The structure of Selmer groups of elliptic curves
and modular symbols

Masato KURIHARA

For an elliptic curve over the rational number field and a prime number
p, we study the structure of the classical Selmer group of p-power torsion
points. In our previous paper [12], assuming the main conjecture and the
non-degeneracy of the p-adic height pairing, we proved that the structure
of the Selmer group with respect to p-power torsion points is determined
by some analytic elements bm defined from modular symbols (see Theorem
1.1.1 below). In this paper, we do not assume the main conjecture nor
the non-degeneracy of the p-adic height pairing, and study the structure of
Selmer groups (see Theorems 1.2.3 and 1.2.5), using these analytic elements
and Kolyvagin systems of Gauss sum type.

1 Introduction

1.1 Structure theorem of Selmer groups

Let E be an elliptic curve over Q. Iwasawa theory, especially the main

conjecture gives a formula on the order of the Tate Shafarevich group by

using the p-adic L-function (cf. Schneider [24]). In this paper, as a sequel

of [10], [11] and [12], we show that we can derive more information than the

order, on the structure of the Selmer group and the Tate Shafarevich group

from analytic quantities, in the setting of our paper, from modular symbols.
In this paper, we consider a prime number p such that

(i) p is a good ordinary prime > 2 for E,

(ii) the action of Gq on the Tate module T),(E) is surjective where Gq is

the absolute Galois group of Q,

(iii) the (algebraic) p-invariant of (F, Qs /Q) is zero where Qo./Q is the

cyclotomic Z,-extension, namely the Selmer group Sel(E/Q, E[p>]) (for

the definition, see below) is a cofinitely generated Z,-module,

(iv) p does not divide the Tamagawa factor Tam(E) = Ippaq(E(Qr) :



E%(Qy)), and p does not divide #FE(F,) (namely not anomalous).

We note that the property (iii) is a conjecture of Greenberg since we are
assuming (ii).

For a positive integer N > 0, we denote by E[p"] the Galois module
of p"-torsion points, and E[p™] = |Jy~ E[p"]. For an algebraic extension
F/Q, Sel(E/F, E[p"]) is the classical Selmer group defined by

Sel(E/F, E[p"]) = Ker(H'(F, E[p"]) — [ #"(F,, Ep™)/E(F,)©Z/pY),

so Sel(E/F, E[p™V]) sits in an exact sequence
0 — E(F)®Z/p" — Sel(E/F, E[p"]) — LI(E/F)[p"] — 0

where III(E/F) is the Tate Shafarevich group over F'. We define Sel(E/F, E[p™°]) =
lim Sel(E/F, E[p"]).

Let PXY) be the set of prime numbers ¢ such that ¢ is a good reduction

prime for £ and £ = 1 (mod p~). For each ¢, we fix a generator 7, of

(Z/0Z)* and define logg,(a) € Z/(¢ — 1) by nzogF‘f(a) = a (mod ?).

Let f(z) = Ya,e*™* be the modular form corresponding to E. For
a positive integer m and the cyclotomic field Q(uy,), we denote by o, €
Gal(Q(pm)/Q) the element such that o,(¢) = ¢ for any ¢ € p,. We

consider the modular element > 0", 4[7]oa € C[Gal(Q(un)/Q)] of
Mazur and Tate ([16]) where [%] = 27i f;/mf(z)dz is the usual modular
symbol. We only consider the real part
i —~ Re([5])
Oaum = D —ai 7 € QGal(Q(um)/Q) (L.1)
a=1 E
(a,;m)=1

where QJEC =/ B(R)WE is the Néron period. Suppose that m is a squarefree
product of primes in PN). Since we are assuming the Gq-module E[p] of p-
torsion points is irreducible, we know éQ(,U»m) € Z,[Gal(Q(um)/Q)] (cf. [27]).
We consider the coefficient of éQ(Mm) of “T ]y (oy, —1)7, more explicitly we

define

S > D (T tog, (0)) € 2" (1.2
E £m

where logg, (a) means the image of logg,(a) under the canonical homomor-
phism Z/(¢{ — 1) — Z/p". Let ord, : Z/pY¥ — {0,1,..,N — 1,00} be



the p-adic valuation normalized as ord,(p) = 1 and ord,(0) = co. We note
that ord,(d,,) does not depend on the choices of 1y for £jm. We define
o1 = g = Re([0])/Qf = L(E,1)/QF.

For a squarefree product m of primes, we define ¢(m) to be the number
of prime divisors of m, namely e(m) = r if m = £; - ... - £,. Let N™) be the
set of squarefree products of primes in PN). We suppose 1 is in N&V). For
each integer i > 0, we define the ideal ©;(Q)N9) of Z/p" to be the ideal

generated by all 6,, such that e(m) < i for all m e NV,
0:(Q) WMD) = ({6, | e(m) <iand m e NV c Z/pN.  (1.3)

We define n; y € {0,1,..., N—1,00} by 0;(Q)NV:9) = pniN (Z/pN) (we define
nin = oo if ©;(Q)M9) = 0).

Theorem 1.1.1 ([12] Theorem B, Theorem 9.3.1 and (9.14)) We assume
that the main conjecture for (E,Qs/Q) (see (2.5)) and the p-adic height
pairing is non-degenerate.

(1) njn does not depend on N when N is sufficiently large (for example,
when N > 2ord,(ny) where g is the leading term of the p-adic L-function,
see §9.4 in [12]). We put n; = n; ny for N > 0. In other words, we define
n; by

im6;(Q)N) = pZ, C Z,.

We denote this ideal of Z, by ©;(Q)®.
(2) Consider the Pontrjagin dual Sel(E/Q, E[p>®])" of the Selmer group.
Suppose that

rankz, Sel(E/Q, E[p™])" = r(€ Z>o), and dimy, Sel(E/Q, Elp])" = a.
Then we have

00(Q) = ... = 0, 1(Q)”) =0 and ©6,(Q)"") #0.
For any v > r, n; s an even number, and
P = #(Sel(E/Q, Ep™])Jiors
ne =0, and

T Mr42

sel(E/Q,ELpOO])V:Z;‘?’"@(Z/p‘n > ) Pe(Z/p
hold.

2~ "a
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In particular, knowing ©;(Q)©® for all i > 0 completely determines the
structure of Sel(E/Q, E[p™])" as a Z,-module. Namely, the modular sym-
bols determine the structure of the Selmer group under our assumptions.



1.2 Main Results

We define N
P = (e PN | HO(Fy, EpN]) = Z/pV).

This is an infinite set by Chebotarev density theorem since we are assuming
(ii) (see [12] §4.3). We define ./\/I(N) to be the set of squarefree products of

primes in 73£N). Again, we suppose 1 € Nl(N). We propose the following
conjecture.

Conjecture 1.2.1 There is m € NI(N) such that &, is a unit in Z/p",
namely

ord,(d,) = 0.

Numerically, it is easy to compute Om, SO it is easy to check this conjec-
ture.

Theorem 1.2.2 ([12] Theorem 9.3.1) If we assume the main conjecture and
the non-degeneracy of the p-adic height pairing, Conjecture 1.2.1 holds true.

In fact, we obtain Conjecture 1.2.1, considering the case ¢ = a in Theo-
rem 1.1.1 (cf. ¢ = s in Theorem 9.3.1 in [12]).

From now on, we do not assume the main conjecture (2.5) nor the non-
degeneracy of the p-adic height pairing.
We define the Selmer group Sel(Z[1/m], E[p"]) by

Sel(Z[1/m], E[p"]) = Ker(H'(Q, EP™]) — [] H'(Qu, E™])/E(Qu)SZ/p").

vfm

If all bad primes and p divide m, we know Sel(Z[1/m], E[p"]) is equal to
the étale cohomology group HY(SpecZ[1/m], E[p"]), which explains the
notation “Sel(Z[1/m], E[p"])”. (We use Sel(Z[1/m], E[pY]) for m € Nl(N)
in this paper, but E[p"] is not an étale sheaf on Spec Z[1/m)] for such m.)

Let A be the A-invariant of Sel(E/Qoo, E[p™])Y. We put n) = min{n €
Z|p"—1> A} and d,, = ny + Nn for n € Z>o. We define

PN — (re P | =1 (mod pt)} (1.4)
(then 73£N’n) C 73£N)(Q[n]) holds, see the end of §3.1 for this fact, and see
3.1 for the definition of the set PfN)(Q[n])). We denote by Nl(N’n) the set

of squarefree products of primes in PfN’n).



In this paper, for any finite abelian p-extension K/Q in which all bad
primes of E are unramified, we prove in §4 the following theorem for Z /p™ [Gal(K/Q)]-
modules Sel(E/K, E[p™]) and Sel(Ok[1/m], E[pY]) (see Corollary 4.1.3 and
Theorem 4.2.1). We simply state it in the case K = Q below. An essential
ingredient in this paper is the Kolyvagin system of Gauss sum type. We
construct Kolyvagin systems k,, € Sel(Z[1/mf], E[p"]) for (m,¢) satisfy-
. (N,e(ml)+1) (N,e(me)+1) -
ing ¢ € P) and ml € N} (see §3.4 and Propositions 3.4.2)
by the method in [12]. (We can construct these elements, using the half of
the main conjecture proved by Kato [7].) The essential difference between
our Kolyvagin systems x,,, of Gauss sum type and Kolyvagin systems in
Mazur and Rubin [14] is that our k,, ¢ is related to L-values. In particular,
Km,¢ satisfies a remarkable property ¢;(km ) = —0mete,x (see Propositions
3.4.2 (4)) though we do not explain the notation here.

Theorem 1.2.3 Assume that ord,(3,,) = 0 for some m € Nl(N).
(1) The canonical homomorphism

sm : Sel(E/Q, E[p"]) — P E(Q)®Z/p" ~ P E(Q))Z/p" ~ (Z/p" )™
Lm £m

18 1njective.

(2) Assume further that m € N and that m is admissible (for the

definition of the notion “admissible”, see the paragraph before Proposition

3.3.2). Then Sel(Z[1/m], E[p"]) is a free Z/p" -module of rank €(m), and

{km ooy is a basis of Sel(Z[1/m], E[pN]).

(3 ) We define a matriz A as in (4.1) in Theorem 4.2.1, using k= ,. Then A

is a relation matriz of the Pontrjagin dual Sel(E/Q, E[p™])Y of the Selmer

group; namely if fa : (Z/pN)™ — (Z/pN )™ is the homomorphism

corresponding to the above matrixz A, then we have

Coker(f4) ~ Sel(E/Q, E[p™])V.

It is worth noting that we get nontrivial (moreover, linearly independent)
elements in the Selmer groups.

(N,e(m)+1)

The ideals ©;(Q)(® in Theorem 1.1.1 are not suitable for numerical
computations because we have to compute infinitely many 6m. On the other
hand, we can easily find m with ord,(d,,) = 0 numerically. Since s,, is
injective, we can get information of the Selmer group from the image of s,
which is an advantage of Theorem 1.2.3 and the next Theorem 1.2.5 (see
also the comment in the end of Example (5) in §5.3).

We next consider the case N = 1, so Sel(E/Q, E[p]). Now we regard
6m as an element of F, for m € Nl(l). We say m is d-minimal if 0,, # 0



and 64 = 0 for all divisors d of m with 1 < d < m. Our next conjecture
claims that the structure (the dimension) of Sel(E/Q, E[p]) is determined
by a d-minimal m, therefore can be easily computed numerically.

Conjecture 1.2.4 Ifm € ./\fl(l) is d-minimal, the canonical homomorphism

sm : Sel(E/Q, E[p]) — EPE(Qy) @ Z/p ~ (P E(F) @ Z/p ~ (Z/p" )™

£m £m

is bijective. In particular, dimg, Sel(E/Q, E[p]) = e(m).

Ifm e Nl(l) is d-minimal, the above homomorphism s, : Sel(E/Q, E[p]) —
(Z/pN)<(™) is injective by Theorem 1.2.3 (1), so we know

dimr, Sel(£/Q, E[p]) < e(m).

Therefore, the problem is in showing the other inequality.
We note that the analogue of the above conjecture for ideal class groups
does not hold (see §5.4). But we hope that Conjecture 1.2.4 holds for the

Selmer groups of elliptic curves. We construct in §5 a modified version
.
Nl(N). (The Kolyvagin system £, in §3 is defined for (m,¢) with ml €
N1(N7e(m€)

K of Kolyvagin systems of Gauss sum type for any (m,¢) with mf¢ €

+1), but /@g,fé’z is defined for more general (m, £), namely for (m, £)

with mf € Nl(N).) Using the modified Kolyvagin system Iig;lq;’z, we prove
the following.

