
ON IWASAWA THEORY, ZETA ELEMENTS FOR Gm,

AND THE EQUIVARIANT TAMAGAWA NUMBER CONJECTURE

DAVID BURNS, MASATO KURIHARA AND TAKAMICHI SANO

Abstract. We develop an explicit ‘higher rank’ Iwasawa theory for zeta elements asso-
ciated to the multiplicative group over abelian extensions of number fields. We show this
theory leads to a concrete new strategy for proving special cases of the equivariant Tam-
agawa number conjecture and, as a first application of this approach, we prove new cases
of the conjecture over natural families of abelian CM-extensions of totally real fields for
which the relevant p-adic L-functions possess trivial zeroes.

1. Introduction

The ‘Tamagawa number conjecture’ of Bloch and Kato [3] concerns the special values
of motivic L-functions and has had a pivotal influence on the development of arithmetic
geometry.

Nevertheless, in any situation in which a semisimple algebra acts on a motive it is natural
to search for an ‘equivariant’ refinement of this conjecture that takes account, in some way,
of the additional symmetries that arise in such cases.

The first such refinement was formulated by Kato [25, 26] (in the setting of abelian exten-
sions of number fields, and modulo certain delicate sign ambiguities) by using determinant
functors and a definitive statement of the ‘equivariant Tamagawa number conjecture’ (or
eTNC for short in the remainder of this introduction) was subsequently given by Flach and
the first author in [7] by using virtual objects and relative algebraic K-theory.

It has since been shown that the eTNC specializes to give refined versions of most, if
not all, of the important conjectures related to special values of motivic L-values that are
studied in the literature and it is by now widely accepted that it provides a ‘universal’
approach to the formulation of the strongest possible such conjectures.

In this direction, we used the framework of the eTNC in our earlier article [10] to develop
a very general approach to the theory of abelian Stark conjectures that was principally
concerned with the properties of canonical ‘zeta elements’ and ‘Selmer groups’ that one can
naturally associate to the multiplicative group Gm over finite abelian extensions of number
fields.

In this way we derived, amongst other things, several new and concrete results on the
relevant case of the eTNC, the formulation, and in some interesting cases proof, of precise
conjectural families of fine integral congruence relations between Rubin-Stark elements of
different ranks and detailed information on the Galois module structures of both ideal class
groups and Selmer groups.

The purpose of the current article is now to develop an explicit Iwasawa theory for the
zeta elements introduced in [10], to use this theory to derive a new approach to proving
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special cases of the eTNC, and finally to demonstrate the usefulness of this approach by
using it to prove the conjecture in important new cases.

In the next two subsections we discuss briefly the main results that we obtain.

1.1. Iwasawa main conjectures for general number fields. The first key aspect of our
approach is the formulation of an explicit main conjecture of Iwasawa theory for abelian
extensions of general number fields (we refer to this conjecture as a ‘higher rank main
conjecture’ since the rank of any associated Euler system would in most cases be greater
than one).

To give a little more detail we fix a finite abelian extension K/k of general number fields
and a Zp-extension k∞ of k and set K∞ = Kk∞. In this introduction, we suppose that
k∞/k is the cyclotomic Zp-extension but this is only for simplicity.

Then our higher rank main conjecture asserts the existence of an Iwasawa-theoretic zeta
element that plays the role of p-adic L-functions for general number fields and has precisely
prescribed interpolation properties in terms of the values at zero of the higher derivatives
of abelian L-series. (For details see Conjecture 3.1).

Modulo a natural hypothesis on µ-invariants, this conjecture can be reformulated in a
more classical style as an equality between the characteristic ideals of a canonical Selmer
module and of the quotient of a natural Rubin lattice of unit groups modulo the subgroup
generated by the Rubin-Stark elements (see Conjecture 3.14 and Proposition 3.15). In
this way it becomes clear that the higher rank main conjecture extends classical main
conjectures.

1.2. Rubin-Stark Congruences and the eTNC. It is also clear that the higher rank
main conjecture does not itself imply the validity of the p-part of the eTNC (as stated in
Conjecture 2.3 below) and is much weaker than the type of main conjecture formulated
by Fukaya and Kato in [20]. For example, if any p-adic place of k splits completely in K,
then our conjectural zeta element encodes no information at all concerning the L-values of
characters of Gal(K/k).

