δ-minimal (so ε(�) = 1), then

Sel(E/Q, E[p∞]) � Qp/Zp.

Moreover, if there is � ∈ P(1)
1 which is δ-minimal and which satisfies � ≡

1 (mod pnλ′+2) where λ′ is the analytic λ-invariant of (E,Q∞/Q), then
the main conjecture (2.5) for Sel(E/Q∞, E[p∞]) holds true. In this case,
Sel(E/Q∞, E[p∞])∨ is generated by one element as a Zp[[Gal(Q∞/Q)]]-
module.
(3) If ε(m) = 2 and m is admissible, then Conjecture 1.2.4 is true.
(4) Suppose that ε(m) = 3 and m = �1�2�3. Assume that m is admissible
and the natural maps s�i : Sel(E/Q, E[p]) −→ E(F�i) ⊗ Z/p are surjective
both for i = 1 and i = 2. Then Conjecture 1.2.4 is true.

In this way, we can determine the Selmer groups by finite numbers of
computations in several cases. We give several numerical examples in §5.2.
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Remark 1.2.6 Concerning the Fitting ideals and the annihilator ideals of
some Selmer groups, we prove the following in this paper. Let K/Q be
a finite abelian p-extension in which all bad primes of E are unramified.
We take a finite set S of good reduction primes, which contains all ram-
ifying primes in K/Q except p. Let m be the product of primes in S.
We prove that the initial Fitting ideal of the RK = Zp[Gal(K/Q)]-module
Sel(OK [1/m],E[p∞])∨ is principal, and

ξK,S ∈ Fitt0,RK (Sel(OK [1/m],E[p∞])∨)

where ξK,S is an element of RK which is explicitly constructed from modular
symbols (see (2.13)). If the main conjecture (2.5) for (E,Q∞/Q) holds,
the equality Fitt0,RK (Sel(OK [1/m],E[p∞])∨) = ξK,SRK holds (see Remark
2.3.2). We prove the Iwasawa theoretical version in Theorem 2.2.2.

Let ϑK be the image of the p-adic L-function, which is also explicitly
constructed from modular symbols. We show in Theorem 2.3.1

ϑK ∈ AnnRK (Sel(OK [1/m],E[p∞])∨).

Concerning the higher Fitting ideals (cf. §2.4), we show

δ̃m ∈ Fittε(m),Z/pN (Sel(E/Q, E[pN ])∨)

where Fitti,R(M) is the i-th Fitting ideal of an R-module M . We prove a
slightly generalized version for K which is in the cyclotomic Zp-extension
Q∞ of Q (see Theorem 2.4.1 and Corollary 2.4.2).

I would like to thank John Coates heartily for his helpful advice and
for discussion with him, especially for the discussion in March 2013, which
played an essential role in my producing this paper. I also thank heartily
Kazuya Kato for his constant interest in the results of this paper. I also
thank Kazuo Matsuno and Christian Wuthrich very much for their helping
me to compute modular symbols.

2 Selmer groups and p-adic L-functions

2.1 Modular symbols and p-adic L-functions

Let E be an elliptic curve over Q, and f(z) = Σane2πinz the modular form
corresponding to E. In this section, we assume that p is a prime number
satisfying (i), (ii), (iii) in §1.1. We define Pgood = {� | � is a good reduction
prime for E } \ {p}. For any finite abelian extension K/Q, we denote by
K∞/K the cyclotomic Zp-extension. For a real abelian field K of conductor
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m, we define θ̃K to be the image of θ̃Q(μm) in Q[Gal(K/Q)] where θ̃Q(μm) is
defined in (1.1).

We write

RK = Zp[Gal(K/Q)] and ΛK∞ = Zp[[Gal(K∞/Q)]].

For any positive integer n, we simply write RQ(μn) = Rn in this subsec-
tion. For any positive integers d, c such that d | c, we define the norm map
νc,d : Rd = Zp[Gal(Q(μd)/Q)] −→ Rc = Zp[Gal(Q(μc)/Q)] by σ �→ ∑

τ
where for σ ∈ Gal(Q(μd)/Q), τ runs over all elements of Gal(Q(μc)/Q)
such that the restriction of τ to Q(μd) is σ. Let m be a squarefree product
of primes in Pgood, and n a positive integer. By our assumption (ii), we know
θ̃Q(μmpn ) ∈ Rmpn (cf. [27]). Let α ∈ Z×p be the unit root of x2 − apx+ p = 0
and put

ϑQ(μmpn ) = α−n(θ̃Q(μmpn ) − α−1νmpn,mpn−1(θ̃Q(μmpn−1 ))) ∈ Rmpn

as usual. Then {ϑQ(μmpn )}n≥1 is a projective system (cf. Mazur and Tate
[16] the equation (4) on page 717) and we obtain an element ϑQ(μmp∞ ) ∈
ΛQ(μmp∞ ), which is the p-adic L-function of Mazur and Swinnerton-Dyer.

We also use the notation Λnp∞ = ΛQ(μnp∞ ) for simplicity. Suppose that
a prime � does not divide mp, and cm�,m : Λm�p∞ −→ Λmp∞ is the natural
restriction map. Then we know

cm�,m(ϑQ(μm�p∞ )) = (a� − σ� − σ−1
� )ϑQ(μmp∞ ) (2.1)

(cf. Mazur and Tate [16] the equation (1) on page 717).
We will construct a slightly modified element ξQ(μmp∞ ) in Λmp∞ . We

put P ′�(x) = x2 − a�x + �. Let m be a squarefree product of Pgood. For
any divisor d of m and a prime divisor � of m/d, σ� ∈ Gal(Q(μdp∞)/Q) =
lim←−Gal(Q(μdpn)/Q) is defined as the projective limit of σ� ∈ Gal(Q(μdpn)/Q).

We consider P ′�(σ�) ∈ Λdp∞ . Note that

−σ−1
� = (−σ−1

� P ′�(σ�) − (a� − σ� − σ−1
� ))/(�− 1) ∈ Λdp∞ . (2.2)

We put αd,m = (
∏
�|m
d
(−σ−1

� ))ϑQ(μdp∞ ) ∈ Λdp∞ and

ξQ(μmp∞ ) =
∑
d|m

νm,d(αd,m) ∈ Λmp∞

where νm,d : Λdp∞ −→ Λmp∞ is the norm map defined similarly as above.
(This modification ξQ(μmp∞ ) is done by the same spirit as Greither [5] in
which the Deligne-Ribet p-adic L-functions are treated.) Suppose that � ∈
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Pgood is prime to m. Then by the definition of ξQ(μmp∞ ) and (2.1) and (2.2),
we have

cm�,m(ξQ(μm�p∞ )) = cm�,m(
∑
d|m

νm�,d(αd,m�) +
∑
d|m

νm�,d�(αd�,m�))

= (�− 1)
∑
d|m

νm,d(−σ−1
� αd,m) +

∑
d|m

νm,d(cd�,d(αd�,m�))

= (�− 1)
∑
d|m

νm,d(−σ−1
� αd,m) +

∑
d|m

νm,d((a� − σ� − σ−1
� )αd,m)

= (−σ−1
� P ′�(σ�))

∑
d|m

νm,d(αd,m)

= (−σ−1
� P ′�(σ�))ξQ(μmp∞ ). (2.3)

We denote by ϑQ(μm) ∈ RQ(μm) the image of ϑQ(μmp∞ ) under the natural
map ΛQ(μmp∞ ) −→ RQ(μm). We have

ϑQ(μm) = (1 − σp
α

)(1 − σ−1
p

α
)θ̃Q(μm). (2.4)

Since we are assuming ap �≡ 1 (mod p), we also have α �≡ 1 (mod p),

so (1 − σp
α )(1 − σ−1

p

α ) is a unit in RQ(m) where Q(m) is the maximal p-
subextension of Q in Q(μm).

2.2 Selmer groups

For any algebraic extension F/Q, we denote by OF the integral closure of Z
in F . For a positive integerm > 0, we define a Selmer group Sel(OF [1/m],E[p∞])
by

Sel(OF [1/m],E[p∞]) = Ker(H1(F,E[p∞]) −→
∏
v � |m

H1(Fv , E[p∞])/E(Fv)⊗Qp/Zp)

where v runs over all primes of F which are prime to m. Similarly, for a
positive integer N , we define Sel(OF [1/m],E[pN ]) by

Sel(OF [1/m],E[pN ]) = Ker(H1(F,E[pN ]) −→
∏
v � |m

H1(Fv , E[pN ])/E(Fv)⊗Z/pN ).

In the case m = 1, we denote them by Sel(OF , E[p∞]), Sel(OF , E[pN ]),
which are classical Selmer groups. We also use the notation Sel(E/F,E[p∞]),
Sel(E/F,E[pN ]) for them, namely

Sel(E/F,E[p∞]) = Sel(OF , E[p∞]), Sel(E/F,E[pN ]) = Sel(OF , E[pN ]).
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For a finite abelian extension K/Q, we denote by K∞/K the cyclo-
tomic Zp-extension, and put ΛK∞ = Zp[[Gal(K∞/Q)]]. The Pontrjagin
dual Sel(OK∞ , E[p∞])∨ is a torsion ΛK∞-module (Kato [7] Theorem 17.4).

When the conductor of K is m, we define ϑK∞ ∈ ΛK∞ to be the image of
ϑQ(μmp∞ ), and also ξK∞ ∈ ΛK∞ to be the image of ξQ(μmp∞ ). The Iwasawa
main conjecture for (E,Q∞/Q) is the equality between the characteristic
ideal of the Selmer group and the ideal generated by the p-adic L-function;

char(Sel(OQ∞ , E[p∞])∨) = ϑQ∞ΛQ∞ . (2.5)

Since we are assuming the Galois action on the Tate module is surjective, we
know ϑQ∞ ∈ char(Sel(OQ∞ , E[p∞])∨) by Kato [7] Theorem 17.4. Skinner
and Urban [26] proved the equality (2.5) under mild conditions. Namely,
under our assumptions (i), (ii), they proved the main conjecture (2.5) if
there is a bad prime � which is ramified in Q(E[p]) ([26] Theorem 3.33).

More generally, let ψ be an even Dirichlet character and K be the abelian
field corresponding to the kernel of ψ, namely K is the field such that ψ
induces a faithful character of Gal(K/Q). We assume K ∩ Q∞ = Q. In
this paper, for any finite abelian p-group G, any Zp[G]-module M and any
character ψ : G −→ Q×p , we define the ψ-quotient Mψ by M⊗Zp[G]Oψ where
Oψ = Zp[Imageψ] which is regarded as a Zp[G]-module by σx = ψ(σ)x for
any σ ∈ G and x ∈ Oψ. We consider (Sel(OK∞ , E[p∞])∨)ψ, which is a Λψ-
module where Λψ = (ΛK∞)ψ = Oψ[[Gal(K∞/K)]]. We denote the image of
ϑK∞ in Λψ by ψ(ϑK∞). Then the main conjecture states

char((Sel(OK∞ , E[p∞])∨)ψ) = ψ(ϑK∞)Λψ. (2.6)

We also note that ψ(ϑK∞)Λψ = ψ(ξK∞)Λψ. By Kato [7], we know ψ(ϑK∞),
ψ(ξK∞) ∈ char((Sel(OK∞ , E[p∞])∨)ψ).

Let S ⊂ Pgood be a finite set of good primes, and K/Q be a finite
abelian extension. We denote by Sram(K) the subset of S which consists of
all ramifying primes in K inside S. Recall that P ′�(x) = x2 − a�x + �. We
define

ξK∞,S = ξK∞

∏
�∈S\Sram(K)

(−σ−1
� P ′�(σ�)).