Theorem 1.2.5 (1) If e(m) =0, 1, then Conjecture 1.2.4 is true.
(2) If there is £ € PY) which is §-minimal (so e(£) = 1), then

Sel(E/Q, E[p™]) ~ Qp/Zy.

Moreover, if there is £ € Pfl) which is §-minimal and which satisfies { =
1 (mod p™'*+2) where X is the analytic M-invariant of (E,Qe/Q), then
the main congjecture (2.5) for Sel(E/Quo, E[p™°]) holds true. In this case,
Sel(E/Qoo, E[p™])Y is generated by one element as a Z,[[Gal(Qoo/Q)]]-
module.

(3) If e(m) = 2 and m is admissible, then Conjecture 1.2.4 is true.

(4) Suppose that e(m) = 3 and m = l1lals. Assume that m is admissible
and the natural maps sy, : Sel(E/Q, E[p]) — E(Fy,) ® Z/p are surjective
both for i =1 and i = 2. Then Conjecture 1.2.4 is true.

In this way, we can determine the Selmer groups by finite numbers of
computations in several cases. We give several numerical examples in §5.2.



Remark 1.2.6 Concerning the Fitting ideals and the annihilator ideals of
some Selmer groups, we prove the following in this paper. Let K/Q be
a finite abelian p-extension in which all bad primes of E are unramified.
We take a finite set S of good reduction primes, which contains all ram-
ifying primes in K/Q except p. Let m be the product of primes in S.
We prove that the initial Fitting ideal of the Rx = Z,[Gal(K/Q)]-module
Sel(Ok|[1/m], E[p>])Y is principal, and

§K,S S FitthK (Sel(OK[l/m], E[poo])V)

where {k 5 is an element of Ry which is explicitly constructed from modular
symbols (see (2.13)). If the main conjecture (2.5) for (F,Qs/Q) holds,
the equality Fitto r, (Sel(Ox[1/m|, E[p>°])") = £k ,sRi holds (see Remark
2.3.2). We prove the Iwasawa theoretical version in Theorem 2.2.2.

Let ¥ be the image of the p-adic L-function, which is also explicitly
constructed from modular symbols. We show in Theorem 2.3.1

Ik € Anng, (Sel(Ox[1/m], Ep>])").
Concerning the higher Fitting ideals (cf. §2.4), we show

Sm S Fitte(m),Z/pN (Sel(E/Q7 E[pN])V)

where Fitt; r(M) is the i-th Fitting ideal of an R-module M. We prove a
slightly generalized version for K which is in the cyclotomic Z,-extension
Qo of Q (see Theorem 2.4.1 and Corollary 2.4.2).

I would like to thank John Coates heartily for his helpful advice and
for discussion with him, especially for the discussion in March 2013, which
played an essential role in my producing this paper. I also thank heartily
Kazuya Kato for his constant interest in the results of this paper. I also
thank Kazuo Matsuno and Christian Wuthrich very much for their helping
me to compute modular symbols.

2 Selmer groups and p-adic L-functions

2.1 Modular symbols and p-adic L-functions

Let E be an elliptic curve over Q, and f(2) = Ya,e*™"* the modular form
corresponding to E. In this section, we assume that p is a prime number
satisfying (i), (ii), (iii) in §1.1. We define Pgpoq = {£ | £ is a good reduction
prime for E } \ {p}. For any finite abelian extension K/Q, we denote by
K+ /K the cyclotomic Z,-extension. For a real abelian field K of conductor



m, we define g to be the image of éQ(#m) in Q[Gal(K/Q)] where éQ(Nm) is
defined in (1.1).
We write

Ry = Z,[Gal(K/Q)] and A = Z,[[Gal(Ks/Q)]l.

For any positive integer n, we simply write Rq(,,) = R, in this subsec-
tion. For any positive integers d, ¢ such that d | ¢, we define the norm map
Ved + Ra = Zp[Gal(Q(1a)/Q)] — Re = Zp|Gal(Q(ue)/Q)] by o = > o7
where for ¢ € Gal(Q(uq)/Q), 7 runs over all elements of Gal(Q(u.)/Q)
such that the restriction of 7 to Q(ug) is 0. Let m be a squarefree product
of primes in Pyooq, and n a positive integer. By our assumption (ii), we know
0Q(uuynpn) € Bompr (cf. [27]). Let o € Z;5 be the unit root of 2?2 —a,r+p=0
and put

-n -1 n
”QQ(Mmpn) =a (HQ(umpn) —a ”mp",mp"”(HQ(umpn—l))) € Ryppr

as usual. Then {ﬁQ(umPn)}nzl is a projective system (cf. Mazur and Tate

[16] the equation (4) on page 717) and we obtain an element Jq,, o) €

Aqq fnpoo ) which is the p-adic L-function of Mazur and Swinnerton-Dyer.
We also use the notation Appee = Aq(y,, ) for simplicity. Suppose that
. . . np .

a prime £ does not divide mp, and ¢y @ Apepe — Ajppeo is the natural

restriction map. Then we know

Cmtm (VQugye)) = (@ — 00— 07 )0, 0) (2.1)

(cf. Mazur and Tate [16] the equation (1) on page 717).
We will construct a slightly modified element fQ(umpoo) in Aypeo. We

put Pj(z) = 2? — apz + £. Let m be a squarefree product of Pyeq. For
any divisor d of m and a prime divisor £ of m/d, o, € Gal(Q(pap>)/Q) =
lim Gal(Q(pdpn )/ Q) is defined as the projective limit of o, € Gal(Q(apn)/Q)-

We consider Pj(o;) € Agp. Note that
—o, ' = (=0, ' Pj(og) = (ag—op— 0, 1) /(£ = 1) € Agyee. (2:2)

We put oy, = (Ha%(_UZI)WQ(udpoo) € Agp~ and

f(Q(:u'mpoo) = Z Vm,d(ad’m) E Ampoo
dlm

where vy, g © Agpoo — Apypoo is the norm map defined similarly as above.
(This modification £Q(uumyoe) 18 done by the same spirit as Greither [5] in
which the Deligne-Ribet p-adic L-functions are treated.) Suppose that ¢ €



Pgood is prime to m. Then by the definition of {q,,, ) and (2.1) and (2.2),
we have

Cmtm(EQUupepee) = Cmtan(D_ Vintd(Qdme) + D Vineae(Qdeme))

dim dim
= ({-1) Z Vim,d(—0p ' Qam) + Z Vim,d(Cae,d(taeme))
dim dim
= (=1 Vmal=0; vgm) + Y vima((ae = o¢ — 0, ogm)
dim dim
= (=0, 'Pi(00) D vmalctam)
dim
= (=0, " P00)EQ(upnye)- (2.3)

We denote by dq(p,,) € Rq(u,,) the image of dq,,, ) under the natural
map AQ(MmpOO) — RQ(Mm)' We have

0_71

O' ~
VQum) = (- Ep)(l - %)QQ(Mm)' (2.4)

Since we are assuming a, # 1 (mod p), we also have a # 1 (mod p),

1
so (1 —2)(1 — 22) is a unit in Rq(y,) where Q(m) is the maximal p-

subextension of Q in Q(fy,).

2.2 Selmer groups

For any algebraic extension F'/Q, we denote by Of the integral closure of Z
in F. For a positive integer m > 0, we define a Selmer group Sel(Or[1/m], E[p*])
by

Sel(Or[1/m], E[p*)) = Ker(H" (F, E[p™]) — || H'(E,, Ep™])/E(F,)®Qp/Zy)
vfm

where v runs over all primes of F' which are prime to m. Similarly, for a
positive integer N, we define Sel(Or[1/m], E[p"]) by

Sel(Op[1/m], E[p"]) = Ker(H'(F, Ep™]) — ] H'(F, ED™])/E(F,)®Z/p").

vfm

In the case m = 1, we denote them by Sel(Or, E[p™]), Sel(Or, E[pY]),
which are classical Selmer groups. We also use the notation Sel(E/F, E[p>]),
Sel(E/F, E[p"]) for them, namely

Sel(E/F, E[p™®]) = Sel(OF, E[p™]), Sel(E/F,E[p"]) = Sel(OF, E[p™]).



For a finite abelian extension K/Q, we denote by K, /K the cyclo-
tomic Zp-extension, and put Ax, = Z,[[Gal(K./Q)]]. The Pontrjagin
dual Sel(Ok,_, E[p™]) is a torsion Ak, -module (Kato [7] Theorem 17.4).

When the conductor of K is m, we define 9x_ € Ak, to be the image of
ﬁQ(umpoo)v and also {x € Ak to be the image of £Q(puypee)- The Iwasawa
main conjecture for (F, Qs /Q) is the equality between the characteristic
ideal of the Selmer group and the ideal generated by the p-adic L-function;

char(Sel(Oq..., E[p™))") = ¥q. Aq... (2.5)

Since we are assuming the Galois action on the Tate module is surjective, we
know dq. € char(Sel(Oq.., E[p™])¥) by Kato [7] Theorem 17.4. Skinner
and Urban [26] proved the equality (2.5) under mild conditions. Namely,
under our assumptions (i), (ii), they proved the main conjecture (2.5) if
there is a bad prime ¢ which is ramified in Q(E[p]) ([26] Theorem 3.33).

More generally, let 1 be an even Dirichlet character and K be the abelian
field corresponding to the kernel of 3, namely K is the field such that
induces a faithful character of Gal(K/Q). We assume K N Qs = Q. In
this paper, for any finite abelian p-group G, any Z,[G]-module M and any
character ¢ : G — Q; , we define the y-quotient My, by M ®z_ GOy where
Oy = Z,[Image 1| which is regarded as a Z,[G]-module by ocx = ¢(c)x for
any o € G and = € Oy. We consider (Sel(Ok__, E[p™])¥)y, which is a Ay-
module where Ay, = (Ax_ )y = Oy[[Gal(K«/K)]]. We denote the image of
UK. in Ay by (9K ). Then the main conjecture states

char((Sel(Ox., E[p™))Y)y) = ¥ (Vx.. ) Ay. (2.6)

We also note that 1(Vx.. ) Ay = V(k.. )Ay. By Kato [7], we know ¢ (V.. ),
(€k..) € char((Sel(Ok.., E[p™])")y).-

Let S C Pgood be a finite set of good primes, and K/Q be a finite
abelian extension. We denote by Syam (K) the subset of S which consists of
all ramifying primes in K inside S. Recall that P}(z) = 2? — agz + {. We
define

(ks =&k ] (o7 ' Pilo0)).

LS\ Sram (K)

S0 €k...5 = k. if S contains only ramifying primes in K. Suppose that S
contains all ramifying primes in K and F' is a subfield of K. We denote by
CKo/Fo * Mkoo — Ap,, the natural restriction map. Using (2.3) and the
above definition of {x_ g, we have

CKoo /P (Koo,5) = EFnS- (2.7)

10



For any positive integer m whose prime divisors are in Pgyooq, We have
an exact sequence

0 — Sel(Ok.., E[p™]) — Sel(Ox..[1/m], E[p™]) — D H' (Ksv, E[p™]) — 0

vlm

because E(Kxp) @ Qp/Z, = 0 (for the surjectivity of the third map, see
Greenberg Lemma 4.6 in [3]). For a prime v of Ko, let Koo ynr/Koo be
the maximal unramified extension, and I'y, = Gal(Kwo y nr/ Koo ). Suppose
v divides m. Since v is a good reduction prime, we have H' (Koo, E[p™]) =
Homcont (G oy nrr E[p®)" = E[p™](—1)"" where (—1) is the Tate twist.
By the Weil pairing, the Pontrjagin dual of E[p>](—1) is the Tate module
T,(E). Therefore, taking the Pontrjagin dual of the above exact sequence,
we have an exact sequence

0— @TP(E)FU — Sel(Og__[1/m], E[p™])Y — Sel(Ok_, E[p>])¥ — 0.
vlm

(2.8)

Note that T,(E)r, is free over Z, because I, is profinite of order prime to
.

Let K/Q be a finite abelian p-extension in which all bad primes of E are
unramified. Suppose that S is a finite subset of Py,q such that S contains
all ramifying primes in K/Q except p. Let m be a squarefree product of all
primes in S.