To overcome this deficiency we make a detailed Iwasawa-theoretic study of the fine con-
gruence relations between Rubin-Stark elements of differing ranks that were independently
formulated for finite abelian extensions by Mazur and Rubin in [28] (where the congruences
are referred to as a ‘refined class number formula for Gm’) and by the third author in [33].
In this way we are led to conjecture a precise family of ‘Iwasawa-theoretic Rubin-Stark
Congruences’ for K∞/k which, roughly speaking, describe the link between the natural
Rubin-Stark elements for K∞/k and for K/k. (For full details see Conjectures 4.1 and 4.2).

To better understand the context of this conjectural family of congruences we prove in
Theorem 4.9 that it constitutes a natural extension to general number fields of the ‘Gross-
Stark conjecture’ that was originally formulated (for CM extensions of totally real fields)
by Gross in [23] and has since been much-studied in the literature.

We can now state one of the main results of the present article (for a detailed statement
of which see Theorem 5.2).

Theorem 1.1. If each of the following conjectures is valid for K∞/k, then the p-component
of the eTNC (see Conjecture 2.3) is valid for every finite subextension of K∞/k.

• The higher rank Iwasawa main conjecture (Conjecture 3.1).
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• The Iwawasa-theoretic Rubin-Stark Congruences (Conjecture 4.2).
• Gross’s finiteness conjecture (see Remark 5.4).

An early indication of the usefulness of this result is that it quickly leads to a much
simpler proof of the main results of Greither and the first author [9] and Flach [19], and
of Bley [2], in which the eTNC is proved for abelian extensions over Q and certain abelian
extensions over imaginary quadratic fields respectively (see Corollary 5.6 and Remark 5.10).

To describe an application giving new results we assume k is totally real and K is CM
and consider the ‘minus component’ eTNC(K/k)−p of the p-part of the eTNC for K/k (as
formulated explicitly in Remark 2.4).

We write K+ for the maximal totally real subfield of K and recall that if no p-adic
place splits in K/K+ and the Iwasawa-theoretic µ-invariant of K∞/K vanishes, then
eTNC(K/k)−p is already known to be valid (as far as we are aware, such a result was
first implicitly discussed in the survey article of Flach [18]).

However, by combining Theorems 1.1 and 4.9 with recent work of Darmon, Dasgupta
and Pollack [15] and of Ventullo [39] on the Gross-Stark conjecture, we can now prove the
following concrete result (for a precise statement of which see Corollary 5.8).

Corollary 1.2. Let K/k be a finite abelian extension of number fields such that K is CM
and k is totally real. If p is any odd prime for which the Iwasawa-theoretic µ-invariant of
K∞/K vanishes and at most one p-adic place of k splits in K/K+, then eTNC(K/k)−p (see
Remark 2.4) is (unconditionally) valid.

This result gives the first verifications of eTNC(K/k)−p in any case for which both k ̸= Q
and the relevant p-adic L-series possess trivial zeroes. For example, all of the hypotheses of
Corollary 1.2 are satisfied by the concrete families of extensions described in Example 5.9.

By combining Corollary 1.2 with [10, Corollary 1.14] we can also immediately deduce the
following result concerning a refined version of the classical Brumer-Stark Conjecture. In
this result we write Sram(K/k) for the set of places of k that ramify in K and for any finite
set of non-archimedean places T of k we write ClT (K) for the ray class group of the ring of
integers of K modulo the product of all places of K above T . We also use the equivariant L-
series θK/k,Sram(K/k),T (s) defined below in (1) and write x 7→ x# for the Zp-linear involution
on Zp[Gal(K/k)] that inverts elements of Gal(K/k).

Corollary 1.3. Let K/k and p be as in Corollary 1.2 and set G := Gal(K/k). Then for
any finite non-empty set of places T of k that is disjoint from Sram(K/k) one has

θK/k,Sram(K/k),T (0)
# ∈ Zp ⊗Z FittZ[G](HomZ(Cl

T (K),Q/Z))
and hence also

θK/k,Sram(K/k),T (0) ∈ Zp ⊗Z AnnZ[G](Cl
T (K)).