So ξK∞,S = ξK∞ if S contains only ramifying primes in K. Suppose that S
contains all ramifying primes in K and F is a subfield of K. We denote by
cK∞/F∞ : ΛK∞ −→ ΛF∞ the natural restriction map. Using (2.3) and the
above definition of ξK∞,S, we have

cK∞/F∞(ξK∞,S) = ξF∞,S . (2.7)
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For any positive integer m whose prime divisors are in Pgood, we have
an exact sequence

0 −→ Sel(OK∞ , E[p∞]) −→ Sel(OK∞ [1/m],E[p∞]) −→
⊕
v|m

H1(K∞,v, E[p∞]) −→ 0

because E(K∞,v) ⊗ Qp/Zp = 0 (for the surjectivity of the third map, see
Greenberg Lemma 4.6 in [3]). For a prime v of K∞, let K∞,v,nr/K∞,v be
the maximal unramified extension, and Γv = Gal(K∞,v,nr/K∞,v). Suppose
v divides m. Since v is a good reduction prime, we have H1(K∞,v, E[p∞]) =
HomCont(GK∞,v,nr , E[p∞])Γv = E[p∞](−1)Γv where (−1) is the Tate twist.
By the Weil pairing, the Pontrjagin dual of E[p∞](−1) is the Tate module
Tp(E). Therefore, taking the Pontrjagin dual of the above exact sequence,
we have an exact sequence

0 −→
⊕
v|m

Tp(E)Γv −→ Sel(OK∞ [1/m],E[p∞])∨ −→ Sel(OK∞ , E[p∞])∨ −→ 0.

(2.8)

Note that Tp(E)Γv is free over Zp because Γv is profinite of order prime to
p.

Let K/Q be a finite abelian p-extension in which all bad primes of E are
unramified. Suppose that S is a finite subset of Pgood such that S contains
all ramifying primes in K/Q except p. Let m be a squarefree product of all
primes in S.

Theorem 2.2.1 (Greenberg) Sel(OK∞ [1/m],E[p∞])∨ is of projective di-
mension ≤ 1 as a ΛK∞-module.

This is proved by Greenberg in [4] Theorem 1 (the condition (iv) in §1.1
in this paper is not needed here, see also Proposition 3.3.1 in [4]). For more
general p-adic representations, this is proved in [12] Proposition 1.6.7. We
will give a sketch of the proof because some results in the proof will be used
later.

Since we can take some finite abelian extension K ′/Q such that K∞ =
K ′∞ andK ′∩Q∞ = Q, we may assume thatK∩Q∞ = Q and p is unramified
inK. Since we are assuming that E[p] is an irreducibleGQ-module, we know
that Sel(OK∞ , E[p∞])∨ has no nontrivial finite Zp[[Gal(K∞/K)]]-submodule
by Greenberg ([3] Propositions 4.14, 4.15). We also assumed that the μ-
invariant of Sel(OQ∞ , E[p∞])∨ is zero, which implies the vanishing of the
μ-invariant of Sel(OK∞ , E[p∞])∨ by Hachimori and Matsuno [6]. Therefore,
Sel(OK∞ , E[p∞])∨ is a free Zp-module of finite rank. By the exact sequence
(2.8), Sel(OK∞ [1/m],E[p∞])∨ is also a free Zp-module of finite rank.
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Put G = Gal(K/Q). By the definition of the Selmer group and our
assumption that all primes dividing m are good reduction primes, we have
Sel(OK∞ [1/m],E[p∞])G = Sel(OQ∞ [1/m],E[p∞]). Since we assumed that
the μ-invariant is zero, Sel(OQ∞ [1/m],E[p∞]) is divisible. This shows that
the corestriction map Sel(OK∞ [1/m],E[p∞]) −→ Sel(OQ∞ [1/m],E[p∞]) is
surjective. Therefore, Ĥ0(G,Sel(OK∞ [1/m],E[p∞])) = 0.

Next we will show that H1(G,Sel(OK∞ [1/m],E[p∞])) = 0. Let NE be
the conductor of E and put m′ = mpNE. We know Sel(OK∞ [1/m′], E[p∞])
is equal to the étale cohomology group H1

et(SpecOK∞ [1/m′], E[p∞]). We
have an exact sequence

0 −→ Sel(OK∞ [1/m],E[p∞]) −→ Sel(OK∞ [1/m′], E[p∞]) −→
⊕
v|m′
m

H2
v (K∞,v) −→ 0

(2.9)

where H2
v (K∞,v) = H1(K∞,v, E[p∞])/(E(K∞,v) ⊗ Qp/Zp), and the sur-

jectivity of the third map follows from Greenberg Lemma 4.6 in [3]. Let
E[p∞]0 be the kernel of E[p∞] = E(Q)[p∞] −→ E(Fp)[p∞] and E[p∞]et =
E[p∞]/E[p∞]0. For a prime v ofK∞ above p, we denote by K∞,v,nr the max-
imal unramified extension of K∞,v, and put Γv = Gal(K∞,v,nr/K∞,v). We
know the isomorphism H2

v (K∞,v)
�−→ H1(K∞,v,nr, E[p∞]et)Γv by Green-

berg [2] §2. If v is a prime of K∞ not above p, we know H2
v (K∞,v) =

H1(K∞,v, E[p∞]). Therefore, we get an isomorphism

(
⊕
v|m′
m

H2
v (K∞,v))

G =
⊕
u|m′
m

H2
u(Q∞,v)

where v (resp. u) runs over all primes of K∞ (resp. Q∞) above m′/m =
pNE . Thus, Sel(OK∞ [1/m′], E[p∞])G −→ ⊕

v|m′
m

H2
v (K∞,v)G is surjective.

On the other hand, we have H2
et(SpecOK∞ [1/m′], E[p∞]) = 0 (see [2] Propo-

sitions 3, 4). This implies that

H1(G,H1
et(SpecOK∞ [1/m′], E[p∞])) = H1(G,Sel(OK∞ [1/m′], E[p∞])) = 0.

Taking the cohomology of the exact sequence (2.9), we get

H1(G,Sel(OK∞ [1/m],E[p∞])) = 0. (2.10)

Therefore, Sel(OK∞ [1/m],E[p∞]) is cohomologically trivial as aG-module
by Serre [25] Chap. IX Théorème 8. This implies that Sel(OK∞ [1/m],E[p∞])∨

is also cohomologically trivial. Since Sel(OK∞ [1/m],E[p∞])∨ has no nontriv-
ial finite submodule, the projective dimension of Sel(OK∞ [1/m],E[p∞])∨ as
a ΛK∞-module is ≤ 1 by Popescu [20] Proposition 2.3.
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Theorem 2.2.2 Let K/Q be a finite abelian p-extension in which all bad
primes of E are unramified. We take a finite set S of good reduction primes
which contains all ramifying primes in K/Q except p. Let m be the product
of primes in S. Then
(1) ξK∞,S is in the initial Fitting ideal Fitt0,ΛK∞ (Sel(OK∞ [1/m],E[p∞])∨).
(2) We have

Fitt0,ΛK∞ (Sel(OK∞ [1/m],E[p∞])∨) = ξK∞,SΛK∞

if and only if the main conjecture (2.5) for (E,Q∞/Q) holds.

Proof. As we explained in the proof of Theorem 2.2.1, we may assume that
K ∩ Q∞ = Q. We recall that Sel(OK∞ [1/m],E[p∞])∨ is a free Zp-module
of finite rank under our assumptions.

(1) Let ψ : Gal(K/Q) −→ Q×p be a character of Gal(K/Q), not necessarily
faithful. We study the Fitting ideal of the ψ-quotient (Sel(OK∞ [1/m],E[p∞])∨)ψ =
Sel(OK∞ [1/m],E[p∞])∨ ⊗Zp[Gal(K/Q)] Oψ. We denote by F the subfield of
K corresponding to the kernel of ψ. We regard ψ as a faithful character of
Gal(F/Q). Since Sel(OK∞ [1/m],E[p∞])Gal(K/F ) = Sel(OF∞ [1/m],E[p∞]),
we have

(Sel(OK∞ [1/m],E[p∞])∨)ψ = (Sel(OF∞ [1/m],E[p∞])∨)ψ

where the right hand side is defined to be Sel(OF∞ [1/m],E[p∞])∨⊗Zp[Gal(F/Q)]

Oψ.
We put Λψ = (ΛF∞)ψ. The group homomorphism ψ induces the ring

homomorphism ΛF∞ −→ Λψ which we also denote by ψ. The composition
with cK∞/F∞ : ΛK∞ −→ ΛF∞ and the above ring homomorphism ψ is also
denoted by ψ : ΛK∞ −→ Λψ. Note that F/Q is a cyclic extension of degree
a power of p. We denote by F ′ the subfield of F such that [F : F ′] = p.
We put N0 = NGal(F/F ′) = Σσ∈Gal(F/F ′)σ. If we put [F : Q] = pc and
take a generator γ of Gal(F/Q), N0 = Σp−1

i=0 γ
pc−1i is a cyclotomic poly-

nomial and Oψ = Zp[μpc ] � Zp[Gal(F/Q)]/N0. For any Zp[Gal(F/Q)]-
module M , we define Mψ = Ker(N0 : M −→ M). Then the Pontrja-
gin dual of Mψ is (Mψ)∨ = (M∨)/N0 = (M∨)ψ. By the same method
as the proof of (2.10), we have H1(Gal(F/F ′),Sel(OF∞ [1/m],E[p∞])) =
0. Therefore, σ − 1 : Sel(OF∞ [1/m],E[p∞]) −→ Sel(OF∞ [1/m],E[p∞])ψ

is surjective where σ = γp
c−1

is a generator of Gal(F/F ′). Therefore,
taking the dual, we know that there is an injective homomorphism from
(Sel(OF∞ [1/m],E[p∞])∨)ψ to Sel(OF∞ [1/m],E[p∞])∨ which is a free Zp-
module. Therefore, (Sel(OF∞ [1/m],E[p∞])∨)ψ contains no nontrivial finite
Λψ-submodule. This shows that

Fitt0,Λψ((Sel(OF∞ [1/m],E[p∞])∨)ψ) = char((Sel(OF∞ [1/m],E[p∞])∨)ψ).
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Consider the ψ-quotient of the exact sequence (2.8);

(
⊕
v|m

Tp(E)Γv )ψ −→ (Sel(OF∞ [1/m],E[p∞])∨)ψ −→ (Sel(OF∞ , E[p∞])∨)ψ −→ 0

where v runs over all primes of F∞ abovem. Since Ext1Zp[Gal(F/Q)](Oψ,Sel(OF∞ , E[p∞])) =

Ĥ0(Gal(F/Q),Sel(OF∞ , E[p∞])) is finite, the first map of the above exact
sequence has finite kernel.

Suppose that � is a prime divisor of m. If � is unramified in F , we have

Fitt0,Λψ((
⊕
v|�

Tp(E)Γv )ψ) = P ′�(σ�)Λψ

where P ′�(x) = x2−a�x+�. If � is ramified in F , ψ(�) = 0 and (
⊕

v|� Tp(E)Γv )ψ
is finite. Therefore, we have

char((
⊕
v|m

Tp(E)Γv )ψ) = (
∏

�∈S\Sram(F )

P ′�(σ�))Λψ.

Using the above exact sequence and Kato’s theorem ψ(ξF∞) ∈ char((Sel(OF∞ , E[p∞])∨)ψ),
we have

char((Sel(OF∞ [1/m],E[p∞])∨)ψ) ⊃ ψ(ξF∞)(
∏

�∈S\Sram(F )

P ′�(σ�))Λψ .

Since ξF∞(
∏
�∈S\Sram(F ) P

′
�(σ�)) = ξF∞,S modulo unit and cK∞/F∞(ξK∞,S) =

ξF∞,S by (2.7), we obtain

ψ(ξK∞,S) ∈ Fitt0,(ΛK∞ )ψ((Sel(OK∞ [1/m],E[p∞])∨)ψ) (2.11)

for any character ψ of Gal(K/Q). Since the μ-invariant of Sel(OK∞ [1/m],E[p∞])∨

is zero as we explained above, (2.11) implies

ξK∞,S ∈ Fitt0,ΛK∞ (Sel(OK∞ [1/m],E[p∞])∨)

(see Lemma 4.1 in [9], for example).

(2) We use the same notation ψ, F , etc. as above. At first, we assume (2.5).
Then the algebraic λ-invariant of Sel(E/F∞, E[p∞])∨ equals the analytic
λ-invariant by Hachimori and Matsuno [6], [13], so the main conjecture
char((Sel(OF∞ , E[p∞])∨)ψ) = ψ(ξF∞)Λψ also holds. Therefore, we have

char((Sel(OF∞ [1/m],E[p∞])∨)ψ) = ψ(ξF∞)(
∏

�∈S\Sram(F )

P ′�(σ�))Λψ

= ψ(ξF∞,S)Λψ = ψ(ξK∞,S)Λψ
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and

Fitt0,(ΛK∞)ψ ((Sel(OK∞ [1/m],E[p∞])∨)ψ) = ψ(ξK∞,SΛK∞)Λψ .