Theorem 2.2.1 (Greenberg) Sel(Og_[1/m], E[p>®])Y is of projective di-
mension < 1 as a Ax__-module.

This is proved by Greenberg in [4] Theorem 1 (the condition (iv) in §1.1
in this paper is not needed here, see also Proposition 3.3.1 in [4]). For more
general p-adic representations, this is proved in [12] Proposition 1.6.7. We
will give a sketch of the proof because some results in the proof will be used
later.

Since we can take some finite abelian extension K’/Q such that K., =
K and K'NQ. = Q, we may assume that KNQs = Q and p is unramified
in K. Since we are assuming that E[p] is an irreducible Gg-module, we know
that Sel(Ok,., E[p*>])" has no nontrivial finite Z,[[Gal(K /K)]]-submodule
by Greenberg ([3] Propositions 4.14, 4.15). We also assumed that the p-
invariant of Sel(Oq. , E[p™])" is zero, which implies the vanishing of the
p-invariant of Sel(Og__, E[p>])" by Hachimori and Matsuno [6]. Therefore,
Sel(Ok.., E[p™])Y is a free Z,-module of finite rank. By the exact sequence
(2.8), Sel(Ok. [1/m], E[p™])" is also a free Z,-module of finite rank.

11



Put G = Gal(K/Q). By the definition of the Selmer group and our
assumption that all primes dividing m are good reduction primes, we have
Sel(Ok__[1/m], E[p>®])¢ = Sel(Oq..[1/m], E[p™]). Since we assumed that
the p-invariant is zero, Sel(Oq. [1/m], E[p*°]) is divisible. This shows that
the corestriction map Sel(Og [1/m], E[p>]) — Sel(Oq..[1/m], E[p>]) is
surjective. Therefore, HO(G, Sel(Ok_[1/m], E[p™])) = 0.

Next we will show that H'(G,Sel(Ok_ [1/m], E[p>])) = 0. Let Ng be
the conductor of E and put m’ = mpNg. We know Sel(Og__[1/m’], E[p™])
is equal to the étale cohomology group HY(SpecOg_[1/m'], E[p>]). We
have an exact sequence

0 — Sel(Ok__[1/m], E[p>°]) — Sel(Ok__[1/m'], E[p>°]) — GB H*(Kooy) — 0
v|%/

(2.9)

where H2(Kooy) = H'(Koow, Ep™])/(E(Ksow) ® Qp/Zyp), and the sur-
jectivity of the third map follows from Greenberg Lemma 4.6 in [3]. Let
E[p>=]" be the kernel of E[p™®] = E(Q)[p>] — E(F,)[p>] and E[p™]. =
E[p>®]/E[p>]°. For a prime v of K, above p, we denote by Koo 4 n the max-
imal unramified extension of Ko ,, and put I'y, = Gal(Ks 4 nr/Koow). We
know the isomorphism HS(KOO,U) = Hl(Kooyvynr,E[poo]et)F“ by Green-
berg [2] §2. If v is a prime of K. mnot above p, we know H2(Kuop) =
HY (Koo, E[p™]). Therefore, we get an isomorphism

(@ HE(KOO,U))G = @ HZ(Qoo,v)

where v (resp. w) runs over all primes of K, (resp. Qo) above m'/m =

pNg. Thus, Sel(Ox_[1/m/], Ep>])¢ — @U‘Q/ H2(Ko )Y is surjective.

On the other hand, we have H%(Spec Og__[1/m/], E[p*]) = 0 (see [2] Propo-

sitions 3, 4). This implies that

H'(G, Hey(Spec Ok [1/m'], Elp™))) = H'(G,Sel(Ok.. [1/m], E[p™])) = 0.

Taking the cohomology of the exact sequence (2.9), we get
HY(G,Sel(O_[1/m], Ep™])) = 0. (2.10)

Therefore, Sel(Og._[1/m], E[p]) is cohomologically trivial as a G-module
by Serre [25] Chap. IX Théoréme 8. This implies that Sel(Og__[1/m], E[p™=])Y
is also cohomologically trivial. Since Sel(Ok__[1/m], E[p>°])" has no nontriv-
ial finite submodule, the projective dimension of Sel(Ok__[1/m], E[p>])" as
a Ax_-module is < 1 by Popescu [20] Proposition 2.3.
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Theorem 2.2.2 Let K/Q be a finite abelian p-extension in which all bad
primes of E are unramified. We take a finite set S of good reduction primes
which contains all ramifying primes in K/Q except p. Let m be the product
of primes in S. Then

(1) €ky,s is in the initial Fitting ideal Fitto s, (Sel(Ok [1/m], E[p™])).
(2) We have

Fittoax_ (Sel(Ox. [1/m], Ep™))") = €k sAK,
if and only if the main conjecture (2.5) for (E, Quxo/Q) holds.

Proof. As we explained in the proof of Theorem 2.2.1, we may assume that
K N Qs = Q. We recall that Sel(Ok__[1/m], E[p>])Y is a free Z,-module
of finite rank under our assumptions.

(1) Let ¢ : Gal(K/Q) — Q; be a character of Gal(K/Q), not necessarily
faithful. We study the Fitting ideal of the y)-quotient (Sel(Ok.[1/m], E[p>])")y =
Sel(Ok.[1/m], Ep™])Y @z, [cal(k/q)) Oy- We denote by F the subfield of
K corresponding to the kernel of 1. We regard v as a faithful character of
Gal(F/Q). Since Sel(Og_ [1/m], E[p>])ClE/F) = Sel(Op, [1/m], E[p™)),

we have
(Sel(Ok [1/m], E[p™])")y = (Sel(Or.. [1/m], E[p™])")y

where the right hand side is defined to be Sel(Or, [1/m], E[p™])Y ®z, [cal(F/Q)]
Oy.
We put Ay, = (Ap,)y. The group homomorphism ¢ induces the ring
homomorphism Ap_ — Ay which we also denote by 1. The composition
with cx sk, + Ak, — Ap,, and the above ring homomorphism ¢ is also
denoted by 1 : A, — Ay. Note that F//Q is a cyclic extension of degree
a power of p. We denote by F’ the subfield of F' such that [F : F'| = p.
We put N() = NGal(F/F’) = EUEGal(F/F’)J' If we put [F : Q] = pc and
take a generator v of Gal(F/Q), Ny = Ef:_olfypc_li is a cyclotomic poly-
nomial and Oy = Zy[upe] ~ Zy[Gal(F/Q)]/No. For any Z,[Gal(F/Q)]-
module M, we define M¥ = Ker(Ny : M — M). Then the Pontrja-
gin dual of MY is (M¥)Y = (MY)/Ng = (MV)y. By the same method
as the proof of (2.10), we have H'(Gal(F/F"),Sel(Or_[1/m], E[p>®])) =
0. Therefore, 0 — 1 : Sel(Op?o[l/m],E[poo]) — Sel(Og[1/m], E[p>])¥
is surjective where o = ~P°  is a generator of Gal(F/F’). Therefore,
taking the dual, we know that there is an injective homomorphism from
(Sel(Op [1/m], E[p™=])Y)y to Sel(Op, [1/m], Ep>])" which is a free Z,-
module. Therefore, (Sel(Op,[1/m], E[p™])")y contains no nontrivial finite
Ay-submodule. This shows that

Fitto,a, ((Sel(Op, [1/m], E[p™])*)y) = char((Sel(Or. [1/m], E[p])"))-
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Consider the 1-quotient of the exact sequence (2.8);

(P T(E)r,)y — (Sel(OF[1/m], Ep™])")y — (Sel(OF.., Ep™])")y — 0

v|m

where v runs over all primes of F, above m. Since EthZp[Gal(F/Q)] (Oy,Sel(OF,,, E[p™)])) =

HO(Gal(F/Q),Sel(Op.., E[p™)])) is finite, the first map of the above exact
sequence has finite kernel.
Suppose that ¢ is a prime divisor of m. If ¢ is unramified in F', we have

Fitto.n, (D To(E)r,)) = Fi(or)Ay
vl

where P)(z) = x?—agz+¢(. If £ is ramified in F', 1(¢) = 0 and (Do) To(E)r, )y
is finite. Therefore, we have

char(@ Tp(B)r,)y) = ([ Pilon)Ay.

vlm £ES\Sram (F)

Using the above exact sequence and Kato’s theorem ¢ (€, ) € char((Sel(Op., E[p™])Y)y),
we have

char((Sel(Op. [1/m], Ep™]) ")) D ¢(€r ) [ Filo0)Ay.
LS\ Sram (F)

Since Er ([ 1res\ spum(r) £2(0¢)) = EF,s modulo unit and ek, (§xo,5) =
€r..s by (2.7), we obtain

V(EKw.8) € Fitto,(a ), (Sel(Ox. [1/m], E[p™])")y) (2.11)

for any character ¢ of Gal(K/Q). Since the p-invariant of Sel(Ok_[1/m], E[p>])"
is zero as we explained above, (2.11) implies

{Koo,s € Fitto g (Sel(Ok[1/m], E[p>])Y)

(see Lemma 4.1 in [9], for example).

(2) We use the same notation v, F, etc. as above. At first, we assume (2.5).
Then the algebraic M-invariant of Sel(F/F., E[p™])" equals the analytic
A-invariant by Hachimori and Matsuno [6], [13], so the main conjecture
char((Sel(Op., E[p™])")y) = ¢(€r.. ) Ay also holds. Therefore, we have

char((Sel(Op. [1/m], Ep™)V)y) = v(r)( []  Filoe)ny

£S5\ Sram (F)
= V(Fw,5) Ay = V(ERu,5) Ay
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and

Fitto,(a ), ((Sel(Or. [1/m], Ep™®]))y) = ¥(Eka s M) Ay

It follows from [9] Corollary 4.2 that

Fittg a,_ (Sel(Ok..[1/m], E[p™])") = koo s MK -

On the other hand, if we assume the above equality, taking the Gal(K/Q)-
invariant part of Sel(Ox_ [1/m], E[p*]), we get

Fitto,nq, (Sel(Oq..[1/m], E[p™])") = £q...sAq...s,

which implies (2.5).

2.3 An analogue of Stickelberger’s theorem

Let K/Q be a finite abelian p-extension. When the conductor of K is
m, we define Jx € Rg = Zp[Gal(K/Q)] to be the image of Jq,,,) €
AQ(umpoo)' Thelrefore, if m is prime to p, Uk is the image of Jq(u,) =
(1-22)1- %)éQ(Mm) by (2.4). If m = m/p™ for some m’ which is prime
to p and for some 7 > 2, 9k is the image of ”QQ(um/pn) = a*"(HQ(Mm,pn) —
aill/m'p",m’pnfl(HQ(Mm/pn—l)))'

For any positive integer n, we denote by Q(n) the maximal p-subextension

of Q in Q(4n).

Theorem 2.3.1 For any finite abelian p-extension K in which all bad primes
of E are unramified, 9 annihilates Sel(Ok, E[p™])V, namely we have

19}( Sel(OK, E[poo])\/ =0.

Proof. We may assume K = Q(mp") for some squarefree product m of
primes in Py,0q and for some n € Z>g. By Theorem 2.2.2 (1), taking S to be
the set of all prime divisors of m, we have i € Fittoa,__ (Sel(Ox [1/m], E[p>])Y),
which implies £k Sel(Ok., Ep™])Y = 0. Let {x € Rxg = Z,[Gal(K/Q)]
be the image of {x_. Since the natural map Sel(Og, E[p>]) — Sel(Oxk._,, E[p*])
is injective, we have £k Sel(Ok, E[p™])Y = 0.

By the definitions of £Qmpoc)> EQmpn)» VQ(mpn), We can write

€k = €Qumpm) = VQumpmy T D AaVm,a(Pqapm)) (2.12)
d|m,d#m

for some A\g € Rq(mpn) Where v, g 1 Rqapr) — RQ(mpr) is the norm map
defined similarly as in §2.1. We will prove this theorem by induction on
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m. Since d < m, we have Jq@pn) € Anngg ., (Sel(Oqapn) ,E[p>=])Y) b
the hypothesis of the induction. This implies that Vm,d(ﬁQ(dp ) anmhﬂates
Sel(Oq(mpny, E[p™])Y. Since &k is in Anng, (Sel(Ox, E[p™])"), the above
equation 1mphes that 9k is in Anng, (Sel(Ok, E[p™=])Y).