We note that the final assertion of this result gives the first verifications of the Brumer-
Stark Conjecture in a case for which the base field is not Q and the relevant p-adic L-series
possess trivial zeroes. Thus the conclusion of this corollary unconditionally holds for the
extensions in Example 5.9.

Our methods also prove a natural equivariant ‘main conjecture’ (see Theorem 3.16 and
Corollary 3.17) involving the Selmer modules for Gm introduced in [10] and give a more
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straightforward proof of one of the main results of Greither and Popescu in [22] (for details
of which see §3.5, especially Corollaries 3.18 and 3.20).

1.3. Further developments. The ideas presented in this article extend naturally in at
least two different directions.

Firstly, one can formulate a natural generalization of the theory discussed here in the
context of arbitrary Tate motives. In this setting our theory is related to natural gener-
alizations of both the notion of Rubin-Stark element and of the Rubin-Stark conjecture
for special values of L-functions at any integer points. We can also formulate precise con-
jectural congruences between Rubin-Stark elements of differing ‘weights’, and in this way
obtain p-adic families of Rubin-Stark elements (for details see our recent article [11]).

Secondly, using an approach developed by the first and third authors in [12], many of
the constructions, conjectures and results discussed here extend naturally to the setting of
non-commutative Iwasawa theory and can then be used to prove the same case of the eTNC
that we consider here over natural families of non-abelian Galois extensions.

Finally we would like to note that after this article was submitted for publication we learnt
of the preprint [16] of Dasgupta, Kakde and Ventullo which gives a full proof of the Gross-
Stark Conjecture (as stated in Conjecture 4.7 below). Taking their result into account,
one can now remove the hypothesis of the validity of (the relevant cases of) Conjecture
4.7 from the statement of Corollary 5.7 and, via Theorem 4.9, one obtains further strong
evidence in support of the Iwasawa-theoretic Rubin-Stark Congruences that are formulated
in Conjecture 4.2. This does not yet, however, allow one to extend the results of either
Corollary 1.2 or Corollary 1.3 since, aside from certain special classes of fields discussed
in Remark 5.4, Gross’s finiteness conjecture is still (in the relevant cases) not known to be
valid unless one assumes that all associated p-adic L-functions have at most one trivial zero.

1.4. Acknowledgments. The second author would like to thank C. Greither very much
for discussion with him on topics related to the subjects in §3.5 and §4.2. He also thanks
J. Coates heartily for his various suggestions on the exposition of this paper.

The third author would like to thank Seidai Yasuda for his encouragement.
The second and the third authors are partially supported by JSPS Core-to-core program,

‘Foundation of a Global Research Cooperative Center in Mathematics focused on Number
Theory and Geometry’.

1.5. Notation. For the reader’s convenience we now end the Introduction by collecting
together some basic notation.

For any (profinite) group G we write Ĝ for the group of homomorphisms G → C× of
finite order.

Let k be a number field. For a place v of k, the residue field of v is denoted by κ(v) and
we set Nv := #κ(v). We denote the set of places of k which lie above the infinite place ∞
of Q (resp. a prime number p) by S∞(k) (resp. Sp(k)). For a Galois extension L/k, the set
of places of k that ramify in L is denoted by Sram(L/k). For any set Σ of places of k, we
denote by ΣL the set of places of L which lie above places in Σ.