It follows from [9] Corollary 4.2 that

Fitt0,ΛK∞ (Sel(OK∞ [1/m],E[p∞])∨) = ξK∞,SΛK∞ .

On the other hand, if we assume the above equality, taking the Gal(K/Q)-
invariant part of Sel(OK∞ [1/m],E[p∞]), we get

Fitt0,ΛQ∞ (Sel(OQ∞ [1/m],E[p∞])∨) = ξQ∞,SΛQ∞,S,

which implies (2.5).

2.3 An analogue of Stickelberger’s theorem

Let K/Q be a finite abelian p-extension. When the conductor of K is
m, we define ϑK ∈ RK = Zp[Gal(K/Q)] to be the image of ϑQ(μmp∞ ) ∈
ΛQ(μmp∞ ). Therefore, if m is prime to p, ϑK is the image of ϑQ(μm) =

(1 − σp
α )(1 − σ−1

p

α )θ̃Q(μm) by (2.4). If m = m′pn for some m′ which is prime
to p and for some n ≥ 2, ϑK is the image of ϑQ(μm′pn ) = α−n(θ̃Q(μm′pn ) −
α−1νm′pn,m′pn−1(θ̃Q(μm′pn−1 ))).

For any positive integer n, we denote by Q(n) the maximal p-subextension
of Q in Q(μn).

Theorem 2.3.1 For any finite abelian p-extension K in which all bad primes
of E are unramified, ϑK annihilates Sel(OK , E[p∞])∨, namely we have

ϑK Sel(OK , E[p∞])∨ = 0.

Proof. We may assume K = Q(mpn) for some squarefree product m of
primes in Pgood and for some n ∈ Z≥0. By Theorem 2.2.2 (1), taking S to be
the set of all prime divisors ofm, we have ξK∞ ∈ Fitt0,ΛK∞ (Sel(OK∞ [1/m],E[p∞])∨),
which implies ξK∞ Sel(OK∞ , E[p∞])∨ = 0. Let ξK ∈ RK = Zp[Gal(K/Q)]
be the image of ξK∞ . Since the natural map Sel(OK , E[p∞]) −→ Sel(OK∞ , E[p∞])
is injective, we have ξK Sel(OK , E[p∞])∨ = 0.

By the definitions of ξQ(μmp∞ ), ξQ(mpn), ϑQ(mpn), we can write

ξK = ξQ(mpn) = ϑQ(mpn) +
∑

d|m,d�=m
λdνm,d(ϑQ(dpn)) (2.12)

for some λd ∈ RQ(mpn) where νm,d : RQ(dpn) −→ RQ(mpn) is the norm map
defined similarly as in §2.1. We will prove this theorem by induction on
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m. Since d < m, we have ϑQ(dpn) ∈ AnnRQ(dpn)
(Sel(OQ(dpn), E[p∞])∨) by

the hypothesis of the induction. This implies that νm,d(ϑQ(dpn)) annihilates
Sel(OQ(mpn), E[p∞])∨. Since ξK is in AnnRK (Sel(OK , E[p∞])∨), the above
equation implies that ϑK is in AnnRK (Sel(OK , E[p∞])∨).

Remark 2.3.2 Let K, S, m be as in Theorem 2.2.2. Under our assump-
tions, the control theorem works completely;

Sel(OK [1/m],E[p∞]) �−→ Sel(OK∞ [1/m],E[p∞])Gal(K∞/K).

Therefore, Theorem 2.2.2 (1) implies that Fitt0,RK (Sel(OK [1/m],E[p∞])∨)
is principal and

ξK,S ∈ Fitt0,RK (Sel(OK [1/m],E[p∞])∨) (2.13)

where ξK,S is the image of ξK∞,S in RK .
Theorem 2.2.2 (2) implies that if we assume the main conjecture (2.5),

we have

Fitt0,RK (Sel(OK [1/m],E[p∞])∨) = ξK,SRK . (2.14)

2.4 Higher Fitting ideals

For a commutative ring R and a finitely presented R-module M with n
generators, let A be an n ×m relation matrix of M . For an integer i ≥ 0,
Fitti,R(M) is defined to be the ideal of R generated by all (n− i) × (n− i)
minors of A (cf. [19]; this ideal Fitti,R(M) does not depend on the choice of
a relation matrix A).

Suppose that K/Q is a finite extension such that K is in the cyclotomic
Zp-extension Q∞ of Q, and that m is a squarefree product of primes in
P(N). We define K(m) by K(m) = Q(m)K.

We put G� = Gal(Q(�)/Q) and Gm = Gal(Q(m)/Q) = Π�|mG�. We have
Gal(K(m)/K) = Gm. We put n� = ordp(�−1). Suppose that m = �1 · ... · �r.
We take a generator τ�i of G�i and put Si = τ�i − 1 ∈ RK(m). We write ni
for n�i . We identify RK(m) with

RK [Gm] = RK [S1, ..., Sr]/((1 + S1)p
n1 − 1, ..., (1 + Sr)p

nr − 1).

We consider ϑK(m) ∈ RK(m) and write

ϑK(m) =
∑

i1,...,ir≥0

a
(m)
i1,...,ir

Sii1 · ... · Sirr

where a(m)
i1,...,ir

∈ RK . Put n0 = min{n1, ..., nr}. For s ∈ Z>0, we define cs to
be the maximal positive integer c such that

T−1((1 + T )p
n0 − 1) ∈ pcZp[T ] + T s+1Zp[T ].
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For example, c1 = n0, ..., cp−2 = n0, cp−1 = n0 − 1, ..., cp2−1 = n0 − 2. If
i1,...,ir ≤ s, a(m)

i1,...,ir
mod pcs is well-defined (it does not depend on the choice

of a(m)
i1,...,ir

).

Theorem 2.4.1 Let K be an intermediate field of the cyclotomic Zp-extension
Q∞/Q with [K : Q] < ∞. Let cs be the integer defined above for s ∈ Z>0

and m. Assume that i1,...,ir ≤ s and i1 + ...+ ir ≤ i. Then we have

a
(m)
i1,...,ir

∈ Fitti,RK/pcs (Sel(E/K,E[pcs ])∨).

For m = �1 · ... · �r, we denote (−1)r times the coefficient of S1 · ... · Sr in
ϑK(m) by δm. If �i splits completely in K for all i = 1,...,r, we can write

ϑK(m) ≡ δm

r∏
i=1

(1 − τ�i) = (−1)rδmS1 · ... · Sr (mod pN , S2
1 , ..., S

2
r ) (2.15)

(see [12] §6.3). Taking s = 1 and i = r in Theorem 2.4.1, we get

Corollary 2.4.2 Let K/Q be a finite extension such that K ⊂ Q∞. We
have

δm ∈ Fittr,RK/pN (Sel(E/K,E[pN ])∨)

where m = �1 · ... · �r.

Proof of Theorem 2.4.1. We may assume K = Q(pn) for some n ≥ 0, so
K(m) = Q(mpn). First of all, we consider the image ξK(m) ∈ RK(m) of
ξK(m)∞ . Since Sel(E/K(m), E[p∞]) −→ Sel(E/K(m)∞, E[p∞]) is injective,
ξK(m) is in Fitt0,RK(m)

(Sel(E/K(m), E[p∞])∨) by Theorem 2.2.2 (1). We
write

ξK(m) =
∑

i1,...,ir≥0

α
(m)
i1,...,ir

Sii1 · ... · Sirr

where α(m)
i1,...,ir

∈ RK . Assume that i1,...,ir ≤ s and i1 + ...+ ir ≤ i. Then by
Lemma 3.1.1 in [12] we have

α
(m)
i1,...,ir

∈ Fitti,RK/pcs (Sel(E/K,E[pcs ])∨).

On the other hand, since K(m) = Q(mpn) for some n ≥ 0, we have

ξK(m) = ϑK(m) +
∑

d|m,d�=m
λdνm,d(ϑQ(dpn))

for some λd ∈ RK(m) by (2.12). This implies that the images of ξK(m) and
ϑK(m) under the canonical homomorphism

RK(m) = RK [S1, ..., Sr]/I −→ RK [[S1, ..., Sr]]/J
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coincide where I = ((1 + S1)p
n1 − 1, ..., (1 + S1)p

nr − 1) and J = (S−1
1 (1 +

S1)p
n1 −1, ..., S−1

r (1+S1)p
nr−1, Ss+1

1 , ..., Ss+1
r ). Therefore, α(m)

i1,...,ir
≡ a

(m)
i1,...,ir

mod pcs for i1,...,ir ≤ s. It follows that a(m)
i1,...,ir

∈ Fitti,RK/pcs (Sel(E/K,E[pcs ])∨).
This completes the proof of Theorem 2.4.1.

3 Review of Kolyvagin systems of Gauss sum type
for elliptic curves

In this section, we recall the results in [12] on Euler systems and Kolyvagin
systems of Gauss sum type in the case of elliptic curves. From this section
we assume all the assumptions (i), (ii), (iii), (iv) in §1.1.

3.1 Some definitions

Recall that in §2 we defined Pgood by Pgood = {� | � is a good reduction
prime for E } \ {p}, and P(N) by

P(N) = {� ∈ Pgood | � ≡ 1 (mod pN )}

for a positive integer N > 0. If � is in Pgood, the absolute Galois group GF�

acts on the group E[pN ] of pN -torsion points, so we consider H i(F�, E[pN ]).
We define

P(N)
0 = {� ∈ P(N) | H0(F�, E[pN ]) contains an element of order pN},

(P ′0)(N) = {� ∈ P(N) | H0(F�, E[pN ]) = E[pN ]}, and

P(N)
1 = {� ∈ P(N) | H0(F�, E[pN ]) � Z/pN}.

So P(N)
0 ⊃ (P ′0)(N), P(N)

0 ⊃ P(N)
1 , and (P ′0)(N) ∩ P(N)

1 = ∅. Suppose that
� is in P(N)

1 . Then, since � ≡ 1 (mod pN ), we have an exact sequence
0 −→ Z/pN −→ E[pN ] −→ Z/pN −→ 0 of GF� -modules where GF� acts on
Z/pN trivially. So the action of the Frobenius Frob� at � on E[pN ] can be

written as
(

1 1
0 1

)
for a suitable basis of E[pN ]. Therefore, H1(F�, E[pN ])

is also isomorphic to Z/pN for � ∈ P(N)
1 .

Let t ∈ E[pN ] be an element of order pN . We define

P(N)
0,t = {� ∈ P(N) | t ∈ H0(F�, E[pN ])},

P(N)
1,t = {� ∈ P(N) | H0(F�, E[pN ]) = (Z/pN )t}.

So, P(N)
0 =

⋃
t P(N)

0,t and P(N)
1 =

⋃
tP(N)

1,t where t runs over all elements of
order pN . Since we assumed that the Galois action on the Tate module is
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surjective, both (P ′0)(N) and P(N)
1,t are infinite by Chebotarev density theorem

([12] §4.3).
We define K(p) to be the set of number fields K such that K/Q is a finite

abelian p-extension in which all bad primes of E are unramified. Suppose
that K is in K(p). We define

(P ′0)(N)(K) = {� ∈ (P ′0)(N) | � splits completely in K},
P(N)

1 (K) = {� ∈ P(N)
1 | � splits completely in K}.

Again by Chebotarev density theorem, both (P ′0)(N)(K) and P(N)
1 (K) are

infinite (see [12] §4.3).

Suppose � ∈ Pgood. For a prime v above �, we knowH1(Kv , E[pN ])/(E(Kv)⊗
Z/pN ) = H0(κ(v), E[pN ](−1)) where κ(v) is the residue field of v. We put

H2
� (K) =

⊕
v|�

H0(κ(v), E[pN ](−1)). (3.1)

If � is in (P ′0)(N)(K) (resp. P(N)
1 (K)), H2

� (K) is a free RK/pN -module of
rank 2 (resp. rank 1) where RK = Zp[Gal(K/Q)] as before.

From now on, for a prime � ∈ P(N)
0 , we fix a prime �Q of an algebraic

closure Q above �. For any algebraic number field F , we denote the prime
of F below �Q by �F , so when we consider finite extensions F1/k, F2/k such
that F1 ⊂ F2, the primes �F2, �F1 satisfy �F2 |�F1.