Remark 2.3.2 Let K, S, m be as in Theorem 2.2.2. Under our assump-
tions, the control theorem works completely;

Sel(Ok[1/m], E[p™]) =, Sel(OKOO[1/m],E[poo])Gal(K°°/K).

Therefore, Theorem 2.2.2 (1) implies that Fitto g, (Sel(Ok[1/m], E[p™])V)
is principal and

ks € Fitto g, (Sel(Ox [1/m], E[p™])Y) (2.13)

where {x g is the image of {x__ ¢ in Ry.
Theorem 2.2.2 (2) implies that if we assume the main conjecture (2.5),
we have

Fitto gy (Sel(Ok[1/m], E[p™])Y) = £k s Rk - (2.14)

2.4 Higher Fitting ideals

For a commutative ring R and a finitely presented R-module M with n
generators, let A be an n x m relation matrix of M. For an integer ¢ > 0,
Fitt; r(M) is defined to be the ideal of R generated by all (n — i) x (n — 1)
minors of A (cf. [19]; this ideal Fitt; p(M) does not depend on the choice of
a relation matrix A).

Suppose that K/Q is a finite extension such that K is in the cyclotomic
Z,-extension Q. of Q, and that m is a squarefree product of primes in
PW). We define K (m) by K(m) = Q(m)K.

We put G = Gal(Q(¢)/Q) and G, = Gal(Q(m)/Q) = Iy, Ge. We have
Gal(K(m)/K) = Gp,. We put ny = ord, (£ —1). Suppose that m =1 -...-4,.
We take a generator 74, of Gy, and put S; = 7, — 1 € Rp(p,). We write n;
for ny,. We identify R/, with

RK[gm] = RK[Sh "'757’]/((1 + Sl)pnl -1,.., (1 + Sr)pnr - 1).

We consider Vg () € R (m) and write

_ (m) Zz T
Uk(m) = Z @y i ST e Sy

150yir>0

where a( m e Ry. Put ng = min{ny,...,n,}. For s € Z~(, we define ¢, to
be the max1mal positive integer ¢ such that

T (14T — 1) € p°Z,[T] + T*H'Z,[T).
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For example, ¢ = ng, ..., ¢p-2 = ng, cp—1 =ng— 1, ..., ¢y =ng — 2. If
Iyenyiy < 8, axn) ;, mod p® is well-defined (it does not depend on the choice

m)
of az, ” s,)-

Theorem 2.4.1 Let K be an intermediate field of the cyclotomic Z,-extension
Qo/Q with [K : Q] < 0o. Let ¢ be the integer defined above for s € Zw
and m. Assume that iq,...,i, < s and i1 + ... + i, < i. Then we have

o™ € Fitt; g jpes (Sel(E/K, E[p])Y).

11 4eeyl

For m = £y -...- £, we denote (—1)" times the coefficient of S; - ...- S, in
Uk (m) bY Om- If £; splits completely in K for all i = 1,...,r, we can write

Orcm) = 0m [ [(1 = 7¢,) = (=1)"0mS1 - ... S (mod p", 57,...,S7) (2.15)
i=1

(see [12] §6.3). Taking s =1 and ¢ = r in Theorem 2.4.1, we get

Corollary 2.4.2 Let K/Q be a finite extension such that K C Qs. We
have
Om € Fitt, g, v (Sel(E/K, E[p™])Y)

where m = {1 - ... - £y.

Proof of Theorem 2.4.1. We may assume K = Q(p") for some n > 0, so
K(m) = Q(mp™). First of all, we consider the image {x () € Rg(m) of
EK (m)oo - Since Sel(E/K(m), E[p™]) — Sel(E/K(m)s, E[p™]) is injective,
Ek(m) is in Fitto,RK(m)(Sel(E/K(m),E[poo])v) by Theorem 2.2.2 (1). We
write ‘ '

§K(m) = Z O‘ET),ZTS? * e Sff

U1yeesy ir>0

where a{™ ;€ Ri. Assume that iy,...,i < s and i1 + ... +4, <i. Then by

B1 eyl
Lemma 3.1.1 in [12] we have

o™ . € Fitt e pes (Sel(B/K, E[p*])¥).

11,00

On the other hand, since K(m) = Q(mp") for some n > 0, we have

Ex(m) = VK (m) T Z AdVm,d(VQapr))
d|m,d#m

for some \g € R () by (2.12). This implies that the images of {f(,,,) and
Uk (m) under the canonical homomorphism

Ric(m) = Ric[S1, ey Si]/T — Ric[[St, ., S]]/ T
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coincide where T = ((1 4+ S1)P™" —1,...,(1 + S1)P"" — 1) and J = (S;'(1 +
SpP™ 1, ST (LHS)PT 1,851 L 85+, Therefore, al™ =™

Ul yeenylp ULyl

mod p© for i,...,i, < s. It follows that ™ € Fitt; g, /pes (Sel(E/K, E[pe])¥).

T1yeensd

This completes the proof of Theorem 2.4.1.

3 Review of Kolyvagin systems of (Gauss sum type
for elliptic curves
In this section, we recall the results in [12] on Euler systems and Kolyvagin

systems of Gauss sum type in the case of elliptic curves. From this section
we assume all the assumptions (i), (ii), (iii), (iv) in §1.1.

3.1 Some definitions

Recall that in §2 we defined Pyooq by Pgyooa = {¢ | ¢ is a good reduction
prime for E }\ {p}, and P") by

pWN) — {l € Pgood | £ =1 (mod ™)}

for a positive integer N > 0. If £ is in P04, the absolute Galois group Gr,
acts on the group E[p"V] of p"-torsion points, so we consider H'(F,, E[p"]).
We define

P(SN) = {tePWN) | HY(Fy, E[p"]) contains an element of order p™},
(PN = {ee PN | HO(F,, EPY]) = Ep"]}, and

P = (e P™) | HOF, EpN)) ~ Z/pV}.

So P(EN) ) (Pé)(N)’ (()N) > PfN), and (Pé)(N) N PfN) = (). Suppose that
¢ is in PfN). Then, since ¢ = 1 (mod p~), we have an exact sequence

0 — Z/pN — EPpN] — Z/p" — 0 of G,-modules where G, acts on
Z/p" trivially. So the action of the Frobenius Frob, at £ on E[p"] can be

1 ) for a suitable basis of E[p"]. Therefore, H!(F, E[p™])
is also isomorphic to Z/p" for £ € PfN).
Let t € E[p"] be an element of order p”. We define

. 1
tten as
written < 0

P = {eeP™ |t e HOF, EPV])},
P = (e P™) | BOF,, EPN)) = (Z/p")1).

So, PéN) = U 73(()’];[) and PfN) = U, Pffp where ¢ runs over all elements of

order p"V. Since we assumed that the Galois action on the Tate module is

18



surjective, both (P§)™) and Pf
([12] §4.3).

We define K,y to be the set of number fields K such that K/Q is a finite
abelian p-extension in which all bad primes of FE are unramified. Suppose
that K is in K(,). We define

7];7) are infinite by Chebotarev density theorem

PHM(K) = {te (PN | ¢ splits completely in K},
PfN) (K) = {te PfN) | ¢ splits completely in K'}.
Again by Chebotarev density theorem, both (P5)V)(K) and PfN) (K) are
infinite (see [12] §4.3).

Suppose £ € Pooq. For a prime v above £, we know H'(K,,, E[p™])/(E(K,)®
Z/pN) = H(k(v), E[pN](—1)) where k(v) is the residue field of v. We put

H(K) = @ H(s(v), EP"](-1)). (3.1)
v[l
If ¢ is in (Ph)N)(K) (resp. PfN) (K)), H3(K) is a free R /p"-module of
rank 2 (resp. rank 1) where Rx = Z,[Gal(K/Q)] as before.

From now on, for a prime ¢ € PéN), we fix a prime 66 of an algebraic

closure Q above /. For any algebraic number field F, we denote the prime
of F below 66 by ¢, so when we consider finite extensions F} /k, F5/k such
that Fy C Fy, the primes {p,, {p, satisfy g, |(F, .

We take a primitive p"-th root of unity (,» such that ((pn)n>1 € Zp(1) =
@upn, and fix it.

In the following, for each ¢ in P(SN) (K), we take t, € H°(Fy, E[p"]) and
fix it. We define

to = (@ N ,0,..,0) € HE(K) (3:2)
—-1)

where the right hand side is the element whose £x-component is ¢ty ® C;?N(
and other components are zero.

Suppose that K is in K(,). Let Ko /K be the cyclotomic Z,-extension,
and K,, be the n-th layer. Since Sel(Ok__, E[p™])" is a finitely generated Z,-
module, the corestriction map Sel(Og,,, E[p"]) — Sel(Ox, E[p"]) is the
zero map if m is sufficiently large. We take the minimal m > 0 satisfying
this property, and put Kp;j = Kp,. We define inductively Kj,; by K},) =
(K[n-1))1) where we applied the above definition to Kj,_) instead of K.
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We can compute how large K[, is. Let A be the M-invariant of Sel(Of, , E[p™])".
We take a € Z>q such that p»™t — p® > X. Suppose that K = K/, (m-th
layer of K/ /K') for some K’ such that p is unramified in K’. The core-
striction map Sel(OK(/Hl,E[p]) — Sel(Ogz, E[p]) is the zero map. There-
fore, Sel(OK(/HN,E[pN]) — Sel(Ok;, E[p"]) is the zero map. Put o’ =
max(a — m,0). Then Sel(OKa,+N,E[pN]) — Sel(Ok,,, E[p"]) is the zero
map. Therefore, we have K[;j C Ky 4 y. Also we know Kj,,) C Ky ynn-

Let ny, d,, be the numbers defined just before (1.4) in §1.2. Then we

can show that if £ € PfN) satisfies £ = 1 (mod p»), £ is in PfN)(QM) by

the same method as above.

3.2 Euler systems of Gauss sum type for elliptic curves

We use the following lemma which is the global duality theorem (see Theo-
rem 2.3.4 in Mazur and Rubin [14]).

Lemma 3.2.1 Suppose that m is a product of primes in Pyooq. We have
an ezxact sequence

0 — Sel(Og, E[p"]) — Sel(Ox[1/m], E[p"]) — @Hf(m — Sel(Og, E[p™])V.
Lm

We remark that we can take m such that the last map is surjective in
our case (see Lemma 3.4.1 below).

Let K be a number field in K,y and £ € P(SN) (Kpj)- We apply the above
lemma to K7j) and obtain an exact sequence

0, w
Sel(OK[1] [1/6]7E[pN]) — H%(K[l]) — Sel(OK[l],E[pN])V.

Consider Vg, ek, € H7(K[1))- By Theorem 2.3.1 we know we(IKp te i) =
Uy we(te i) = 0. Therefore, there is an element g € Sel(Ok,, [1/€], E[pN])
such that dy(g) = ﬁK[l]tg,K[l]. We define

gsy) = Corg, /i (9) € Sel(Oxk[1/4], E[p™)). (3.3)

This element gélt? does not depend on the choice of g € Sel(Ok,[1/4], E ™))

([12] §5.4). We write gy instead of gélt? when no confusion arises.

Remark 3.2.2 To define gs, we used in [12] the p-adic L-function O,
whose Euler factor at ¢ is 1 — %a[l + %022. The element Ok can be
constructed from g by the same method as when we constructed £x
in §2.1. In the above definition (3.3), we used ¥x (namely ¥x_ ) instead of

Or...
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3.3 Kolyvagin derivatives of Gauss sum type

Let £ be a prime in Pyyoq. We define 9, as a natural homomorphism

O« HY(K, Ep"]) — H}(K) = D H(x(v), EP"](-1))
v[l

where we used H' (K, Ep"])/(E(K,) ® Z/pN) = H(k(v), E[p"](-1)).

Next, we assume ¢ € PfN)(K ). We denote by Q(¢) the maximal p-
subextension of Qy inside Q(u¢). Put G, = Gal(Q(¢)/Q¢). By Kummer
theory, Gy is isomorphic to pyn, where ny = ord,(¢ — 1). We denote by 7
the corresponding element of Gy to (pn, that is the primitive p™‘-th root of
unity we fixed.