Let L/k be an abelian extension with Galois group G. For a place v of k, the decomposi-
tion group at v in G is denoted by Gv. If v is unramified in L, the Frobenius automorphism
at v is denoted by Frv.
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Let E be either a field of characteristic 0 or Zp. For an abelian group A, we denote
E ⊗Z A by EA or AE . For a Zp-module A and an extension field E of Qp, we also write
EA or AE for E ⊗Zp A. (This abuse of notation would not make any confusion.) We use
similar notation for complexes. For example, if C is a complex of abelian groups, then we
denote E ⊗L

Z C by EC or CE .
Let R be a commutative ring and M an R-module. The linear dual HomR(M,R) is

denoted by M∗. If r and s are non-negative integers with r ≤ s, then there is a canonical
paring ∧s

R
M ×

∧r

R
HomR(M,R)→

∧s−r

R
M

defined by

(a1 ∧ · · · ∧ as, φ1 ∧ · · · ∧ φr) 7→
∑

σ∈Ss,r

sgn(σ) det(φi(aσ(j)))1≤i,j≤raσ(r+1) ∧ · · · ∧ aσ(s),

with Ss,r := {σ ∈ Ss | σ(1) < · · · < σ(r) and σ(r + 1) < · · · < σ(s)}. (See [10, Proposition
4.1].) We denote the image of (a,Φ) under the above pairing by Φ(a).

The total quotient ring of R is denoted by Q(R).

2. Zeta elements for Gm

In this section, we review the zeta elements for Gm that were introduced in [10].

2.1. The Rubin-Stark conjecture. We review the formulation of the Rubin-Stark con-
jecture [32, Conjecture B′].

Let L/k be a finite abelian extension of number fields with Galois group G. Let S be a
finite set of places of k which contains S∞(k)∪Sram(L/k). We fix a labeling S = {v0, . . . , vn}.
Take r ∈ Z so that v1, . . . , vr split completely in L. We put V := {v1, . . . , vr}. For each
place v of k, we fix a place w of L lying above v. In particular, for each i with 0 ≤ i ≤ n,
we fix a place wi of L lying above vi. Such conventions are frequently used in this paper.

For χ ∈ Ĝ, let Lk,S(χ, s) denote the usual S-truncated L-function for χ. We put

rχ,S := ords=0Lk,S(χ, s).

LetOL,S be the ring of SL integers of L. For any set Σ of places of k, put YL,Σ :=
⊕

w∈ΣL
Zw,

the free abelian group on ΣL. We define

XL,Σ := {
∑
w∈ΣL

aww ∈ YL,Σ |
∑
w∈ΣL

aw = 0}.

By Dirichlet’s unit theorem, we know that the homomorphism of R[G]-modules

λL,S : RO×
L,S

∼→ RXL,S ; a 7→ −
∑
w∈SL

log |a|ww

is an isomorphism.
By [38, Chap. I, Proposition 3.4] we know that

rχ,S = dimC(eχCO×
L,S) = dimC(eχCXL,S) =

{
#{v ∈ S | χ(Gv) = 1} if χ ̸= 1,

n(= #S − 1) if χ = 1,
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where eχ := 1
#G

∑
σ∈G χ(σ)σ

−1. From this fact, we see that r ≤ rχ,S .
Let T be a finite set of places of k which is disjoint from S. The S-truncated T -modified

L-function is defined by

Lk,S,T (χ, s) := (
∏
v∈T

(1− χ(Frv)Nv1−s))Lk,S(χ, s).

The (S, T )-unit group of L is defined to be the kernel of O×
L,S →

⊕
w∈TL κ(w)

×. Note that

O×
L,S,T is a subgroup of O×

L,S of finite index. We have

r ≤ rχ,S = ords=0Lk,S,T (χ, s) = dimC(eχCO×
L,S,T ).

We put

L
(r)
k,S,T (χ, 0) := lim

s→0
s−rLk,S,T (χ, s).

We define the r-th order Stickelberger element by

θ
(r)
L/k,S,T :=

∑
χ∈Ĝ

L
(r)
k,S,T (χ

−1, 0)eχ ∈ R[G].