We take a primitive pn-th root of unity ζpn such that (ζpn)n≥1 ∈ Zp(1) =
lim←−μp

n , and fix it.

In the following, for each � in P(N)
0 (K), we take t� ∈ H0(F�, E[pN ]) and

fix it. We define

t�,K = (t� ⊗ ζ
⊗(−1)

pN
, 0, ..., 0) ∈ H2

� (K) (3.2)

where the right hand side is the element whose �K-component is t�⊗ ζ
⊗(−1)

pN

and other components are zero.

Suppose that K is in K(p). Let K∞/K be the cyclotomic Zp-extension,
and Kn be the n-th layer. Since Sel(OK∞ , E[p∞])∨ is a finitely generated Zp-
module, the corestriction map Sel(OKm , E[pN ]) −→ Sel(OK , E[pN ]) is the
zero map if m is sufficiently large. We take the minimal m > 0 satisfying
this property, and put K[1] = Km. We define inductively K[n] by K[n] =
(K[n−1])[1] where we applied the above definition to K[n−1] instead of K.
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We can compute how largeK[n] is. Let λ be the λ-invariant of Sel(OK∞ , E[p∞])∨.
We take a ∈ Z≥0 such that pa+1 − pa ≥ λ. Suppose that K = K ′m (m-th
layer of K ′∞/K ′) for some K ′ such that p is unramified in K ′. The core-
striction map Sel(OK ′

a+1
, E[p]) −→ Sel(OK ′

a
, E[p]) is the zero map. There-

fore, Sel(OK ′
a+N

, E[pN ]) −→ Sel(OK ′
a
, E[pN ]) is the zero map. Put a′ =

max(a − m, 0). Then Sel(OKa′+N , E[pN ]) −→ Sel(OKa′ , E[pN ]) is the zero
map. Therefore, we have K[1] ⊂ Ka′+N . Also we know K[n] ⊂ Ka′+nN .

Let nλ, dn be the numbers defined just before (1.4) in §1.2. Then we
can show that if � ∈ P(N)

1 satisfies � ≡ 1 (mod pdn), � is in P(N)
1 (Q[n]) by

the same method as above.

3.2 Euler systems of Gauss sum type for elliptic curves

We use the following lemma which is the global duality theorem (see Theo-
rem 2.3.4 in Mazur and Rubin [14]).

Lemma 3.2.1 Suppose that m is a product of primes in Pgood. We have
an exact sequence

0 −→ Sel(OK , E[pN ]) −→ Sel(OK [1/m],E[pN ]) −→
⊕
�|m

H2
� (K) −→ Sel(OK , E[pN ])∨.

We remark that we can take m such that the last map is surjective in
our case (see Lemma 3.4.1 below).

Let K be a number field in K(p) and � ∈ P(N)
0 (K[1]). We apply the above

lemma to K[1] and obtain an exact sequence

Sel(OK[1]
[1/�],E[pN ]) ∂�−→ H2

� (K[1])
w�−→ Sel(OK[1]

, E[pN ])∨.

Consider ϑK[1]
t�,K[1]

∈ H2
� (K[1]). By Theorem 2.3.1 we know w�(ϑK[1]

t�,K[1]
) =

ϑK[1]
w�(t�,K[1]

) = 0. Therefore, there is an element g ∈ Sel(OK[1]
[1/�],E[pN ])

such that ∂�(g) = ϑK[1]
t�,K[1]

. We define

g
(K)
�,t�

= CorK[1]/K(g) ∈ Sel(OK [1/�],E[pN ]). (3.3)

This element g(K)
�,t�

does not depend on the choice of g ∈ Sel(OK[1]
[1/�],E[pN ])

([12] §5.4). We write g� instead of g(K)
�,t�

when no confusion arises.

Remark 3.2.2 To define g�, we used in [12] the p-adic L-function θK∞
whose Euler factor at � is 1 − a�

� σ
−1
� + 1

�σ
−2
� . The element θK∞ can be

constructed from ϑK∞ by the same method as when we constructed ξK∞
in §2.1. In the above definition (3.3), we used ϑK (namely ϑK∞) instead of
θK∞ .
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3.3 Kolyvagin derivatives of Gauss sum type

Let � be a prime in Pgood. We define ∂� as a natural homomorphism

∂� : H1(K,E[pN ]) −→ H2
� (K) =

⊕
v|�

H0(κ(v), E[pN ](−1))

where we used H1(Kv, E[pN ])/(E(Kv) ⊗ Z/pN ) = H0(κ(v), E[pN ](−1)).
Next, we assume � ∈ P(N)

1 (K). We denote by Q�(�) the maximal p-
subextension of Q� inside Q�(μ�). Put G� = Gal(Q�(�)/Q�). By Kummer
theory, G� is isomorphic to μpn� where n� = ordp(� − 1). We denote by τ�
the corresponding element of G� to ζpn� that is the primitive pn�-th root of
unity we fixed.

We consider the natural homomorphismH1(Q�, E[pN ]) −→ H1(Q�(�), E[pN ])
and denote the kernel by H1

tr(Q�, E[pN ]). Let Q�,nr be the maximal unrami-
fied extension of Q�. We identifyH1(F�, E[pN ]) withH1(Gal(Q�,nr/Q�), E[pN ]),
and regard it as a subgroup of H1(Q�, E[pN ]). Then both H1(F�, E[pN ])
and H1

tr(Q�, E[pN ]) are isomorphic to Z/pN , and we have decomposition

H1(Q�, E[pN ]) = H1(F�, E[pN ]) ⊕H1
tr(Q�, E[pN ])

as an abelian group. We also note that H1(F�, E[pN ]) coincides with the
image of the Kummer map and is isomorphic to E(Q�)⊗Z/pN . We consider
the homomorphism

φ′ : H1(Q�, E[pN ]) −→ H1(F�, E[pN ]) (3.4)

which is obtained from the above decomposition.
Note that H1(F�, E[pN ]) = E[pN ]/(Frob�−1) where Frob� is the Frobe-

nius at �. Since � is in P(N)
1 , Frob−1

� −1 : E[pN ]/(Frob�−1) −→ E[pN ]Frob�=1 =
H0(F�, E[pN ]) is an isomorphism. We define φ′′ : H1(Q�, E[pN ]) −→ H0(F�, E[pN ])

as the composition of φ′ and H1(F�, E[pN ])
Frob−1

� −1−→ H0(F�, E[pN ]). We de-
fine

φ� : H1(K,E[pN ]) −→ H2
� (K)(1)

as the composition of the natural homomorphismH1(K,E[pN ]) −→ ⊕
v|�H

1(Kv , E[pN ])
and φ′′ for Kv. Using the primitive pN -th root of unity ζpN we fixed, we
regard φ� as a homomorphism

φ� : H1(K,E[pN ]) −→ H2
� (K).

For a prime � ∈ P(N)
1 (K), we put G� = Gal(Q(�)/Q). We identify G�

with Gal(Q�(�)/Q�). Recall that we defined n� by pn� = [Q(�) : Q], and we
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took a generator τ� of G� above. We define

N� =
pn�−1∑
i=0

τ i� ∈ Z[G�], D� =
pn�−1∑
i=0

iτ i� ∈ Z[G�]

as usual.
We define N (N)

1 (K) to be the set of squarefree products of primes in
P(N)

1 (K). We suppose 1 ∈ N (N)
1 (K). For m ∈ N (N)

1 (K), we put Gm =
Gal(Q(m)/Q), Nm = Π�|mN� ∈ Z[Gm], and Dm = Π�|mD� ∈ Z[Gm]. As-

sume that � is in (P ′0)(N)(K(m)[1]) and consider gK(m)
�,t�

∈ Sel(OK(m)[1/�],E[pN ]).

We can check that Dmg
K(m)
�,t�

is in Sel(OK(m)[1/m�],E[pN ])Gm . Using the

fact that Sel(OK [1/m�],E[pN ]) �−→ Sel(OK(m)[1/m�],E[pN ])Gm is bijective
by Lemma 3.3.1 below (cf. also [12] Lemma 6.3.1), we define

κm,� = κ
(K)
m,�,t�

∈ Sel(OK [1/m�],E[pN ]) (3.5)

to be the unique element whose image in Sel(OK(m)[1/m�],E[pN ]) isDmg
(K(m))
�,t�

.
The following lemma will be also used in the next section.

Lemma 3.3.1 Suppose that K, L ∈ K(p) and K ⊂ L. For any m ∈ Z>0,
the restriction map Sel(OK [1/m],E[pN ]) �−→ Sel(OL[1/m],E[pN ])Gal(L/K)

is bijective.

Proof. Let NE be the conductor of E, m′ = mpNE, and m′′ the product of
primes which divide pNE and which do not divide m. Put G = Gal(L/K).
We have a commutative diagram of exact sequences

0 −→ Sel(OK [1/m],E[pN ]) −→ Sel(OK [1/m′], E[pN ]) −→ ⊕
v|m′′ H2

K,v⏐⏐
α1

⏐⏐
α2

⏐⏐
α3

0 −→ Sel(OL[1/m],E[pN ])G −→ Sel(OL[1/m′], E[pN ])G −→ (
⊕

w|m′′ H2
L,w)G

whereH2
K,v = H1(Kv , E[pN ])/(E(Kv)⊗Z/pN ) andH2

L,w = H1(Lw, E[pN ])/(E(Lw)⊗
Z/pN ). Since Sel(OL[1/m′], E[pN ]) = H1

et(SpecOL[1/m′], E[pN ]) andH0(L,E[pN ]) =
0, α2 is bijective. Suppose that v divides m′′ and w is above v. When v
divides NE, since v is unramified in L and p is prime to Tam(E), H2

K,v −→
H2
L,w is injective (Greenberg [3] §3). When v is above p, H2

K,v −→ H2
L,w is

injective because ap �≡ 1 (mod p) (Greenberg [3] §3). Hence α3 is injective.
Therefore, α1 is bijective.

In [11], if m has a factorizationm = �1 ·...·�r such that �i+1 ∈ P(N)
1 (K(�1 ·

... · �i)) for all i = 1,...,r − 1, we called m well-ordered. But the word “well-
ordered” might cause confusion, so we call m admissible in this paper if m
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satisfies the above condition. Note that we do not impose the condition
�1 < ... < �r in the above definition, and that m is admissible if there is
one factorization as above. We sometimes call the set of prime divisors of
m admissible if m is admissible.

Suppose that m = �1 · ... · �r. We define δm ∈ RK/p
N by

ϑK(m) ≡ δm

r∏
i=1

(1 − τ�i) (mod pN , (τ�1 − 1)2, ..., (τ�r − 1)2) (3.6)

(see [12] §6.3).
We simply write κm,� for κ(K)

m,�,t�
. We have the following Proposition ([12]

Propositions 6.3.2, 6.4.5 and Lemma 6.3.4).

Proposition 3.3.2 Suppose thatm is in N (N)
1 (K), and � ∈ (P ′0)(N)(K(m)[1]).

We take n0 sufficiently large such that every prime of Kn0 dividing m is in-
ert in K∞/Kn0 . We further assume that � ∈ (P ′0)(N)(Kn0+N ). Then
(0) κm,� ∈ Sel(OK [1/m�],E[pN ]).
(1) ∂r(κm,�) = φr(κm

r
,�) for any prime divisor r of m.

(2) ∂�(κm,�) = δmt�,K.
(3) Assume further that m is admissible. Then φr(κm,�) = 0 for any prime
divisor r of m.

3.4 Construction of Kolyvagin systems of Gauss sum type

In the previous subsection we constructed κm,� for m ∈ N (N)
1 (K) and a

prime � ∈ (P ′0)(N)(K) satisfying some properties. In this subsection we
construct κm,� for � ∈ P(N)

1 (K) satisfying some properties (see Proposition
3.4.2). The property (4) in Proposition 3.4.2 is a beautiful property of our
Kolyvagin systems of Gauss sum type, which is unique for Kolyvagin systems
of Gauss sum type.

For a squarefree product m of primes, we define ε(m) to be the number
of prime divisors of m, namely ε(m) = r if m = �1 · ... · �r.