We consider the natural homomorphism H(Qy, E[p"V]) — H'(Qq(¢), E[p™])
and denote the kernel by H} (Qq, E[p™]). Let Qg be the maximal unrami-
fied extension of Q,. We identify H'(F, E[p"]) with H(Gal(Q..-/Qe), E[pN]),
and regard it as a subgroup of H'(Qy, E[p"]). Then both H(F,, E[p"])
and H}.(Qy, E[p"]) are isomorphic to Z/p”", and we have decomposition

HY(Qq, Elp™)) = H' (Fy, Ep™]) & Hy, (Qq, E[p™])

as an abelian group. We also note that H'(F,, E[p"]) coincides with the
image of the Kummer map and is isomorphic to F(Q)®Z/p". We consider
the homomorphism

¢ H'(Qq, Ep"]) — H'(F(, E[p"]) (3-4)

which is obtained from the above decomposition.

Note that H'(F,, E[p"]) = E[p"]/(Frob, —1) where Froby is the Frobe-
nius at £. Since ¢ is in PfN), Frob, ' —1: E[p"]/(Froby —1) — E[p/V]frobe=l =
HY(Fy, E[p"]) is an isomorphism. We define ¢" : H(Qy, E[p"]) — H°(Fy, E[p"])

Frob, ' —1
as the composition of ¢' and H'(Fy, E[p™]) T HO (Fe, E[p"]). We de-

fine
¢¢: H'(K, E[p"]) — H7(K)(1)

as the composition of the natural homomorphism H' (K, E[pV]) — @W HY(K,,E[p™))

and ¢ for K,. Using the primitive p™V-th root of unity Gy we fixed, we
regard ¢, as a homomorphism

¢+ H' (K, B[p"]) — H;(K).

For a prime ¢ € PfN)(K), we put Gy = Gal(Q(¢)/Q). We identify G,
with Gal(Q/(¢)/Q). Recall that we defined n, by p™ = [Q(¢) : Q], and we
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took a generator 7, of G, above. We define

pe—1 pe—1
Ny= Y 7, €Z[G], Di= Y it € Z[G/]
i=0 i=0

as usual.

We define NI(N) (K) to be the set of squarefree products of primes in
PfN)(K). We suppose 1 € NI(N)(K). For m € NI(N)(K), we put G, =
Gal(Q(m)/Q), Nm = Uy Ny € Z[Gp], and Dy, = My, Dy € Z[Gyy]. As-
sume that £ is in (7)) V) (K (m)(1)) and consider gﬁim) € Sel(Og(m)[1/4), E[pN]).
We can check that Dmgftim) is in Sel(Ogc(m)[L/me), E[p"N])9™. Using the
fact that Sel(Ok[1/md], E[pN]) — Sel(OK(m)[l/mE],E[pN])gm is bijective
by Lemma 3.3.1 below (cf. also [12] Lemma 6.3.1), we define

Ko = Ko, € Sel(Ox[1/mé], E[p)) (3.5)
to be the unique element whose image in Sel(Og () [1/mf], E [pM]) is Dmgéfe(m)).
The following lemma will be also used in the next section.

Lemma 3.3.1 Suppose that K, L € K,y and K C L. For any m € Zx,
the restriction map Sel(Ox[1/m), E[p"]) — Sel(Og[1/m], E[pV])G(L/K)
1s bijective.

Proof. Let Ng be the conductor of E, m’ = mpNg, and m” the product of

primes which divide pNg and which do not divide m. Put G = Gal(L/K).
We have a commutative diagram of exact sequences

0 —  Sel(Ok[l/m],E[p"]) — Sel(Ok[1/m],E[P"]) —  @ypr Hi,

0 — Sel(Op[l/m], EpY]))® — Sel(OL[1/m'] Ep™]))* — (D )¢

w|m’’ %,w
where H, , = HY(K,, E[pN))/(E(K,)Z/p") and ., = H (L, Bp")/(B(Ly)e
Z/pN). Since Sel(Oy[1/m'], E[pN]) = HL(Spec OL[1/m/], E[p"]) and H°(L, E[pN])
0, as is bijective. Suppose that v divides m” and w is above v. When v
divides Np, since v is unramified in L and p is prime to Tam(FE), HIQ(,U —

Hiw is injective (Greenberg [3] §3). When v is above p, H%(,U — Hiw is
injective because a, # 1 (mod p) (Greenberg [3] §3). Hence a3 is injective.
Therefore, a; is bijective.

In [11], if m has a factorization m = ¢;-...-£, such that £, € PfN)(K(Ey

v y)) for all i = 1,...,r — 1, we called m well-ordered. But the word “well-
ordered” might cause confusion, so we call m admissible in this paper if m
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satisfies the above condition. Note that we do not impose the condition
f1 < ... < £, in the above definition, and that m is admissible if there is
one factorization as above. We sometimes call the set of prime divisors of
m admissible if m is admissible.

Suppose that m = ¢1 - ... - £,. We define 4,, € Ry /p" by

Ircimy = 0m [ [(1 = 7,)  (mod p¥, (7, = 1), ..., (¢, — 1)%) (3.6)
=1

(see [12] §6.3).
We simply write r,, ¢ for Iif,i(g 1, We have the following Proposition ([12]
Propositions 6.3.2, 6.4.5 and Lemma 6.3.4).

Proposition 3.3.2 Suppose that m is in NI(N)(K), and £ € (Py)WN) (K(m)p))-
We take ng sufficiently large such that every prime of Ky, dividing m is in-
ert in Koo/ Kn,. We further assume that £ € (P))N)(K,,+n). Then

(0) Km,e € Sel(Ok[1/ml], E[pN]).

(1) Or(Kmye) = ¢T(I€%,g) for any prime divisor r of m.

(2) Oe(Kme) = Omte k-

(3) Assume further that m is admissible. Then ¢yp(Kme) = 0 for any prime
divisor v of m.

3.4 Construction of Kolyvagin systems of Gauss sum type

In the previous subsection we constructed k,, ¢ for m € NI(N) (K) and a
prime £ € (PN )(K) satisfying some properties. In this subsection we
construct k¢ for £ € PfN)(K ) satisfying some properties (see Proposition
3.4.2). The property (4) in Proposition 3.4.2 is a beautiful property of our
Kolyvagin systems of Gauss sum type, which is unique for Kolyvagin systems
of Gauss sum type.

For a squarefree product m of primes, we define ¢(m) to be the number
of prime divisors of m, namely e(m) =r if m =¥y - ... - 4.

For any prime number ¢, we write Hz(K) = D, HY(K,,E[pN)/(E(K,)®
Z/p"), and consider the natural map

Wk @H?(K) — Sel(Og, E[p™])Y
l

which is obtained by taking the dual of Sel(Ok, E[p"]) — @, E(K,) ®
Z/pY. We also consider the natural map

Ok : H'(K, Elp"])) — P HI(K).
l
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We use the following lemma which was proved in [12] Proposition 4.4.3
and Lemma 6.2.1 (2).

Lemma 3.4.1 Suppose that K € K,y and r1,...,rs are s distinct primes in
P{N)(K). Assume that for each i = 1,...,s, 0; € ’H%Z(K) s given, and also
x € Sel(Ok, E[pN])V is given. Let K'/K be an extension such that K' €
K- Then there are infinitely many { € PéN)(K) such that wi (t k) = .
We take such a prime ¢ and fix it. Then there are infinitely many ¢’ €
(PHWN (K'Y which satisfy the following properties:

(i) wi(te k) = wi(tex) = 2.

(ii) There is an element z € Sel(Ok [1/¢¢'], E[p™]) such that Ok (2) =ty x —
tex and ¢p,(2) = o; for each i =1,...,s.

Assume that m/f is in Nl(N)(K[G(mg)]). By Lemma 3.4.1 we can take
¢ € (P))W) satistying the following properties:
(i) €' € (P) ™ (K (e (M) ) Kno+n) Where ng is as in Proposition 3.3.2.
(1) WK (e (0 K emey) = O ey (K mey))-
(i) Let gy ) B (Ki(uney, E[pV]) — H2(K|emoy)) be the map g, for
Kc(me))- There is an element V' in Sel(Ok, ][1/%’],E[pN]) such that

e(me)

(A
aK[e(mm (') = Lo Kiemey — LK emp)

and ¢7I~([€(m€)](b’) =0 for all r dividing m.
We have already defined k,, ¢ in the previous subsection. We put b =
COT K, ey (V) and define

Emg = Km,e — Omb. (3.7)

Then this element does not depend on the choice of ¢ and V' (see [12] §6.4).
In [12], we took & which does not necessarily satisfy ¢7I~( CmON(Y) = 0 in the
definition of k,, ;. But we adopted the above definition here because it is
simpler and there is no loss of generality.

The next proposition was proved in [12] Propositions 6.4.3, 6.4.5, 6.4.6.

Proposition 3.4.2 Suppose that m{ is in Nl(N)(K[e(mg)}). Then
(0) Ko € Sel(Ok[1/mé], E[pN]).
(1) Or(Kme) = &r(km ) for any prime divisor v of m.
(2) 8g(l<cm7g) = (5mtgyK.
(3) Assume further that m is admissible. Then ¢r(kme) = 0 for any prime
divisor r of m.
(4) Assume further that ml is admissible, and mt is in NfN)(K[e(mé)+1})~
Then we have
@bé(’im,é) = _6m€té,K~
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4 Relations of Selmer groups

In this section, we prove a generalized version of Theorem 1.2.3.

4.1 Injectivity theorem

Suppose that K is in K, and that m is in NI(N)(K). For a prime divisor r
of m, we denote by

w, : H2(K) — Sel(Ox, E[p"])"

the homomorphism which is the dual of Sel(Ox, E[p"]) — D, E(Ky) ®
Z/pY. Recall that H2(K) is a free R /p’-module of rank 1, generated by
trk.

Proposition 4.1.1 We assume that 6, is a unit of Rx /p~ for some m €
NI(N)(K)' Then the natural homomorphism @, ,w; : @Hm HA(K) —
Sel(Og, E[pN])Y is surjective.

Remark 4.1.2 We note that J,, is numerically computable, in principle.

Proof of Proposition 4.1.1. Let x be an arbitrary element in Sel(Ox, E[p™])V.

Let w, : H2(K) — Sel(Og, E[p™])Y be the natural homomorphism for each
r | m. We will prove that z is in the submodule generated by all w, (¢, k) for
r | m. Using Lemma 3.4.1, we can take a prime ¢ € (Pé)(N)(K(m)[l]KnoJrN)
such that wy(t, k) = x and £ is prime to m. We consider the Kolyvagin
derivative ,, ¢ which was defined in (3.5). Consider the exact sequence

Sel(OK[l/m€ @ Hé/ K Sel(OKaE[pN])v
L'me

(see Lemma 3.2.1) where 9 = (€9¢) ¢jyne and wic ((20)erme) = D prjme We (200)-
For each 7 | m we define \, € Ry /p" by Or(Kmie) = Mtrx € H2(K). The
above exact sequence and Proposition 3.3.2 (2) imply that

OmT + Z Awr(trg) =0

rlm

in Sel(Ok, E[pY])V. Since we assumed that &, is a unit, z is in the sub-
module generated by all w, (¢, k)’s. This completes the proof of Proposition
4.1.1.

For a prime ¢ € PfN) (K), we define

Hi () = D Elr(v) © Z/p".
v|l
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Since x(v) = Fy, BE(k(v)) ® Z/pY is isomorphic to Z/p" and H}f(K) is a
free Ry /p™-module of rank 1.

Corollary 4.1.3 Suppose that m = {1 - ... - £, s in Nl(N)(K). We assume
that 6, is a unit of Ry /p"™. Then the natural homomorphism

sm : Sel(Ok, E[pN]) — EP My, ;(K)

i=1
18 1njective.

Proof. This is obtained by taking the dual of the statement in Proposition
4.1.1.

4.2 Relation matrices

Theorem 4.2.1 Suppose that m = {1-...-4, isin Nl(N)(K[aH]). We assume
that m is admissible and that 5, is a unit of R /p~. Then

(1) Sel(Og[1/m], E[pN]) is a free Ry /p~ -module of rank a.

(2) {Km ¢, }1<i<a is a basis of Sel(Ox[1/m], E[p"]).

(3) The matriz

5% ¢f1 (’%%,@2) ¢£1 (Helnza ,Ea)
qbgg(liﬁ,gl) 5% Qbég(“e;;a ,Ea)
A e . . (4'1)
G (R ) Pra(Bym ) O

is a relation matriz of Sel(E/K, E[p™])Y.