The (r-th order) Rubin-Stark element

ϵVL/k,S,T ∈ R
∧r

Z[G]
O×
L,S,T

is defined to be the element which corresponds to

θ
(r)
L/k,S,T · (w1 − w0) ∧ · · · ∧ (wr − w0) ∈ R

∧r

Z[G]
XL,S

under the isomorphism

R
∧r

Z[G]
O×
L,S,T

∼→ R
∧r

Z[G]
XL,S

induced by λL,S . We note that ϵVL/k,S,T is independent of the choice of w0 and v0 (see [34,

Proposition 3.3]).
Now assume that O×

L,S,T is Z-free. Then, the Rubin-Stark conjecture (as formulated by

Rubin in [32, Conjecture B′]) predicts that the Rubin-Stark element ϵVL/k,S,T lies in the

Z[G]-lattice obtained by setting∩r

Z[G]
O×
L,S,T := {a ∈ Q

∧r

Z[G]
O×
L,S,T | Φ(a) ∈ Z[G] for all Φ ∈

∧r

Z[G]
HomZ[G](O×

L,S,T ,Z[G])}.

We stress, in particular, that in this context (and as used systematically in [10]) the notation∩r
Z[G] does not refer to an intersection.

In this paper, we consider the ‘p-part’ of the Rubin-Stark conjecture for a fixed prime
number p. We put

UL,S,T := ZpO×
L,S,T .

We also fix an isomorphism C ≃ Cp. From this, we regard

ϵVL/k,S,T ∈ Cp
∧r

Zp[G]
UL,S,T .

We define∩r

Zp[G]
UL,S,T := {a ∈ Qp

∧r

Zp[G]
UL,S,T | Φ(a) ∈ Zp[G] for all Φ ∈

∧r

Zp[G]
HomZp[G](UL,S,T ,Zp[G])}.
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We easily see that there is a natural isomorphism Zp
∩r

Z[G]O
×
L,S,T ≃

∩r
Zp[G]UL,S,T . We often

denote
∧r

Zp[G] and
∩r

Zp[G] simply by
∧r and

∩r respectively.

We propose the ‘p-component version’ of the Rubin-Stark conjecture as follows.

Conjecture 2.1 (RS(L/k, S, T, V )p). One has ϵVL/k,S,T ∈
∩r

Zp[G]UL,S,T .

Remark 2.2. Concerning known results on the Rubin-Stark conjecture, see [10, Remark
5.3] for example. Note that the Rubin-Stark conjecture is a consequence of the eTNC. This
result was first proved by the first author in [4, Corollary 4.1], and later by the present
authors [10, Theorem 5.14] in a much simpler way.

2.2. The eTNC for the untwisted Tate motive. In this subsection, we review the
formulation of the eTNC for the untwisted Tate motive.

Let L/k,G, S, T be as in the previous subsection. Fix a prime number p. We assume
that Sp(k) ⊂ S. Consider the complex

CL,S := RHomZp(RΓc(OL,S ,Zp),Zp)[−2].
It is known that CL,S is a perfect complex of Zp[G]-modules, acyclic outside degrees zero
and one. We have a canonical isomorphism

H0(CL,S) ≃ UL,S(:= ZpO×
L,S),

and a canonical exact sequence

0→ AS(L)→ H1(CL,S)→ XL,S → 0,

where AS(L) := Zp Pic(OL,S) and XL,S := ZpXL,S . The complex CL,S is identified with
the p-completion of the complex obtained from the classical ‘Tate sequence’ (if S is large
enough), and also identified with ZpRΓ((OL,S)W ,Gm), where RΓ((OL,S)W ,Gm) is the
‘Weil-étale cohomology complex’ constructed in [10, §2.2] (see [6, Proposition 3.3] and [5,
Proposition 3.5(e)]).

By a similar construction with [10, Proposition 2.4], we construct a canonical complex
CL,S,T which lies in the distinguished triangle

CL,S,T → CL,S →
⊕
w∈TL

Zpκ(w)×[0].

(Simply we can define CL,S,T by ZpRΓT ((OL,S)W ,Gm) in the terminology of [10].) We have

H0(CL,S,T ) = UL,S,T

and the exact sequence

0→ ATS (L)→ H1(CL,S,T )→ XL,S → 0,

where ATS (L) is the p-part of the ray class group of OL,S with modulus
∏
w∈TL w.

We define the leading term of Lk,S,T (χ, s) at s = 0 by

L∗
k,S,T (χ, 0) := lim

s→0
s−rχ,SLk,S,T (χ, s).