For any prime number �, we write H2
� (K) =

⊕
v|�H

1(Kv, E[pN ])/(E(Kv)⊗
Z/pN ), and consider the natural map

wK :
⊕
�

H2
� (K) −→ Sel(OK , E[pN ])∨

which is obtained by taking the dual of Sel(OK , E[pN ]) −→ ⊕
v E(Kv) ⊗

Z/pN . We also consider the natural map

∂K : H1(K,E[pN ]) −→
⊕
�

H2
� (K).
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We use the following lemma which was proved in [12] Proposition 4.4.3
and Lemma 6.2.1 (2).

Lemma 3.4.1 Suppose that K ∈ K(p) and r1,...,rs are s distinct primes in

P(N)
1 (K). Assume that for each i = 1,...,s, σi ∈ H2

ri(K) is given, and also
x ∈ Sel(OK , E[pN ])∨ is given. Let K ′/K be an extension such that K ′ ∈
K(p). Then there are infinitely many � ∈ P(N)

0 (K) such that wK(t�,K) = x.
We take such a prime � and fix it. Then there are infinitely many �′ ∈
(P ′0)(N)(K ′) which satisfy the following properties:
(i) wK(t�′,K) = wK(t�,K) = x.
(ii) There is an element z ∈ Sel(OK [1/��′], E[pN ]) such that ∂K(z) = t�′,K −
t�,K and φri(z) = σi for each i = 1,...,s.

Assume that m� is in N (N)
1 (K[ε(m�)]). By Lemma 3.4.1 we can take

�′ ∈ (P ′0)(N) satisfying the following properties:
(i) �′ ∈ (P ′0)(N)(K[ε(m�)](m)[1]Kn0+N ) where n0 is as in Proposition 3.3.2.
(ii) wK[ε(m�)]

(t�′,K[ε(m�)]
) = wK[ε(m�)]

(t�,K[ε(m�)]
).

(iii) Let φ
(K[ε(m�)])
r : H1(K[ε(m�)], E[pN ]) −→ H2

r(K[ε(m�)]) be the map φr for
K[ε(m�)]. There is an element b′ in Sel(OK[ε(m�)]

[1/��′], E[pN ]) such that

∂K[ε(m�)]
(b′) = t�′,K[ε(m�)]

− t�,K[ε(m�)]

and φ
K[ε(m�)]
r (b′) = 0 for all r dividing m.

We have already defined κm,�′ in the previous subsection. We put b =
CorK[ε(m�)]/K(b′) and define

κm,� = κm,�′ − δmb. (3.7)

Then this element does not depend on the choice of �′ and b′ (see [12] §6.4).
In [12], we took b′ which does not necessarily satisfy φ

K[ε(m�)]
r (b′) = 0 in the

definition of κm,�. But we adopted the above definition here because it is
simpler and there is no loss of generality.

The next proposition was proved in [12] Propositions 6.4.3, 6.4.5, 6.4.6.

Proposition 3.4.2 Suppose that m� is in N (N)
1 (K[ε(m�)]). Then

(0) κm,� ∈ Sel(OK [1/m�],E[pN ]).
(1) ∂r(κm,�) = φr(κm

r
,�) for any prime divisor r of m.

(2) ∂�(κm,�) = δmt�,K.
(3) Assume further that m is admissible. Then φr(κm,�) = 0 for any prime
divisor r of m.
(4) Assume further that m� is admissible, and m� is in N (N)

1 (K[ε(m�)+1]).
Then we have

φ�(κm,�) = −δm�t�,K .
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4 Relations of Selmer groups

In this section, we prove a generalized version of Theorem 1.2.3.

4.1 Injectivity theorem

Suppose that K is in K(p) and that m is in N (N)
1 (K). For a prime divisor r

of m, we denote by

wr : H2
r(K) −→ Sel(OK , E[pN ])∨

the homomorphism which is the dual of Sel(OK , E[pN ]) −→ ⊕
v|r E(Kv) ⊗

Z/pN . Recall that H2
r(K) is a free RK/pN -module of rank 1, generated by

tr,K .

Proposition 4.1.1 We assume that δm is a unit of RK/pN for some m ∈
N (N)

1 (K). Then the natural homomorphism ⊕r|mwr :
⊕

r|mH2
r(K) −→

Sel(OK , E[pN ])∨ is surjective.

Remark 4.1.2 We note that δm is numerically computable, in principle.

Proof of Proposition 4.1.1. Let x be an arbitrary element in Sel(OK , E[pN ])∨.
Let wr : H2

r(K) −→ Sel(OK , E[pN ])∨ be the natural homomorphism for each
r | m. We will prove that x is in the submodule generated by all wr(tr,K) for
r | m. Using Lemma 3.4.1, we can take a prime � ∈ (P ′0)(N)(K(m)[1]Kn0+N )
such that w�(t�,K) = x and � is prime to m. We consider the Kolyvagin
derivative κm,� which was defined in (3.5). Consider the exact sequence

Sel(OK [1/m�],E[pN ]) ∂−→
⊕
�′|m�

H2
�′(K) wK−→ Sel(OK , E[pN ])∨

(see Lemma 3.2.1) where ∂ = (⊕∂�′)�′|m� and wK((z�′)�′|m�) =
∑

�′|m�w�′(z�′).
For each r | m we define λr ∈ RK/p

N by ∂r(κm,�) = λrtr,K ∈ H2
r(K). The

above exact sequence and Proposition 3.3.2 (2) imply that

δmx+
∑
r|m

λrwr(tr,K) = 0

in Sel(OK , E[pN ])∨. Since we assumed that δm is a unit, x is in the sub-
module generated by all wr(tr,K)’s. This completes the proof of Proposition
4.1.1.

For a prime � ∈ P(N)
1 (K), we define

H1
�,f (K) =

⊕
v|�

E(κ(v)) ⊗ Z/pN .
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Since κ(v) = F�, E(κ(v)) ⊗ Z/pN is isomorphic to Z/pN and H1
�,f (K) is a

free RK/pN -module of rank 1.

Corollary 4.1.3 Suppose that m = �1 · ... · �a is in N (N)
1 (K). We assume

that δm is a unit of RK/pN . Then the natural homomorphism

sm : Sel(OK , E[pN ]) −→
a⊕
i=1

H1
�i,f (K)

is injective.

Proof. This is obtained by taking the dual of the statement in Proposition
4.1.1.

4.2 Relation matrices

Theorem 4.2.1 Suppose that m = �1 ·...·�a is in N (N)
1 (K[a+1]). We assume

that m is admissible and that δm is a unit of RK/pN . Then
(1) Sel(OK [1/m],E[pN ]) is a free RK/pN -module of rank a.
(2) {κm

�i
,�i}1≤i≤a is a basis of Sel(OK [1/m],E[pN ]).

(3) The matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

δm
�1

φ�1(κ m
�1�2

,�2) ... φ�1(κ m
�1�a

,�a)
φ�2(κ m

�1�2
,�1) δm

�2
... φ�2(κ m

�2�a
,�a)

. .

. .
φ�a(κ m

�1�a
,�1) φ�a(κ m

�2�a
,�2) ... δm

�a

⎞
⎟⎟⎟⎟⎟⎠

(4.1)

is a relation matrix of Sel(E/K,E[pN ])∨.

In particular, if a = 2, the above matrix is A =
(

δ�2 φ�1(g�2)
φ�2(g�1) δ�1

)
.

This is described in Remark 10.6 in [11] in the case of ideal class groups.

Proof of Theorem 4.2.1 (1). By Proposition 4.1.1,
⊕a

i=1 H2
�i
(K) −→ Sel(OK , E[pN ])∨

is surjective. Therefore, by Lemma 3.2.1 we have an exact sequence

0 −→ Sel(OK , E[pN ]) −→ Sel(OK [1/m],E[pN ]) ∂−→
a⊕
i=1

H2
�i(K)

−→ Sel(OK , E[pN ])∨ −→ 0. (4.2)

It follows that # Sel(OK [1/m],E[pN ]) = #
⊕a

i=1 H2
�i
(K) = #(RK/pN )a.
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LetmRK be the maximal ideal ofRK . By Lemma 3.3.1, Sel(Z[1/m],E[pN ]) �−→
Sel(OK [1/m],E[pN ])Gal(K/Q) is bijective. Since H0(Q, E[p∞]) = 0, the ker-
nel of the multiplication by p on Sel(Z[1/m],E[pN ]) is Sel(Z[1/m],E[p]).
Therefore, we have an isomorphism Sel(OK [1/m],E[pN ])∨⊗RK RK/mRK �
Sel(Z[1/m],E[p])∨ . From the exact sequence

0 −→ Sel(Z, E[p]) −→ Sel(Z[1/m],E[p]) −→
a⊕
i=1

H2
�i
(Q) −→ Sel(Z, E[p])∨ −→ 0,

and H2
�i
(Q) = H0(F�i , E[p]) � Fp, we know that Sel(Z[1/m],E[p]) is gener-

ated by a elements. Therefore, by Nakayama’s lemma, Sel(OK [1/m],E[pN ])∨

is generated by a elements. Since # Sel(OK [1/m],E[pN ])∨ = #(RK/pN )a,
Sel(OK [1/m],E[pN ])∨ is a free RK/pN -module of rank a. This shows that
Sel(OK [1/m],E[pN ]) is also a free RK/pN -module of rank a because RK/pN

is a Gorenstein ring.

(2) We identify
⊕a

i=1 H2
�i
(K) with (RK/pN )a, using a basis {t�i,K}1≤i≤a.

Consider φ�i : Sel(OK [1/m],E[pN ]) −→ H2
�i
(K) and the direct sum of φ�i ,

which we denote by Φ;

Φ = ⊕a
i=1φ�i : Sel(OK [1/m],E[pN ]) −→

a⊕
i=1

H2
�i(K) � (RK/pN )a.

Recall that κm
�i
,�i is an element of Sel(OK [1/m],E[pN ]) (Proposition 3.4.2

(0)). By Proposition 3.4.2 (3), (4), we have

Φ(κm
�i
,�i) = −δmei

for each i where {ei}1≤i≤a is the standard basis of the free module (RK/pN )a.
Since we are assuming that δm is a unit, Φ is surjective. Since both the target
and the source are free modules of the same rank, Φ is bijective. This implies
Theorem 4.2.1 (2).

(3) Using the exact sequence (4.2) and the isomorphism Φ, we have an exact
sequence

(Rn/pN )a ∂◦Φ−1−→
⊕

1≤i≤a
H2
�i(Kn)

r−→ Sel(OK , E[pN ])∨ −→ 0.

We take a basis {−δmei}1≤i≤a of (Rn/pN )a and a basis {t�i,K}1≤i≤a of⊕
1≤i≤aH2

�i
(Kn). Then the (i, j)-component of the matrix corresponding

to ∂ ◦ Φ−1 is ∂�i(κm�j ,�j
). If i = j, this is δm

�i
by Proposition 3.4.2 (2). If

i �= j, we have ∂�i(κm�j ,�j
) = φ�i(κ m

�i�j
,�j) by Proposition 3.4.2 (1). This

completes the proof of Theorem 4.2.1.
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Remark 4.2.2 Suppose that � is in P(N)
1 (K). We define

Φ′� : H1(K,E[pN ]) −→ H1
�,f (K)

as the composition of the natural mapH1(K,E[pN ]) −→ ⊕
v|�H

1(Kv , E[pN ])
and φ′ : H1(Kv , E[pN ]) −→ H1(κ(v), E[pN ]) = E(κ(v))⊗Z/pN in (3.4). For
m ∈ N (N)

1 (K), we define

Φ′m : H1(K,E[pN ]) −→
⊕
�|m

H1
�,f (K)

as the direct sum of Φ′� for � | m. By definition, the restriction of Φ′m to
S = Sel(E/K,E[pN ]) coincides with the canonical map sm;

(Φ′m)|S = sm : Sel(E/K,E[pN ]) −→
⊕
�|m

H1
�,f (K) . (4.3)

Since H1
�,f (K) and H2

� (K) are Pontrjagin dual each other, we can take
the dual basis t∗�,K of H1

�,f (K) as an RK/p
N -module from the basis t�,K of

H2
� (K). Under the assumptions of Theorem 4.2.1, using the basis {t∗�i,K}1≤i≤a

of
⊕a

i=1 H1
�,f (K), {t�i,K}1≤i≤a of

⊕a
i=1 H2

�i
(K) and the isomorphism Φ′m, we

have an exact sequence
⊕

�|mH1
�,f (K)

f−→ ⊕a
i=1 H2

�i
(K) −→ Sel(E/K,E[pN ])∨ −→

0. Then the matrix corresponding to f is an organizing matrix in the sense
of Mazur and Rubin [15] (cf. [12] §9).

5 Modified Kolyvagin systems and numerical ex-
amples

5.1 Modified Kolyvagin systems of Gauss sum type

In §3.4 we constructed Kolyvagin systems κm,� for (m, �) such that m� ∈
N (N)

1 (K[ε(m�)+1]). But the condition � ∈ P(N)
1 (K[ε(m�)+1]) is too strict, and

it is not suitable for numerical computation. In this subsection, we define
a modified version of Kolyvagin systems of Gauss sum type for (m, �) such
that m� ∈ N (N)

1 (K).
Suppose thatK is in K(p). For each � ∈ P(N)

1 (K), we fix t� ∈ H0(F�, E[pN ])

of order pN , and consider t�,K ∈ H2
� (K), whose �K -component is t�⊗ ζ

⊗(−1)

pN

and other components are zero. Using t�,K , we regard ∂� and φ� as homomor-
phisms ∂� : H1(K,E[pN ]) −→ RK/p

N and φ� : H1(K,E[pN ]) −→ RK/p
N .