In particular, if a = 2, the above matrix is A = (

0t be, (952) > )
bey(90,) o,
This is described in Remark 10.6 in [11] in the case of ideal class groups.

Proof of Theorem 4.2.1 (1). By Proposition4.1.1, @7, ’Hz (K) — Sel(Ok, E[p™))Y
is surjective. Therefore, by Lemma 3.2.1 we have an exact sequence

0 — Sel(Ox, Elp"])) — Sel(Ox[L/m], E[p"]) - éﬂz(m
=1
—  Sel(Og, E[pN])Y — 0. (4.2)

It follows that # Sel(Ox[1/m], E[p"]) = # DL, Hi(K) = #(Ry /pN)e.

26



Let mg,. be the maximal ideal of Rx. By Lemma 3.3.1, Sel(Z[1/m], E[p™]) —
Sel(Og [1/m], E[pN]) G2 (E/Q) is bijective. Since H(Q, E[p>°]) = 0, the ker-
nel of the multiplication by p on Sel(Z[1/m], E[p"]) is Sel(Z[1/m], E[p]).
Therefore, we have an isomorphism Sel(Og [1/m], E[p"])Y ®r,. Rk /mpg, =~
Sel(Z[1/m], E[p])¥. From the exact sequence

0 — Sel(Z, E[p]) — Sel(Z[1/m], E[p]) — @Hé — Sel(Z, E[p])¥ — 0,

and HZ,(Q) = H(Fy,, E[p]) ~ F, we know that Sel(Z[1/m], E[p]) is gener-
ated by a elements. Therefore, by Nakayama’s lemma, Sel(Ox [1/m], E[p™¥])¥
is generated by a elements. Since # Sel(O[1/m], E[pN])Y = #(Rx/p™)%,
Sel(Ok [1/m], E[pN])V is a free Rk /p"-module of rank a. This shows that
Sel(Og [1/m], E[pN]) is also a free Ry /p"-module of rank a because Ry /p"
is a Gorenstein ring.

(2) We identify @;_, HZ,(K) with (Rk/p™)?, using a basis {t;, k }1<i<a-
Consider ¢y, : Sel(Ok[1/m], Ep"]) — Hz_(K) and the direct sum of ¢y,
which we denote by ®

¢ = @iy, : Sel(Ox[1/m], Ep"]) — P M} (K) = (Ri/p")".
i=1
Recall that rm g, is an element of Sel(Ok[1/m], E[p"]) (Proposition 3.4.2
(0)). By Proposition 3.4.2 (3), (4), we have

q)(lie_mygi) = _5mei

for each i where {e; }1<i<4 is the standard basis of the free module (Rx /p™)®.
Since we are assuming that d,, is a unit, ® is surjective. Since both the target
and the source are free modules of the same rank, ® is bijective. This implies
Theorem 4.2.1 (2).

(3) Using the exact sequence (4.2) and the isomorphism ®, we have an exact
sequence

(Ru/p")* 22" @) H2(Kn) — Sel(Ox, E[pN])Y — 0.

1<i<a

We take a basis {—dmne;f1<ica of (R,/p™)® and a basis {te, k }1<i<a of
Di<i<a Hi(Kn). Then the (7, j)-component of the matrix corresponding
to do &1 is 8&(&%7@). If ¢ = j, this is 5% by Proposition 3.4.2 (2). If
i # j, we have agi(lieﬂfgj) = ¢gi(ﬁﬁ7gj) by Proposition 3.4.2 (1). This
completes the proof of Theorem 4.2.1.
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Remark 4.2.2 Suppose that £ is in PfN)(K). We define

o) : H'(K, E[p"]) — H} ;(K)

as the composition of the natural map H' (K, E[p"V]) — ®v|€ HY(K,,E[p™))
and ¢ : HY(K,, E[p"]) — H'(x(v), E[p"]) = E(sk(v))®Z/p" in (3.4). For
m e ./\fl(N)(K), we define

), - H' (K, Ep™]) — D Hi ()

£m

as the direct sum of @} for ¢ | m. By definition, the restriction of @], to
S = Sel(E/K, E[p"]) coincides with the canonical map s,;

(®),)s = 5m : Sel(E/K, E[p"]) — @D H;} 4(K) . (4.3)

Lm

Since Hi s(K) and HZ(K) are Pontrjagin dual each other, we can take
the dual basis ¢} ;- of ’Hé’f(K) as an Rg /p"-module from the basis t; s of
HZ(K). Under the assumptions of Theorem 4.2.1, using the basis {t}, K h<i<a
of @i, Hy (K), {te; k h1<i<a of @i, Hj (K) and the isomorphism ®;,, we
have an exact sequence P, Hif(K) 1, P H} (K) — Sel(E/K, E[pN])Y —
0. Then the matrix corresponding to f is an organizing matrix in the sense
of Mazur and Rubin [15] (cf. [12] §9).

5 Modified Kolyvagin systems and numerical ex-
amples

5.1 Modified Kolyvagin systems of Gauss sum type

In §3.4 we constructed Kolyvagin systems k,,, for (m,¢) such that m¢ €
Nl(N)(K[e(mg)H]). But the condition ¢ € PfN)(K[e(mg)H]) is too strict, and
it is not suitable for numerical computation. In this subsection, we define
a modified version of Kolyvagin systems of Gauss sum type for (m,¢) such

that m¢ € NI(N) (K).

Suppose that K isin K. For each ¢ € PfN)(K), we fix t, € HO(Fy, E[p"])
of order p"V, and consider ¢, x € HZ(K), whose {x-component is t; ® CfN(fl)
and other components are zero. Using t, g, we regard 9y and ¢, as homomor-
phisms 9 : HY(K, E[p"]) — Rg/p" and ¢, : HY(K, E[p"]) — Ry /p".

We will define an element %% in Sel(Og[1/mf], E[pN]) for (m, ) such
that m¢ € N1(K) (and for some primes ¢, ¢’ and some z in Sel(Ok [1/qq], E[p™))).
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Consider (m,¢) such that ¢ is a prime and m¢ € N1(K). We take ng suffi-
ciently large such that every prime of K, dividing m/ is inert in Ko/ Kp,.
Then by Proposition 3.3.2 (1), for any ¢ € (Pé)(N)(K(mE)[l]KnO+N), Kme,q €
Sel(O [1/mfq], E[p™]) satisfies

ar(”m&q) ¢T(K3”:e 7q)

for all  dividing m¢. By Lemma 3.4.1, we can take g, ¢’ € (P))V) (K(ml)p KngtN)
satisfying
° wK(tqu) = wK(tq/K), and
e thereis z € H}(OK[l/qq’], E[pN]) such that O (2) = tgx —ty i, ¢o(2) = 1
and ¢, (z) = 0 for any r dividing m.
For any m € N1(K), let d,, be the element defined in (3.6). We define

Kugn?z’ = Kmb,g — Fmb,g — Ome? - (5.1)

By Proposition 3.3.2 (2), we have nqq’ € Sel(Ok[1/mf], E[p™)).

Proposition 5.1.1 (O) K qé’z is in Sel(Ok[1/mf], E[pN]).

(1) The element k19,* satisfies O (k1 ., V) = qbr(/iznq;) for any prime divisor
r of m.

(2) We further assume that m{ is admissible in the sense of the paragraph
before Proposition 3.3.2. Then we have ¢, (k) a0, Z) = 0 for any prime divisor
r of m.

(3) Under the same assumptions as (2), ¢¢(x,, qq’ ) = —Ome holds.

Proof. (1) Using the definition of " q ** and Proposition 3.3.2 (1), we have

87«(#;?_’;‘1(2) = Or(Fmeg — Embg) = gbr(ang’q — Fome o). Next, we use the

definition of nqq ' and ¢,.(z) = 0 to get gbr(nqu Kot g = gbr(nqq )

dmez) = qﬁr(/#nq ez) These computations imply (1).
(2 ) We have qbr(limg q) = ¢r(Kmeg) = 0 by Proposition 3.3.2 (3). This
together with ¢,(z) = 0 implies ¢, (k q? ) = ¢r(Bmeg — Bmeg — Omez) = 0.
(3) We again use Proposition 3.3.2 (3) to get ¢¢(Kme,q) = Pe(Kmeq) = 0.

Since ¢g(z) = 1, we have ¢p(k%%%) = Se(kmeg — Kmeqg — Omez) = —Ome.
This completes the proof of Prop051tion 5.1.1.
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5.2 Proof of Theorem 1.2.5

In this subsection we take K = Q. For m e N = N(N)(Q), we consider
Om € Z/p™, which is defined from Jq,,) by (3.6). We define é,, € Z/p" by

Oqum) = Om [ [(7e, = 1) (mod p™, (70, — 1), ..., (10, — 1)*) (5.2)
paie

where m = 01 - ... - £;. By (2.4), Oq(m) = wdq(m) for some unit u € R (my-
This together with (3.6) and (5.2) implies that

ordy(6,) = ordy(dp). (5.3)

We take a generator 1y € (Z/¢Z)* such that the image of 0, € Gal(Q(ur)/Q) ~
(Z/0)* in Gal(Q(¢)/Q) ~ (Z/0)* @ Z,, is 7 which is the generator we took.
Then, using (5.2) and (1.1), we can easily check that the equation (1.2) in
§1.1 holds.

In the rest of this subsection, we take N = 1. We simply write P; for
Pfl), SO

P1=1{0 € Pyood | { =1 (mod p) and E(F,) ~ Z/p}.

The set of squarefree products of primes in P; is denoted by Nj.
We first prove the following lemma which is related to the functional
equation of an elliptic curve.

Lemma 5.2.1 Let € be the root number of E. Suppose that m € N7 is -

minimal (for the definition of 5-minimalness, see the paragraph before Con-
jecture 1.2.4). Then we have € = (—1)<(™),

Proof. By the functional equation (1.6.2) in Mazur and Tate [16] and the
above definition of §,,, we have e(—l)e(m)dm = 0y, (mod p). Since 6, Z 0
(mod p) is equivalent to d,, # 0 (mod p) by (5.3), we get the conclusion.

For each ¢ € Py, we fix a generator t; € H2(Q) = H°(Fy, E[p](—1)) ~
Z/p = F,, and regard ¢, as a map ¢, : H(Q, E[p]) — F,. Note that the
restriction of ¢, to Sel(E/Q, E[p]) is the zero map if and only if the natural
map sy : Sel(£/Q, E[p]) — E(F;) ® Z/p ~ F), is the zero map.

I) Proof of Theorem 1.2.5 (1), (2).

Suppose that €(m) = 0, namely m = 1. Then & = g mod p = L(E, 1)/Q},
mod p. If §; # 0, Sel(E/Q, E[p]) = 0 and s; is trivially bijective. Suppose
next e(m) = 1, so m = ¢ € P;. It is sufficient to prove the next two
propositions.
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Proposition 5.2.2 Assume that ¢ € Py is §-minimal. Then Sel(E/Q, E|p])
is 1-dimensional over F,,, and s, : Sel(E/Z, E[p]) — F,, is bijective. More-
over, the Selmer group Sel(E/Q, E[p>])" with respect to the p-power torsion
points E[p™] is a free Zy-module of rank 1, namely Sel(E/Q, E[p*])Y ~ Z,.

Proof. We first assume Sel(E/Q, E[p]) = 0 and will obtain the contradiction.
We consider k1] = kgq — Kgq — 0gz, which was defined in (5.1). By

Proposition 3.3.2 (1), we know 8g(/§‘f’z/’z) = ¢¢(gq — g¢)- Consider the exact
sequence (see Lemma 3.2.1)

0 — Sel(E/Q, E[p]) — Sel(Z[1/r], E[p]) — H}(Q)

for any 7 € Py where Sel(Z[1/r], E[p]) — HZ(Q) ~ F, is nothing but 9.
Since we assumed Sel(E/Q, E[p]) = 0, Sel(Z[1/r], E[p]) — H2(Q) ~ F, is
injective for any r € Pi. So 04(gq) = 61 = 0 implies that g, = 0. By the
same method, we have gy = 0. Therefore, 0p(k{] ") = de(g9q — 94) = 0,
which implies that k7% € Sel(E/Q, E[p)).

But Proposition 5.1.1 (3) tells us that m(/f(f’zl’z) = —d; # 0. Therefore,

/@‘f”z/’z # 0, which contradicts our assumption Sel(F/Q, E[p]) = 0. Thus we
get Sel(E/Q, E[p]) # 0.