The leading term at s = 0 of the equivariant L-function

(1) θL/k,S,T (s) :=
∑
χ∈Ĝ

Lk,S,T (χ
−1, s)eχ
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is defined by

θ∗L/k,S,T (0) :=
∑
χ∈Ĝ

L∗
k,S,T (χ

−1, 0)eχ ∈ R[G]×.

As in the previous subsection we fix an isomorphism C ≃ Cp. We regard θ∗L/k,S,T (0) ∈
Cp[G]×. The zeta element for Gm

zL/k,S,T ∈ CpdetZp[G](CL,S,T )

is defined to be the element which corresponds to θ∗L/k,S,T (0) under the isomorphism

CpdetZp[G](CL,S,T ) ≃ detCp[G](CpUL,S,T )⊗Cp[G] det
−1
Cp[G](CpXL,S)

∼→ detCp[G](CpXL,S)⊗Cp[G] det
−1
Cp[G](CpXL,S)

∼→ Cp[G],

where the second isomorphism is induced by λL,S , and the last isomorphism is the evaluation
map. Note that determinant modules must be regarded as graded invertible modules, but
we omit the grading of any graded invertible modules as in [10].

The eTNC for the pair (h0(SpecL),Zp[G]) is formulated as follows.

Conjecture 2.3 (eTNC(h0(SpecL),Zp[G])). One has Zp[G] · zL/k,S,T = detZp[G](CL,S,T ).

Remark 2.4. When p is odd, k is totally real, and L is CM, we say that the minus part of
the eTNC (which we denote by eTNC(h0(SpecL),Zp[G]−)) is valid if we have the equality

e−Zp[G] · zL/k,S,T = e−detZp[G](CL,S,T ),

where e− := 1−c
2 and c ∈ G is the complex conjugation.

2.3. The eTNC and Rubin-Stark elements. In this subsection, we interpret the eTNC,
using Rubin-Stark elements. The result in this subsection will be used in §5.

We continue to use the notation in the previous subsection. Take χ ∈ Ĝ, and suppose
that rχ,S < #S. Put Lχ := Lkerχ and Gχ := Gal(Lχ/k). Take Vχ,S ⊂ S so that all v ∈ Vχ,S
split completely in Lχ (i.e. χ(Gv) = 1) and #Vχ,S = rχ,S . Note that, if χ ̸= 1, we have

Vχ,S = {v ∈ S | χ(Gv) = 1}.

Consider the Rubin-Stark element

ϵ
Vχ,S

Lχ/k,S,T
∈ Cp

∧rχ,S
ULχ,S,T .

Note that a Rubin-Stark element depends on a fixed labeling of S, so in this case a labeling
of S such that S = {v0, . . . , vn} and Vχ,S = {v1, . . . , vrχ,S} is understood to be chosen.

For a set Σ of places of k and a finite extension F/k, put YF,Σ := ZpYF,Σ =
⊕

w∈ΣF
Zpw

and XF,Σ := ZpXF,Σ = ker(YF,Σ → Zp).
Then the natural surjection XLχ,S → YLχ,Vχ,S

induces an injection Y∗
Lχ,Vχ,S

→ X ∗
Lχ,S

,

where (·)∗ := HomZp[Gχ](·,Zp[Gχ]). Since YLχ,Vχ,S
≃ Zp[Gχ]⊕rχ,S and dimCp(eχCpXL,S) =

rχ,S , the above map induces an isomorphism

eχCpY∗
Lχ,Vχ,S

∼→ eχCpX ∗
L,S .
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From this, we have a canonical identification

eχCp(
∧rχ,S

ULχ,S,T ⊗
∧rχ,SY∗

Lχ,Vχ,S
) = eχ(detCp[G](CpUL,S,T )⊗Cp[G] det

−1
Cp[G](CpXL,S)).

Since {w1, . . . , wrχ,S} is a basis of YLχ,Vχ,S
, we have the (non-canonical) isomorphism∧rχ,S

ULχ,S,T
∼→

∧rχ,S
ULχ,S,T ⊗

∧rχ,SY∗
Lχ,Vχ,S

; a 7→ a⊗ w∗
1 ∧ · · · ∧ w∗

rχ,S
,

where w∗
i is the dual of wi. Hence, we have the (non-canonical) isomorphism

eχCp
∧rχ,S

ULχ,S,T ≃ eχ(detCp[G](CpUL,S,T )⊗Cp[G] det
−1
Cp[G](CpXL,S)).