We will define an element κq,q
′,z

m,� in Sel(OK [1/m�],E[pN ]) for (m, �) such
thatm� ∈ N1(K) (and for some primes q, q′ and some z in Sel(OK [1/qq′], E[pN ])).
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Consider (m, �) such that � is a prime and m� ∈ N1(K). We take n0 suffi-
ciently large such that every prime of Kn0 dividing m� is inert in K∞/Kn0 .
Then by Proposition 3.3.2 (1), for any q ∈ (P ′0)(N)(K(m�)[1]Kn0+N ), κm�,q ∈
Sel(OK [1/m�q], E[pN ]) satisfies

∂r(κm�,q) = φr(κm�
r
,q)

for all r dividingm�. By Lemma 3.4.1, we can take q, q′ ∈ (P ′0)(N)(K(m�)[1]Kn0+N )
satisfying
• wK(tq,K) = wK(tq′,K), and
• there is z ∈ H1

f (OK [1/qq′], E[pN ]) such that ∂K(z) = tq,K−tq′,K , φ�(z) = 1
and φr(z) = 0 for any r dividing m.

For any m ∈ N1(K), let δm be the element defined in (3.6). We define

κq,q
′,z

m,� = κm�,q − κm�,q′ − δm�z . (5.1)

By Proposition 3.3.2 (2), we have κq,q
′,z

m,� ∈ Sel(OK [1/m�],E[pN ]).

Proposition 5.1.1 (0) κq,q
′,z

m,� is in Sel(OK [1/m�],E[pN ]).

(1) The element κq,q
′,z

m,� satisfies ∂r(κ
q,q′,z
m,� ) = φr(κ

q,q′,z
m
r
,� ) for any prime divisor

r of m.
(2) We further assume that m� is admissible in the sense of the paragraph
before Proposition 3.3.2. Then we have φr(κ

q,q′,z
m,� ) = 0 for any prime divisor

r of m.
(3) Under the same assumptions as (2), φ�(κ

q,q′,z
m,� ) = −δm� holds.

Proof. (1) Using the definition of κq,q
′,z

m,� and Proposition 3.3.2 (1), we have

∂r(κ
q,q′,z
m,� ) = ∂r(κm�,q − κm�,q′) = φr(κm�

r
,q − κm�

r
,q′). Next, we use the

definition of κq,q
′,z

m
r
,� and φr(z) = 0 to get φr(κm�

r
,q − κm�

r
,q′) = φr(κ

q,q′,z
m
r
,� +

δm�
r
z) = φr(κ

q,q′,z
m
r
,� ). These computations imply (1).

(2) We have φr(κm�,q) = φr(κm�,q′) = 0 by Proposition 3.3.2 (3). This
together with φr(z) = 0 implies φr(κ

q,q′,z
m,� ) = φr(κm�,q − κm�,q′ − δm�z) = 0.

(3) We again use Proposition 3.3.2 (3) to get φ�(κm�,q) = φ�(κm�,q′) = 0.
Since φ�(z) = 1, we have φ�(κ

q,q′,z
m,� ) = φ�(κm�,q − κm�,q′ − δm�z) = −δm�.

This completes the proof of Proposition 5.1.1.
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5.2 Proof of Theorem 1.2.5

In this subsection we take K = Q. For m ∈ N (N) = N (N)(Q), we consider
δm ∈ Z/pN , which is defined from ϑQ(m) by (3.6). We define δ̃m ∈ Z/pN by

θ̃Q(m) ≡ δ̃m

r∏
i=1

(τ�i − 1) (mod pN , (τ�1 − 1)2, ..., (τ�r − 1)2) (5.2)

where m = �1 · ... · �r. By (2.4), θ̃Q(m) = uϑQ(m) for some unit u ∈ R×Q(m).
This together with (3.6) and (5.2) implies that

ordp(δ̃m) = ordp(δm). (5.3)

We take a generator η� ∈ (Z/�Z)× such that the image of ση� ∈ Gal(Q(μ�)/Q) �
(Z/�)× in Gal(Q(�)/Q) � (Z/�)×⊗Zp is τ� which is the generator we took.
Then, using (5.2) and (1.1), we can easily check that the equation (1.2) in
§1.1 holds.

In the rest of this subsection, we take N = 1. We simply write P1 for
P(1)

1 , so

P1 = {� ∈ Pgood | � ≡ 1 (mod p) and E(F�) � Z/p}.
The set of squarefree products of primes in P1 is denoted by N1.

We first prove the following lemma which is related to the functional
equation of an elliptic curve.

Lemma 5.2.1 Let ε be the root number of E. Suppose that m ∈ N1 is δ-
minimal (for the definition of δ-minimalness, see the paragraph before Con-
jecture 1.2.4). Then we have ε = (−1)ε(m).

Proof. By the functional equation (1.6.2) in Mazur and Tate [16] and the
above definition of δ̃m, we have ε(−1)ε(m)δ̃m ≡ δ̃m (mod p). Since δ̃m �≡ 0
(mod p) is equivalent to δm �≡ 0 (mod p) by (5.3), we get the conclusion.

For each � ∈ P1, we fix a generator t� ∈ H2
� (Q) = H0(F�, E[p](−1)) �

Z/p = Fp, and regard φ� as a map φ� : H1(Q, E[p]) −→ Fp. Note that the
restriction of φ� to Sel(E/Q, E[p]) is the zero map if and only if the natural
map s� : Sel(E/Q, E[p]) −→ E(F�) ⊗ Z/p � Fp is the zero map.

I) Proof of Theorem 1.2.5 (1), (2).
Suppose that ε(m) = 0, namely m = 1. Then δ1 = θQ mod p = L(E, 1)/Ω+

E

mod p. If δ1 �= 0, Sel(E/Q, E[p]) = 0 and s1 is trivially bijective. Suppose
next ε(m) = 1, so m = � ∈ P1. It is sufficient to prove the next two
propositions.
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Proposition 5.2.2 Assume that � ∈ P1 is δ-minimal. Then Sel(E/Q, E[p])
is 1-dimensional over Fp, and s� : Sel(E/Z, E[p]) −→ Fp is bijective. More-
over, the Selmer group Sel(E/Q, E[p∞])∨ with respect to the p-power torsion
points E[p∞] is a free Zp-module of rank 1, namely Sel(E/Q, E[p∞])∨ � Zp.

Proof. We first assume Sel(E/Q, E[p]) = 0 and will obtain the contradiction.
We consider κq,q

′,z
1,� = κ�,q − κ�,q′ − δ�z, which was defined in (5.1). By

Proposition 3.3.2 (1), we know ∂�(κ
q,q′,z
1,� ) = φ�(gq − gq′). Consider the exact

sequence (see Lemma 3.2.1)

0 −→ Sel(E/Q, E[p]) −→ Sel(Z[1/r], E[p]) −→ H2
r(Q)

for any r ∈ P1 where Sel(Z[1/r], E[p]) −→ H2
r(Q) � Fp is nothing but ∂r.

Since we assumed Sel(E/Q, E[p]) = 0, Sel(Z[1/r], E[p]) −→ H2
r(Q) � Fp is

injective for any r ∈ P1. So ∂q(gq) = δ1 = 0 implies that gq = 0. By the
same method, we have gq′ = 0. Therefore, ∂�(κ

q,q′,z
1,� ) = φ�(gq − gq′) = 0,

which implies that κq,q
′,z

1,� ∈ Sel(E/Q, E[p]).

But Proposition 5.1.1 (3) tells us that φ�(κ
q,q′,z
1,� ) = −δ� �= 0. Therefore,

κq,q
′,z

1,� �= 0, which contradicts our assumption Sel(E/Q, E[p]) = 0. Thus we
get Sel(E/Q, E[p]) �= 0.

On the other hand, by Corollary 4.1.3 we know that s� : Sel(E/Q, E[p]) −→
Fp is injective, therefore bijective.

By Lemma 5.2.1, the root number ε is −1. This shows that Sel(E/Q, E[p∞])∨

has positive Zp-rank by the parity conjecture proved by Nekovář ([18]).
Therefore, we finally have Sel(E/Q, E[p∞])∨ � Zp, which completes the
proof of Proposition 5.2.2.

If we assume a slightly stronger condition on �, we also obtain the main
conjecture. Let λ′ = λan be the analytic λ-invariant of the p-adic L-function
ϑQ∞ . We put nλ′ = min{n ∈ Z | pn − 1 ≥ λ′}.

Proposition 5.2.3 Suppose that there is � ∈ P1 such that

� ≡ 1 (mod pnλ′+2) and δ̃� �= 0.

Then the main conjecture for (E,Q∞/Q) is true and Sel(E/Q∞, E[p∞])∨

is generated by one element as a ΛQ∞-module.

Proof. We use our Euler system g
(K)
� in §3.2 instead of κq,q

′,z
1,� which was used

in the proof of Proposition 5.2.2. Let λ be the algebraic λ-invariant, namely
the rank of Sel(E/Q∞, E[p∞])∨. Then λ ≤ λ′ and ϑQ∞ ∈ char(Sel(OQ∞ , E[p∞])∨)
by Kato’s theorem.
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PutK = Qnλ′ and f = pnλ′ . Consider the group ringRK/p = Fp[Gal(K/Q)].
We identify a generator γ of Gal(K/Q) with 1 + t, and identify RK/p

with Fp[[t]]/(tf ). The norm NGal(K/Q) = Σf−1
i=0 γ

i is tf−1 by this identifi-
cation, so our assumption λ′ ≤ f − 1 implies that the corestriction map
Sel(E/K,E[p]) −→ Sel(E/Q, E[p]) is the zero map because λ ≤ λ′. There-
fore, we have Q[1] ⊂ K. Since pnλ′+1 − pnλ′ > pnλ′ − 1 ≥ λ′ ≥ λ, the core-
striction map Sel(E/Qnλ′+1, E[p]) −→ Sel(E/Qnλ′ , E[p]) = Sel(E/K,E[p])
is also the zero map. This shows that Q[2] ⊂ Qnλ′+1.

Our assumption � ≡ 1 (mod pnλ′+2) implies that � splits completely in
Qnλ′+1, so we have � ∈ P1(Q[2]) = P1(K[1]). Therefore, we can define

g
(K)
� ∈ Sel(OK [1/�],E[p])

in §3.2. Since � ∈ P1(Q[2]), we also have

φ�(g
(Q)
� ) = −δ(Q)

� = −δ�

by Proposition 3.4.2 (4). It follows from our assumption δ� �= 0 that g(Q)
� �=

0. Since CorK/Q(g(K)
� ) = g

(Q)
� and the natural map i : Sel(Z[1/�],E[p]) −→

Sel(OK [1/�],E[p]) is injective, we get

i(g(Q)
� ) = NGal(K/Q)g

(K)
� = tf−1g

(K)
� �= 0.