On the other hand, by Corollary 4.1.3 we know that sy : Sel(E/Q, E[p]) —
F, is injective, therefore bijective.

By Lemma 5.2.1, the root number € is —1. This shows that Sel(E/Q, E[p™])Y
has positive Z,-rank by the parity conjecture proved by Nekovar ([18]).
Therefore, we finally have Sel(E/Q, E[p™])V ~ Z,, which completes the
proof of Proposition 5.2.2.

If we assume a slightly stronger condition on ¢, we also obtain the main
conjecture. Let A’ = A" be the analytic A-invariant of the p-adic L-function
UqQ.. Weput ny =min{n € Z | p" —1 > X'}

Proposition 5.2.3 Suppose that there is £ € Py such that
¢ =1 (mod p"™¥*2) and 6, # 0.

Then the main conjecture for (E,Quo/Q) is true and Sel(E/Qeoo, E[p™])Y

is generated by one element as a Aq. -module.

Proof. We use our Euler system géK) in §3.2 instead of m‘i”z/’z which was used

in the proof of Proposition 5.2.2. Let A be the algebraic A-invariant, namely

the rank of Sel(E/Quo, E[p™])Y. Then A < X and ¥q.. € char(Sel(Oq.., E[p>])")
by Kato’s theorem.
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Put K = Qq,, and f = p"~. Consider the group ring R /p = F),[Gal(K/Q)].

We identify a generator v of Gal(K/Q) with 1 + t, and identify Rg/p
with F,[[]/(t/). The norm Neax/q) = Zi_g' is ¢/~ by this identifi-
cation, so our assumption N < f — 1 implies that the corestriction map
Sel(E/K, E[p]) — Sel(E/Q, E[p]) is the zero map because A < X'. There-
fore, we have Q) C K. Since pv Tl v > v — 1 > N > A, the core-
striction map Sel(E/Qu,,+1, E[p]) — Sel(E/Qn,,, E[p]) = Sel(E/K, E|p))
is also the zero map. This shows that Qg C Qn,,+1-

Our assumption £ = 1 (mod p™~*2) implies that ¢ splits completely in

Qn,,+1, so we have £ € P1(Qjg)) = P1(K[y)). Therefore, we can define

") € Sel(Ok [1/4], Elp))

in §3.2. Since £ € P1(Q[]), we also have

do(glY) = =i = =4,

by Proposition 3.4.2 (4). It follows from our assumption d, # 0 that géQ) =+

0. Since CorK/Q(géK)) = géQ) and the natural map i : Sel(Z[1//], E[p]) —
Sel(Ok[1/4], E[p]) is injective, we get

i(géQ)) = NGal(K/Q)géK) = ff_lgéK) # 0.

Consider 9y : Sel(Og[1/¢], Elp]) — Rgk/p. By definition, we have
(K)

Oe(g, ) = ut"’ for some unit u of Ry /p. This shows that 8g(tf_xg§K)) =0,
which implies that /= g{") € Sel(E/K, E[p]). The fact t/~1g{) # 0 im-

(K)

plies the submodule generated by ¢/~ g, is isomorphic to Rk /(p, V) as
an Ri-module. Namely, we have

Sel(E/K., E[p]) o (¢! X g{")) = Ryc/ (p, V).

This implies that A\ = ), and Sel(E/K, E[p]) ~ Rg/(p,t}). Therefore,
we have Sel(E/Qs, E[p])Y ~ Aq../(p,Yq..). This together with Kato’s
theorem we mentioned implies that Sel(E/Quo, E[p™])Y ~ Aq../(Yq..)-

IT) Proof of Theorem 1.2.5 (3).
Suppose that m = ¢15 € N7 and m is §-minimal. As in the proof of Propo-
sition 5.2.2, we assume Sel(E/Q, E[p]) = 0 and will get the contradiction.

We consider /ﬁz;q;’; defined in (5.1). Consider the exact sequence (see Lemma
3.2.1)

0 — Sel(E/Q, Elp]) — Sel(Z[1/ti6q¢', Ep) = @  HA(Q).
ve{l1,£2,4,q"}
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By the same method as the proof of Proposition 5.2.2, g, = g4 = 0. There-
fore, Op, (Key,q — Ker,q) = $0,(9q — 9g) = 0 by Proposition 3.3.2 (1). We
have aQ(’Wl,q) =g, =0, aQ(’WLQ') =0, 8(1’(’%1#1) =0, 89’(“%#1’) = ¢, = 0.
Therefore, O(k¢, g — ke,,¢) = 0. This together with Sel(E/Q, E[p]) = 0
shows that g, ¢ — k¢, o = 0. Therefore, using Proposition 3.3.2 (1), we have

/
O, (Hzfef) = O, (’fm,q - "'fm,q’) = ¢u, (’th - HZl,q’) =0.

By the same method as the above proof of kg, ;—ky, o = 0, we get m‘izz;z =0.

This implies that 9, (k2%7) = ¢y, (k79%) = 0 by Proposition 5.1.1 (1). It

follows that d(x%%,%) = 0, which implies £/, € Sel(E/Q, E[p]). But this
is a contradiction because we assumed Sel(E/Q, E[p]) = 0 and

Gr, (K1) = —0m # 0

by Proposition 5.1.1 (3). Thus, we get Sel(E/Q, E[p]) # 0.

Now the root number is 1 by Lemma 5.2.1, therefore, by the parity
conjecture proved by Nekovar ([18]), we obtain dimr, Sel(E/Q, E[p]) > 2.
On the other hand, by Corollary 4.1.3 we know that s,, : Sel(E/Q, E[p]) —
(F,)®? is injective. Therefore, the injectivity of s,, implies the bijectivity of
Sm. This completes the proof of Theorem 1.2.5 (3).

We give a simple corollary.

Corollary 5.2.4 Suppose that there is m € Ny such that m is 6-minimal
and e(m) = 2. We further assume that the analytic M-invariant X' is 2.
Then the main conjecture for (E, Qs /Q) holds.

Proof. Put t = v—1 and identify Aq_ /p with F,[[t]]. Let A be the relation
matrix of S = Sel(E/Quo, E[p™])Y. Since S/(p,t) = Sel(E/Q, Ep])¥ ~
F, o F,, t? divides det.4 mod p. Therefore, the algebraic A-invariant is

also 2. This implies the main conjecture because det A divides ¥q_, in Aq..
(Kato [7]).

III) Proof of Theorem 1.2.5 (4).

Lemma 5.2.5 Suppose that €, {1, €s are distinct primes in Py satisfying
d¢ = Op, = du, = 0. Assume also that s; : Sel(E/Q, E[p])) — F, is
bijective, and that €4y, £l are both admissible. We take q, q' such that they

satisfy the conditions when we defined /ﬁzﬂ;’ze. Then we have

(1) Sel(E/Q, Elp]) = Sel(Z[1/{], E[p]),

/

0,9z _ 9,9"z _
(2) k" =0, k" =0, and

(3) k%475 € Sel(E/Q. Elp).
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Proof. (1) Since sy is bijective, taking the dual, we get the bijectivity of
HZ(Q) — Sel(E/Q, E[p])¥ = Sel(Z, E[p])¥. By the exact sequence

0 — Sel(Z, E[p]) — Sel(Z[1/€], Elp]) 25 H2(Q) — Sel(Z, E[p])" — 0

in Lemma 3.2.1, we get Sel(E/Q, E[p]) = Sel(Z, E[p]) = Sel(Z[1/¢], E[p]).
(2) We first note that the bijectivity of s, : Sel(E/Q, E[p]) — F,, implies
the bijectivity of ¢y : Sel(£/Q, E[p]) — F,. Since 0y(krq) = 6¢ = 0,
keq € Sel(Z[1/4], E[p]) = Sel(£/Q, E[p]) where we used the property (1)
which we have just proved. Proposition 3.3.2 (3) implies ¢¢(r¢,4) = 0, which
implies xy, = 0 by the bijectivity of ¢,. By the same method, we have
kg = 0. Therefore, we have

4,
1

»

/
K Z = Keq — Keg — bpz = 0.

Therefore, Proposition 5.1.1 (1) implies 8&(@?;‘122) = gbgl(m‘f’zl’z) = 0. This

implies /ﬂgfé’z € Sel(Z[1/¢], E[p]) = Sel(E/Q, E[p]). Using Proposition 5.1.1
(3), we have

gf)g(ligfe’z) = —(5@31 = 0,
which implies nzq;’z = 0 by the bijectivity of ¢y. The same proof works for
PR
lal

(3) It follows from Proposition 5.1.1 (1) and Lemma 5.2.5 (2) that d, (KLZ’%/’ZK)
’ , g 1€2,
¢£i(/€%’f_{42’1) = 0 for each i = 1, 2. This implies ﬁ?ﬁg’; € Sel(Z[1/¢], Ep]).

[Z
Using Sel(Z[1/¢], E[p]) = Sel(E/Q, E[p]) which we proved in (1), we get the
conclusion. This completes the proof of Lemma 5.2.5.

We next prove Theorem 1.2.5 (4). Assume that m = {10203 € N, m is
d-minimal, m is admissible, and sy, : Sel(E/Q, E[p]) — F,, is surjective for
each i =1, 2.

We assume dimg, Sel(£/Q, E[p]) = 1 and will get the contradiction. By
this assumption, sy, : Sel(E/Q, E[p]) — F,, for each i = 1, 2 is bijective.
This implies that ¢, : Sel(E/Q, E[p]) — F, for each ¢ = 1, 2 is also
bijective. By Lemma 5.2.5 (3) we get IiZ;%;’;zel € Sel(E/Q, Ep]), taking g,
q satisfying the conditions when we defined this element. By Proposition
5.1.1 (3), we have ¢31(I€Zﬁ;’;1) = —0;m # 0, which implies HZ;%;;Z& # 0. But
by Proposition 5.1.1 (2), we have qng(/ﬁZ;qZ;;l) = 0. This contradicts the
bijectivity of ¢g,. Therefore, we obtain dimr, Sel(£/Q, E[p]) > 1.

By Lemma 5.2.1 and our assumption that m is J-minimal, we know that
the root number € is —1. This shows that dimg, Sel(E/Q, E[p]) > 3 by the
parity conjecture proved by Nekovér ([18]). On the other hand, Corollary
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4.1.3 implies that dimg, Sel(£/Q, E[p]) < 3 and s, : Sel(£/Q, E[p]) —
F;??’ is injective. Therefore, the above map s,, is bijective. This completes
the proof of Theorem 1.2.5 (4).

5.3 Numerical examples

In this section, we give several numerical examples.

Let E = X((11)( be the quadratic twist of X((11) by d, namely dy? =
23 — 4% — 160x — 1264. We take p = 3. Then if d = 1 (mod p), p is
a good ordinary prime which is not anomalous (namely a,(= a3) for E
satisfies a, # 1 (mod p)), and p = 3 does not divide Tam(FE), and the
Galois representation on T3(FE) is surjective. In the following examples, we
checked p/ = 0 where p' is the analytic p-invariant. Then this implies that
the algebraic p-invariant is also zero (Kato [7] Theorem 17.4 (3)) under our
assumptions. In the computations of 6m below, we have to fix a generator of
Gal(Q(¢)/Q) ~ (Z/lZ)* for a prime ¢. We always take the least primitive

root 1y of (Z/¢Z)*. We compute d,, using the formula in (1.2).

(1) d = 13. We take N = 1. Since o7 = 20 # 0 (mod 3), we know
that Fitt1 g, (Sel(E/Q, E[3])") = F3 by Theorem 2.4.1, so Sel(E/Q, E[3]) is
generated by one element.
The root number is € = (13) = —1, so L(E,1) = 0. We compute
Py = {7,31,73,...}. Therefore, d7 # 0 (mod 3) implies Sel(E/Q, E[3]) ~ F3
and

Sel(E/Q, E[3°°])Y ~ Z3

by Proposition 5.2.2. Also, it is easily computed that \' = 1 in this case.
This implies that Sel(F/Qq, E[3*°])Y ~ Z3, so the main conjecture also
holds.

We can find a point P = (7045/36,—574201/216) of infinite order on
the minimal Weierstrass model y? +y = 2% — 22 — 17462 — 50295 of E =
Xo(11)(33), Therefore, we know III(E/Q)[3>°] = 0. We can easily check
that E(F7) is cyclic of order 6, and that the image of the point P in
E(F7)/3E(F7) is non-zero. So we also checked numerically that sy : Sel(E/Q, E[3]) —
E(F7)/3E(F7) is bijective as Proposition 5.2.2 claims.

(2) d = 40. We know ¢ = (£2) = —1. We take N = 1. We can com-
pute P, = {7,67,73,...}, and 67 = —40 £ 0 (mod 3). This implies that
Sel(E/Q, E[3]) ~ F3 and Sel(E/Q, E[3*°])V ~ Z3 by Proposition 5.2.2.

In this case, we know X' = 7. Therefore, ny» = 2. We can check 5347 €
Py (where 5347 = 1 (mod 3%)) and d5347 = —412820 # 0 (mod 3). Therefore,

the main conjecture holds by Proposition 5.2.3. In this case, we can check
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that the p-adic L-function ¥q_, is divisible by (1 +t)® — 1, so we have
rankz, Sel(E/Qy, E[3%])" = 3

where Q; is the first layer of Qo /Q.

In the following, for a prime ¢ € P, we take a generator 7, of Gal(Q(¢)/Q) ~
(Z/tZ)* and put S = 7, — 1. We write g = ZaEZ)Si where ay) € Z,.
Note that &, = a(lz).

(3) d =157. We know ¢ = (£3[) = 1 and L(F,1)/Q} = 45. We take N = 1.
We compute a(237) = —14065/2 # 0 (mod 3). Since 37 = 1 (mod 3?%), ¢ =
2—1=1and a537) is in Fitte r, (Sel(E/Q, E[3])") by Theorem 2.4.1, which
implies that Fitto g, (Sel(£/Q, E[3])) = F3. Therefore, Sel(E/Q, E[3]) is
generated by at most two elements.

We compute P; = {7,67,73,127,...}. Since 127 =1 (mod 7), 7 x 127 is
admissible. We compute d7x127 = 83165 # 0 (mod 3). Therefore, 7 x 127 is
d-minimal. It follows from Theorem 1.2.5 (3) that Sel(E£/Q, E[3]) ~ F3®Fs.
In this example, we can check ' = 2, so Corollary 5.2.4 together with the
above computation implies the main conjecture. Since L(E,1)/Qf = 45 #
0, rank E£(Q) = 0 by Kato, which implies Sel(E/Q, E[3*°]) = ILLI(E/Q)[3°°].
Since 45 € Fittg z,(Sel(E/Q, E[3°°])"), we have #III(E/Q)[3*°] <9, and

1I(E/Q)[3%] ~ Z/3Z & Z/3Z.

(4) d = 265. In this case, e = (282) = 1 and L(F,1) = 0. We take N = 1. As

in Example (3), we compute a(237) = 16985 # 0 (mod 3), which implies that
Sel(E/Q, E[3]) is generated by at most two elements as above. We compute
Py = {7,13,31,67,103,109,127,...}. For an admissible pair {7,127}, we
have 7y 197 = —138880 % 0 (mod 3). Therefore, 7 x 127 is d-minimal and
Sel(E/Q, E[3]) ~ F3 & F3 by Theorem 1.2.5 (3). Since A’ = 2 in this case,
by Corollary 5.2.4 we know that the main conjecture holds.

Since L(E,1) = 0, we know rank Sel(E/Q, E[3*°])¥ > 0 by the main

conjecture. This implies that
Sel(E/Q, E[3°°))Y ~ Z3 © Zs.

Now E has a minimal Weierstrass model 32 + vy = 2% — 22 — 725658z —
430708782. We can find rational points P = (2403,108146) and Q =
(5901, —448036) on this curve. We can also easily check that E(F7) is
cyclic group of order 6 and E(F3p) is cyclic of order 39. The image of
P in E(F7)/3E(Fr7) ~ Z/3Z is 0 (the identity element), and the image of

36



Q in E(F7)/3E(F7) ~ Z/3Z is of order 3. On the other hand, the images
of P and Q in E(F31)/3E(F31) ~ Z/3Z do not vanish and coincide. This
shows that P and @) are linearly independent over Z3. Therefore,

rank E(Q) = 2 and I11(E/Q)[3*] = 0.

In the above argument we considered the images of E(Q) in E(F7)/3E(Fr)
and F(F31)/3E(F31). What we explained above implies that the natural
map s7x31 : E(Q)/3E(Q) — E(F7)/3E(F7) ® E(Fs1)/3E(F31) is bijec-
tive. In this example, d7x31 = —15290 # 0 (mod 3), so Conjecture 1.2.4
holds for m =7 x 31.

(5) d = 853. We know ¢ = (23) = —1. Take N = 1 at first. For
¢ = 271, we have al’™") = 900852395/2 # 0 (mod 3), which implies that

dimp, Sel(E/Q, E[3]) < 3. We compute P; = {7,13,67,103,109, ...,463, ...}.

We can find a rational point P = (1194979057/51984,40988136480065,/11852352)
on the minimal Weierstrass equation y?+y = 23 —2?—75186262—14370149745

of E = X(11)(®%3), We know that E(F7) is cyclic of order 6, and E(F13) is
cyclic of order 18. Both of the images of P in E(F7)/3E(F7) and E(F13)/3E(F13)
are of order 3. Therefore, sy : Sel(E/Q, E[3]) — E(F;)/3E(Fy) is surjec-
tive for each ¢ = 7, 13. Since 13 = —1 € (F5)3, 463 = 1 € (F5)? and
463 = 8 € (Fy3)3, {7,13,463} is admissible. We can compute O7x13x463 =
—8676400 # 0 (mod 3), and can check that m =7 x 13 x 463 is -minimal.

By Theorem 1.2.5 (4), we have

Sel(E/Q, E[3]) >~ F3 &b F3 &b F3. (5.4)

We have a rational point P of infinite order, so the rank of F(Q) is > 1.
Take N = 3 and consider ¢ = 271. Since 5271 = a§271) = 35325 = 9 (mod
27), 9 is in Fittljz/psz(Sel(E/Q,E[33])V) by Corollary 2.4.2. This implies
that rank £(Q) = 1 and #II(E/Q)[3*°] < 9. This together with (5.4)

implies that
II(E/Q)[3*°]| ~ Z/3Z & Z/3Z. (5.5)

Note that if we used only Theorem 1.1.1 and these computations, we
could not get (5.4) nor (5.5) because we could not determine ©1(Q)©® by
finite numbers of computations. We need Theorem 1.2.5 to obtain (5.4) and
(5.5).

(6) For positive integers d which are conductors of even Dirichlet charac-
ters (so d = 4m or d = 4m + 1 for some m) satisfying 1 < d < 1000,
d =1 (mod 3), and d # 0 (mod 11), we computed Sel(E/Q, E[3]). Then
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dim Sel(E/Q, E[3]) = 0,1,2,3, and the case of dimension = 3 occurs only
for d = 853 in Example (5).

(7) We also considered negative twists. Take d = —2963. In this case,
we know L(E,1) # 0 and L(E,1)/Qf = 81. We know from the main
conjecture that the order of the 3-component of III(E/Q) is 81, but the
main conjecture does not tell the structure of this group. Take N = 1
and ¢/ = 19. Then we compute a§19) = 2753/2 # 0 (mod 3) (we have
Iqie) = —4325 + (2753/2)5% mod (9,5%)). Since ¢ = 1, this shows that
aglg) is in Fitto r, (Sel(E/Q, E[3])V) by Theorem 2.4.1. Therefore, we have
Fitto ry(Sel(E/Q, E[3])) = F3, which implies that Sel(E/Q, E[3]) ~ (F3)%?.
This denies the possibility of III(E/Q)[3*°] ~ (Z/3Z)®*, and we have

I1(E/Q)[3®] ~ Z/9Z & Z/9Z.

(8) Let E be the curve y? + 2y +y = 2% + 22 — 152 + 16 which is 563A1
in Cremona’s book [1]. We take p = 3. Since a3 = —1, Tam(F) =1, u =0
and the Galois representation on T3(F) is surjective, all the conditions we
assumed are satisfied. We know ¢ = 1 and L(E,1) = 0. Take N = 1. We
compute P; = {13,61,103,109,127,139,...}. For admissible pairs {13,103},
{13,109}, we compute d13x103 = —6819 = 0 (mod 3) and 0135109 = —242 #
0 (mod 3). From the latter, we know that

s13x100 : Sel(E/Q, E[3]) — (FB)@Q

is bijective by Theorem 1.2.5 (3). Since A\’ = 2, the main conjecture also
holds by Corollary 5.2.4. We know L(E,1) = 0, so Sel(E/Q, E[3%°]) =~
(Z3)%*.

Numerically, we can find rational points P = (2, —2) and Q = (—4,7) on
this elliptic curve. We can check that E(Fi3) is cyclic of order 12, E(F1g3)
is cyclic of order 84, and F(F1q9) is cyclic of order 102. The points P and @
have the same image and do not vanish in E(Fi3)/3E(F13), but the image
of P in E(Fi09)/3E(F109) is zero, and the image of Q in E(F1¢9)/3E(F109)
is non-zero. This shows that P and () are linearly independent over Zs,
and s13x109 is certainly bijective. Since all the elements in Sel(E/Q, E[3°])
come from the points, we have III(£/Q)[3°°] = 0. On the other hand, the
image of P in F(F103)/3E(F1p3) coincides with the image of @, so s13x103 is
not bijective. This is an example for which 813X103 = 0 (mod 3) and $13x103
is not bijective.

(9) Let E be the elliptic curve y? + zy +y = 23 + 22 — 10z + 6 which has
conductor 18097. We take p = 3. We know az = —1, Tam(E) =1, u =0
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and the Galois representation on T3(FE) is surjective, so all the conditions
we assumed are satisfied. In this case, e = —1 and L(F,1) = 0. Take N =
1. We compute Py = {7,19,31,43,79, ...,601,...}. We know {7,43,601} is
admissible. We have d7x43x601 = —2424748 £ 0 (mod 3), and 7 x 43 x 601
is 0-minimal. We thank K. Matsuno heartily for his computing this value
for us. The group E(F7) is cyclic of order 9 and E(F43) is cyclic of order
42. The point (0,2) is on this elliptic curve, and has non-zero image both
in E(F7)/3E(F7) and E(F43)/3E(F43). So both sy and s43 are surjective,
and we can apply Theorem 1.2.5 (4) to get

s7xa3x601 : Sel(E/Q, E[3]) — (F3)®?

is bijective.

Numerically, we can find 3 rational points P = (0,2), Q@ = (2,-1),
R = (3,2) on this elliptic curve, and easily check that the restriction of
S7x43x601 to the subgroup generated by P, @, R in Sel(F/Q, E[3]) is sur-
jective. Therefore, we have checked numerically that s7x43xgo1 is bijective.
This also implies that rank F(Q) = 3 since F(Q)ors = 0. Therefore, all the
elements of Sel(E/Q, F[3*°]) come from the rational points, and we have

HI(E/Q)[3] = 0.

5.4 A Remark on ideal class groups

We consider the classical Stickelberger element

= 1

03 = D (= )ow" € QIGaI(Q(u) /Q)
a=1
(a,;m)=1

(cf. (1.1)). Let K = Q(v/—d) be an imaginary quadratic field with conduc-
tor d, and x be the corresponding quadratic character. Let m be a squarefree
product whose prime divisors ¢ split in K and satisfy ¢ = 1 (mod p). Using
the above classical Stickelberger element, we define S;it x by

md

< a
555,[( == Z %X(a)(H logg, (a)
(a,%w:d%71 hm

(cf. (1.2)). We denote by Clg the class group of K, and define the notion
“5f(t-mini~malness” analogously. We consider the analogue of Conjecture
1.2.4 for 5551( and dimp, (Clg /p). Namely, we ask whether dimp, (Clx /p) =

e(m) for a 63'-minimal m. Then the analogue does not hold. For example,
take K = Q(v/—23) and p = 3. We know Clg ~ Z/3Z. Put ¢; = 151
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and ¢ = 211. We compute 65!, = =270 = 0 (mod 3), ¢ ;. = —1272 =0
(mod 3), and 82?132 i = —415012 = 2 (mod 3). This means that ¢; - {5 is
§3f-minimal. But, of course, we know dimp, (Clg/p) = 1 < 2 = €({1 - £2).
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