Consider ∂� : Sel(OK [1/�],E[p]) −→ RK/p. By definition, we have
∂�(g

(K)
� ) = utλ

′
for some unit u of RK/p. This shows that ∂�(tf−λ

′
g
(K)
� ) = 0,

which implies that tf−λ′g(K)
� ∈ Sel(E/K,E[p]). The fact tf−1g

(K)
� �= 0 im-

plies the submodule generated by tf−λ′g(K)
� is isomorphic to RK/(p, tλ

′
) as

an RK-module. Namely, we have

Sel(E/K,E[p]) ⊃ 〈tf−λ′g(K)
� 〉 � RK/(p, tλ

′
).

This implies that λ = λ′, and Sel(E/K,E[p]) � RK/(p, tλ). Therefore,
we have Sel(E/Q∞, E[p])∨ � ΛQ∞/(p, ϑQ∞). This together with Kato’s
theorem we mentioned implies that Sel(E/Q∞, E[p∞])∨ � ΛQ∞/(ϑQ∞).

II) Proof of Theorem 1.2.5 (3).
Suppose that m = �1�2 ∈ N1 and m is δ-minimal. As in the proof of Propo-
sition 5.2.2, we assume Sel(E/Q, E[p]) = 0 and will get the contradiction.
We consider κq,q

′,z
�1,�2

defined in (5.1). Consider the exact sequence (see Lemma
3.2.1)

0 −→ Sel(E/Q, E[p]) −→ Sel(Z[1/�1�2qq′], E[p]) ∂−→
⊕

v∈{�1,�2,q,q′}
H2
v(Q).
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By the same method as the proof of Proposition 5.2.2, gq = gq′ = 0. There-
fore, ∂�1(κ�1,q − κ�1,q′) = φ�1(gq − gq′) = 0 by Proposition 3.3.2 (1). We
have ∂q(κ�1,q) = δ�1 = 0, ∂q(κ�1,q′) = 0, ∂q′(κ�1,q) = 0, ∂q′(κ�1,q′) = δ�1 = 0.
Therefore, ∂(κ�1,q − κ�1,q′) = 0. This together with Sel(E/Q, E[p]) = 0
shows that κ�1,q−κ�1,q′ = 0. Therefore, using Proposition 3.3.2 (1), we have

∂�2(κ
q,q′,z
�1,�2

) = ∂�2(κm,q − κm,q′) = φ�2(κ�1,q − κ�1,q′) = 0.

By the same method as the above proof of κ�1,q−κ�1,q′ = 0, we get κq,q
′,z

1,�2
= 0.

This implies that ∂�1(κ
q,q′,z
�1,�2

) = φ�1(κ
q,q′,z
1,�2

) = 0 by Proposition 5.1.1 (1). It

follows that ∂(κq,q
′,z

�1,�2
) = 0, which implies κq,q

′,z
�1,�2

∈ Sel(E/Q, E[p]). But this
is a contradiction because we assumed Sel(E/Q, E[p]) = 0 and

φ�2(κ
q,q′,z
�1,�2

) = −δm �= 0

by Proposition 5.1.1 (3). Thus, we get Sel(E/Q, E[p]) �= 0.
Now the root number is 1 by Lemma 5.2.1, therefore, by the parity

conjecture proved by Nekovář ([18]), we obtain dimFp Sel(E/Q, E[p]) ≥ 2.
On the other hand, by Corollary 4.1.3 we know that sm : Sel(E/Q, E[p]) −→
(Fp)⊕2 is injective. Therefore, the injectivity of sm implies the bijectivity of
sm. This completes the proof of Theorem 1.2.5 (3).

We give a simple corollary.

Corollary 5.2.4 Suppose that there is m ∈ N1 such that m is δ-minimal
and ε(m) = 2. We further assume that the analytic λ-invariant λ′ is 2.
Then the main conjecture for (E,Q∞/Q) holds.

Proof. Put t = γ− 1 and identify ΛQ∞/p with Fp[[t]]. Let A be the relation
matrix of S = Sel(E/Q∞, E[p∞])∨. Since S/(p, t) = Sel(E/Q, E[p])∨ �
Fp ⊕ Fp, t2 divides detA mod p. Therefore, the algebraic λ-invariant is
also 2. This implies the main conjecture because detA divides ϑQ∞ in ΛQ∞
(Kato [7]).

III) Proof of Theorem 1.2.5 (4).

Lemma 5.2.5 Suppose that �, �1, �2 are distinct primes in P1 satisfying
δ� = δ��1 = δ��2 = 0. Assume also that s� : Sel(E/Q, E[p]) −→ Fp is
bijective, and that ��1, ��2 are both admissible. We take q, q′ such that they
satisfy the conditions when we defined κq,q

′,z
�1�2,�

. Then we have
(1) Sel(E/Q, E[p]) = Sel(Z[1/�],E[p]),
(2) κq,q

′,z
�1,�

= 0, κq,q
′,z

�2,�
= 0, and

(3) κq,q
′,z

�1�2,�
∈ Sel(E/Q, E[p]).
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Proof. (1) Since s� is bijective, taking the dual, we get the bijectivity of
H2
� (Q) −→ Sel(E/Q, E[p])∨ = Sel(Z, E[p])∨. By the exact sequence

0 −→ Sel(Z, E[p]) −→ Sel(Z[1/�],E[p]) ∂�−→ H2
� (Q) −→ Sel(Z, E[p])∨ −→ 0

in Lemma 3.2.1, we get Sel(E/Q, E[p]) = Sel(Z, E[p]) = Sel(Z[1/�],E[p]).
(2) We first note that the bijectivity of s� : Sel(E/Q, E[p]) −→ Fp implies
the bijectivity of φ� : Sel(E/Q, E[p]) −→ Fp. Since ∂q(κ�,q) = δ� = 0,
κ�,q ∈ Sel(Z[1/�],E[p]) = Sel(E/Q, E[p]) where we used the property (1)
which we have just proved. Proposition 3.3.2 (3) implies φ�(κ�,q) = 0, which
implies κ�,q = 0 by the bijectivity of φ�. By the same method, we have
κ�,q′ = 0. Therefore, we have

κq,q
′,z

1,� = κ�,q − κ�,q′ − δ�z = 0.

Therefore, Proposition 5.1.1 (1) implies ∂�1(κ
q,q′,z
�1,�

) = φ�1(κ
q,q′,z
1,� ) = 0. This

implies κq,q
′,z

�1,�
∈ Sel(Z[1/�],E[p]) = Sel(E/Q, E[p]). Using Proposition 5.1.1

(3), we have
φ�(κ

q,q′,z
�1,�

) = −δ��1 = 0,

which implies κq,q
′,z

�1,�
= 0 by the bijectivity of φ�. The same proof works for

κq,q
′,z

�2,�
.

(3) It follows from Proposition 5.1.1 (1) and Lemma 5.2.5 (2) that ∂�i(κ
q,q′,z
�1�2,�

) =

φ�i(κ
q,q′,z
�1�2
�i

,�
) = 0 for each i = 1, 2. This implies κq,q

′,z
�1�2,�

∈ Sel(Z[1/�],E[p]).

Using Sel(Z[1/�],E[p]) = Sel(E/Q, E[p]) which we proved in (1), we get the
conclusion. This completes the proof of Lemma 5.2.5.

We next prove Theorem 1.2.5 (4). Assume that m = �1�2�3 ∈ N1, m is
δ-minimal, m is admissible, and s�i : Sel(E/Q, E[p]) −→ Fp is surjective for
each i = 1, 2.

We assume dimFp Sel(E/Q, E[p]) = 1 and will get the contradiction. By
this assumption, s�i : Sel(E/Q, E[p]) −→ Fp for each i = 1, 2 is bijective.
This implies that φ�i : Sel(E/Q, E[p]) −→ Fp for each i = 1, 2 is also
bijective. By Lemma 5.2.5 (3) we get κq,q

′,z
�2�3,�1

∈ Sel(E/Q, E[p]), taking q,
q′ satisfying the conditions when we defined this element. By Proposition
5.1.1 (3), we have φ�1(κ

q,q′,z
�2�3,�1

) = −δm �= 0, which implies κq,q
′,z

�2�3,�1
�= 0. But

by Proposition 5.1.1 (2), we have φ�2(κ
q,q′,z
�2�3,�1

) = 0. This contradicts the
bijectivity of φ�2 . Therefore, we obtain dimFp Sel(E/Q, E[p]) > 1.

By Lemma 5.2.1 and our assumption that m is δ-minimal, we know that
the root number ε is −1. This shows that dimFp Sel(E/Q, E[p]) ≥ 3 by the
parity conjecture proved by Nekovář ([18]). On the other hand, Corollary
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4.1.3 implies that dimFp Sel(E/Q, E[p]) ≤ 3 and sm : Sel(E/Q, E[p]) −→
F⊕3
p is injective. Therefore, the above map sm is bijective. This completes

the proof of Theorem 1.2.5 (4).

5.3 Numerical examples

In this section, we give several numerical examples.
Let E = X0(11)(d) be the quadratic twist of X0(11) by d, namely dy2 =

x3 − 4x2 − 160x − 1264. We take p = 3. Then if d ≡ 1 (mod p), p is
a good ordinary prime which is not anomalous (namely ap(= a3) for E
satisfies ap �≡ 1 (mod p)), and p = 3 does not divide Tam(E), and the
Galois representation on T3(E) is surjective. In the following examples, we
checked μ′ = 0 where μ′ is the analytic μ-invariant. Then this implies that
the algebraic μ-invariant is also zero (Kato [7] Theorem 17.4 (3)) under our
assumptions. In the computations of δ̃m below, we have to fix a generator of
Gal(Q(�)/Q) � (Z/�Z)× for a prime �. We always take the least primitive
root η� of (Z/�Z)×. We compute δ̃m using the formula in (1.2).

(1) d = 13. We take N = 1. Since δ̃7 = 20 �≡ 0 (mod 3), we know
that Fitt1,F3(Sel(E/Q, E[3])∨) = F3 by Theorem 2.4.1, so Sel(E/Q, E[3]) is
generated by one element.

The root number is ε = (13
11) = −1, so L(E, 1) = 0. We compute

P1 = {7, 31, 73, ...}. Therefore, δ̃7 �≡ 0 (mod 3) implies Sel(E/Q, E[3]) � F3

and
Sel(E/Q, E[3∞])∨ � Z3

by Proposition 5.2.2. Also, it is easily computed that λ′ = 1 in this case.
This implies that Sel(E/Q∞, E[3∞])∨ � Z3, so the main conjecture also
holds.

We can find a point P = (7045/36,−574201/216) of infinite order on
the minimal Weierstrass model y2 + y = x3 − x2 − 1746x − 50295 of E =
X0(11)(13). Therefore, we know X(E/Q)[3∞] = 0. We can easily check
that E(F7) is cyclic of order 6, and that the image of the point P in
E(F7)/3E(F7) is non-zero. So we also checked numerically that s7 : Sel(E/Q, E[3]) −→
E(F7)/3E(F7) is bijective as Proposition 5.2.2 claims.

(2) d = 40. We know ε = (40
11) = −1. We take N = 1. We can com-

pute P1 = {7, 67, 73, ...}, and δ̃7 = −40 �≡ 0 (mod 3). This implies that
Sel(E/Q, E[3]) � F3 and Sel(E/Q, E[3∞])∨ � Z3 by Proposition 5.2.2.

In this case, we know λ′ = 7. Therefore, nλ′ = 2. We can check 5347 ∈
P1 (where 5347 ≡ 1 (mod 35)) and δ̃5347 = −412820 �≡ 0 (mod 3). Therefore,
the main conjecture holds by Proposition 5.2.3. In this case, we can check
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that the p-adic L-function ϑQ∞ is divisible by (1 + t)3 − 1, so we have

rankZ3 Sel(E/Q1, E[3∞])∨ = 3

where Q1 is the first layer of Q∞/Q.

In the following, for a prime � ∈ P, we take a generator τ� of Gal(Q(�)/Q) �
(Z/�Z)× and put S = τ� − 1. We write ϑQ(�) = Σa(�)

i Si where a(�)
i ∈ Zp.

Note that δ̃� = a
(�)
1 .

(3) d = 157. We know ε = (157
11 ) = 1 and L(E, 1)/Ω+

E = 45. We take N = 1.
We compute a(37)

2 = −14065/2 �≡ 0 (mod 3). Since 37 ≡ 1 (mod 32), c2 =
2− 1 = 1 and a(37)

2 is in Fitt2,F3(Sel(E/Q, E[3])∨) by Theorem 2.4.1, which
implies that Fitt2,F3(Sel(E/Q, E[3])) = F3. Therefore, Sel(E/Q, E[3]) is
generated by at most two elements.

We compute P1 = {7, 67, 73, 127, ...}. Since 127 ≡ 1 (mod 7), 7 × 127 is
admissible. We compute δ̃7×127 = 83165 �≡ 0 (mod 3). Therefore, 7× 127 is
δ-minimal. It follows from Theorem 1.2.5 (3) that Sel(E/Q, E[3]) � F3⊕F3.
In this example, we can check λ′ = 2, so Corollary 5.2.4 together with the
above computation implies the main conjecture. Since L(E, 1)/Ω+

E = 45 �=
0, rankE(Q) = 0 by Kato, which implies Sel(E/Q, E[3∞]) = X(E/Q)[3∞].
Since 45 ∈ Fitt0,Z3(Sel(E/Q, E[3∞])∨), we have #X(E/Q)[3∞] ≤ 9, and

X(E/Q)[3∞] � Z/3Z ⊕ Z/3Z.

(4) d = 265. In this case, ε = (265
11 ) = 1 and L(E, 1) = 0. We takeN = 1. As

in Example (3), we compute a(37)
2 = 16985 �≡ 0 (mod 3), which implies that

Sel(E/Q, E[3]) is generated by at most two elements as above. We compute
P1 = {7, 13, 31, 67, 103, 109,127, ...}. For an admissible pair {7, 127}, we
have δ̃7×127 = −138880 �≡ 0 (mod 3). Therefore, 7 × 127 is δ-minimal and
Sel(E/Q, E[3]) � F3 ⊕ F3 by Theorem 1.2.5 (3). Since λ′ = 2 in this case,
by Corollary 5.2.4 we know that the main conjecture holds.

Since L(E, 1) = 0, we know rankSel(E/Q, E[3∞])∨ > 0 by the main
conjecture. This implies that

Sel(E/Q, E[3∞])∨ � Z3 ⊕ Z3.

Now E has a minimal Weierstrass model y2 + y = x3 − x2 − 725658x−
430708782. We can find rational points P = (2403,108146) and Q =
(5901,−448036) on this curve. We can also easily check that E(F7) is
cyclic group of order 6 and E(F31) is cyclic of order 39. The image of
P in E(F7)/3E(F7) � Z/3Z is 0 (the identity element), and the image of
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Q in E(F7)/3E(F7) � Z/3Z is of order 3. On the other hand, the images
of P and Q in E(F31)/3E(F31) � Z/3Z do not vanish and coincide. This
shows that P and Q are linearly independent over Z3. Therefore,

rankE(Q) = 2 and X(E/Q)[3∞] = 0.

In the above argument we considered the images of E(Q) in E(F7)/3E(F7)
and E(F31)/3E(F31). What we explained above implies that the natural
map s7×31 : E(Q)/3E(Q) −→ E(F7)/3E(F7) ⊕ E(F31)/3E(F31) is bijec-
tive. In this example, δ̃7×31 = −15290 �≡ 0 (mod 3), so Conjecture 1.2.4
holds for m = 7 × 31.

(5) d = 853. We know ε = (853
11 ) = −1. Take N = 1 at first. For

� = 271, we have a(271)
3 = 900852395/2 �≡ 0 (mod 3), which implies that

dimF3 Sel(E/Q, E[3]) ≤ 3. We compute P1 = {7, 13, 67, 103,109, ..., 463, ...}.
We can find a rational point P = (1194979057/51984,40988136480065/11852352)
on the minimal Weierstrass equation y2+y = x3−x2−7518626x−14370149745
of E = X0(11)(853). We know that E(F7) is cyclic of order 6, and E(F13) is
cyclic of order 18. Both of the images of P in E(F7)/3E(F7) and E(F13)/3E(F13)
are of order 3. Therefore, s� : Sel(E/Q, E[3]) −→ E(F�)/3E(F�) is surjec-
tive for each � = 7, 13. Since 13 = −1 ∈ (F×7 )3, 463 = 1 ∈ (F×7 )3 and
463 = 8 ∈ (F×13)

3, {7, 13, 463} is admissible. We can compute δ̃7×13×463 =
−8676400 �≡ 0 (mod 3), and can check that m = 7 × 13 × 463 is δ-minimal.
By Theorem 1.2.5 (4), we have

Sel(E/Q, E[3]) � F3 ⊕ F3 ⊕ F3. (5.4)

We have a rational point P of infinite order, so the rank of E(Q) is ≥ 1.
Take N = 3 and consider � = 271. Since δ̃271 = a

(271)
1 = 35325 ≡ 9 (mod

27), 9 is in Fitt1,Z/p3Z(Sel(E/Q, E[33])∨) by Corollary 2.4.2. This implies
that rankE(Q) = 1 and #X(E/Q)[3∞] ≤ 9. This together with (5.4)
implies that

X(E/Q)[3∞] � Z/3Z ⊕ Z/3Z. (5.5)

Note that if we used only Theorem 1.1.1 and these computations, we
could not get (5.4) nor (5.5) because we could not determine Θ1(Q)(δ) by
finite numbers of computations. We need Theorem 1.2.5 to obtain (5.4) and
(5.5).

(6) For positive integers d which are conductors of even Dirichlet charac-
ters (so d = 4m or d = 4m + 1 for some m) satisfying 1 ≤ d ≤ 1000,
d ≡ 1 (mod 3), and d �≡ 0 (mod 11), we computed Sel(E/Q, E[3]). Then
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dim Sel(E/Q, E[3]) = 0, 1, 2, 3, and the case of dimension = 3 occurs only
for d = 853 in Example (5).

(7) We also considered negative twists. Take d = −2963. In this case,
we know L(E, 1) �= 0 and L(E, 1)/Ω+

E = 81. We know from the main
conjecture that the order of the 3-component of X(E/Q) is 81, but the
main conjecture does not tell the structure of this group. Take N = 1
and � = 19. Then we compute a

(19)
2 = 2753/2 �≡ 0 (mod 3) (we have

ϑQ(19) ≡ −432S + (2753/2)S2 mod (9, S3)). Since c2 = 1, this shows that

a
(19)
2 is in Fitt2,F3(Sel(E/Q, E[3])∨) by Theorem 2.4.1. Therefore, we have

Fitt2,F3(Sel(E/Q, E[3])) = F3, which implies that Sel(E/Q, E[3]) � (F3)⊕2.
This denies the possibility of X(E/Q)[3∞] � (Z/3Z)⊕4, and we have

X(E/Q)[3∞] � Z/9Z ⊕ Z/9Z.

(8) Let E be the curve y2 + xy + y = x3 + x2 − 15x + 16 which is 563A1
in Cremona’s book [1]. We take p = 3. Since a3 = −1, Tam(E) = 1, μ = 0
and the Galois representation on T3(E) is surjective, all the conditions we
assumed are satisfied. We know ε = 1 and L(E, 1) = 0. Take N = 1. We
compute P1 = {13,61, 103,109, 127, 139, ...}. For admissible pairs {13,103},
{13,109}, we compute δ̃13×103 = −6819 ≡ 0 (mod 3) and δ̃13×109 = −242 �≡
0 (mod 3). From the latter, we know that

s13×109 : Sel(E/Q, E[3]) �−→ (F3)⊕2

is bijective by Theorem 1.2.5 (3). Since λ′ = 2, the main conjecture also
holds by Corollary 5.2.4. We know L(E, 1) = 0, so Sel(E/Q, E[3∞]) �
(Z3)⊕2.

Numerically, we can find rational points P = (2,−2) and Q = (−4, 7) on
this elliptic curve. We can check that E(F13) is cyclic of order 12, E(F103)
is cyclic of order 84, and E(F109) is cyclic of order 102. The points P and Q
have the same image and do not vanish in E(F13)/3E(F13), but the image
of P in E(F109)/3E(F109) is zero, and the image of Q in E(F109)/3E(F109)
is non-zero. This shows that P and Q are linearly independent over Z3,
and s13×109 is certainly bijective. Since all the elements in Sel(E/Q, E[3∞])
come from the points, we have X(E/Q)[3∞] = 0. On the other hand, the
image of P in E(F103)/3E(F103) coincides with the image of Q, so s13×103 is
not bijective. This is an example for which δ̃13×103 ≡ 0 (mod 3) and s13×103

is not bijective.

(9) Let E be the elliptic curve y2 + xy + y = x3 + x2 − 10x+ 6 which has
conductor 18097. We take p = 3. We know a3 = −1, Tam(E) = 1, μ = 0
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and the Galois representation on T3(E) is surjective, so all the conditions
we assumed are satisfied. In this case, ε = −1 and L(E, 1) = 0. Take N =
1. We compute P1 = {7, 19, 31, 43, 79, ..., 601, ...}. We know {7, 43, 601} is
admissible. We have δ̃7×43×601 = −2424748 �≡ 0 (mod 3), and 7 × 43 × 601
is δ-minimal. We thank K. Matsuno heartily for his computing this value
for us. The group E(F7) is cyclic of order 9 and E(F43) is cyclic of order
42. The point (0, 2) is on this elliptic curve, and has non-zero image both
in E(F7)/3E(F7) and E(F43)/3E(F43). So both s7 and s43 are surjective,
and we can apply Theorem 1.2.5 (4) to get

s7×43×601 : Sel(E/Q, E[3]) �−→ (F3)⊕3

is bijective.
Numerically, we can find 3 rational points P = (0, 2), Q = (2,−1),

R = (3, 2) on this elliptic curve, and easily check that the restriction of
s7×43×601 to the subgroup generated by P , Q, R in Sel(E/Q, E[3]) is sur-
jective. Therefore, we have checked numerically that s7×43×601 is bijective.
This also implies that rankE(Q) = 3 since E(Q)tors = 0. Therefore, all the
elements of Sel(E/Q, E[3∞]) come from the rational points, and we have
X(E/Q)[3∞] = 0.

5.4 A Remark on ideal class groups

We consider the classical Stickelberger element

θ̃StQ(μm) =
m∑
a=1

(a,m)=1

(
1
2
− a

m
)σ−1
a ∈ Q[Gal(Q(μm)/Q)]

(cf. (1.1)). Let K = Q(
√−d) be an imaginary quadratic field with conduc-

tor d, and χ be the corresponding quadratic character. Letm be a squarefree
product whose prime divisors � split in K and satisfy � ≡ 1 (mod p). Using
the above classical Stickelberger element, we define δ̃Stm,K by

δ̃Stm,K = −
md∑
a=1

(a,md)=1

a

md
χ(a)(

∏
�|m

logF�
(a))

(cf. (1.2)). We denote by ClK the class group of K, and define the notion
“δStK -minimalness” analogously. We consider the analogue of Conjecture
1.2.4 for δ̃Stm,K and dimFp(ClK/p). Namely, we ask whether dimFp(ClK/p) =
ε(m) for a δStK -minimal m. Then the analogue does not hold. For example,
take K = Q(

√−23) and p = 3. We know ClK � Z/3Z. Put �1 = 151
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and �2 = 211. We compute δ̃St�1,K = −270 ≡ 0 (mod 3), δ̃St�2,K = −1272 ≡ 0
(mod 3), and δ̃St�1·�2,K = −415012 ≡ 2 (mod 3). This means that �1 · �2 is
δStK -minimal. But, of course, we know dimFp(ClK/p) = 1 < 2 = ε(�1 · �2).
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[19] Northcott, D. G., Finite free resolutions, Cambridge Univ. Press (1976).

[20] Popescu, C. D., On the Coates-Sinnott conjecture, Mathematische Nachrichten
282 (2009), 1370-1390.

[21] Rubin, K., The main conjecture, Appendix to Cyclotomic fields I and II by S.
Lang, Graduate Texts in Math. 121, Springer-Verlag (1990), 397-419.

[22] Rubin, K., Kolyvagin’s system of Gauss sums, Arithmetic Algebraic Geometry,
G. van der Geer et al eds, Progress in Math 89 (1991) 309-324.

[23] Rubin, K., Euler systems, Annals of Math. Studies 147, Princeton Univ. Press
2000.

[24] Schneider, P., Iwasawa L-functions of varieties over algebraic number fields, A
first approach, Invent. math. 71 (1983), 251-293.

[25] Serre, J.-P., Corps Locaux, Hermann, Paris 1968 (troisième édition).
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