Proposition 2.5. Suppose that rχ,S < #S for every χ ∈ Ĝ. Then, eTNC(h0(SpecL),Zp[G])
holds if and only if there exists a Zp[G]-basis LL/k,S,T of detZp[G](CL,S,T ) such that, for every

χ ∈ Ĝ, the image of eχLL/k,S,T under the isomorphism

eχCpdetZp[G](CL,S,T ) ≃ eχ(detCp[G](CpUL,S,T )⊗Cp[G]det
−1
Cp[G](CpXL,S)) ≃ eχCp

∧rχ,S
ULχ,S,T

coincides with eχϵ
Vχ,S

Lχ/k,S,T
.

Proof. By the definition of Rubin-Stark elements, we see that the image of eχϵ
Vχ,S

Lχ/k,S,T
under

the isomorphism

eχCp
∧rχ,S

ULχ,S,T ≃ eχ(detCp[G](CpUL,S,T )⊗Cp[G] det
−1
Cp[G](CpXL,S))

≃ eχ(detCp[G](CpXL,S)⊗Cp[G] det
−1
Cp[G](CpXL,S))

≃ eχCp[G]
is equal to eχL

∗
k,S,T (χ

−1, 0). The ‘only if part’ follows by putting LL/k,S,T := zL/k,S,T . The
‘if part’ follows by noting that LL/k,S,T must be equal to zL/k,S,T . □

2.4. The canonical projection maps. Let L/k,G, S, T, V, r be as in §2.1. We put

er :=
∑

χ∈Ĝ, rχ,S=r

eχ ∈ Q[G].

As in Proposition 2.5, we construct the (non-canonical) isomorphism

erCpdetZp[G](CL,S,T ) ≃ erCp
∧r

UL,S,T .

In this subsection, we give an explicit description of the map

πVL/k,S,T : detZp[G](CL,S,T )
erCp⊗→ erCpdetZp[G](CL,S,T ) ≃ erCp

∧r
UL,S,T ⊂ Cp

∧r
UL,S,T .

This map is important since the image of the zeta element zL/k,S,T under this map is the

Rubin-Stark element ϵVL/k,S,T .

Firstly, we choose a representative Π
ψ→ Π of CL,S,T , where the first term is placed in

degree zero, such that Π is a free Zp[G]-module with basis {b1, . . . , bd} (d is sufficiently
large), and that the natural surjection

Π→ H1(CL,S,T )→ XL,S
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sends bi to wi − w0 for each i with 1 ≤ i ≤ r. For the details of this construction, see [10,
§5.4]. Note that the representative of RΓT ((OK,S)W ,Gm) chosen in [10, §5.4] is of the form

P → F,

where P is projective and F is free. By Swan’s theorem [14, (32.1)], we have an isomorphism
ZpP ≃ ZpF . This shows that we can take the representative of CL,S,T as above.

We define ψi ∈ HomZp[G](Π,Zp[G]) by

ψi := b∗i ◦ ψ,

where b∗i is the dual of bi. Note that
∧
r<i≤dψi ∈

∧d−r HomZp[G](Π,Zp[G]) defines the
homomorphism ∧

r<i≤d
ψi :

∧d
Π→

∧r
Π

given by

(
∧

r<i≤d
ψi)(b1 ∧ · · · ∧ bd) =

∑
σ∈Sd,r

sgn(σ) det(ψi(bσ(j)))r<i,j≤dbσ(1) ∧ · · · ∧ bσ(r)

(see Notation.)

Proposition 2.6.

(i) We have ∩r
UL,S,T = (Qp

∧r
UL,S,T ) ∩

∧r
Π,

where we regard UL,S,T ⊂ Π via the natural inclusion

UL,S,T = H0(CL,S,T ) = kerψ ↪→ Π.

(ii) If we regard
∩rUL,S,T ⊂

∧rΠ by (i), then we have

im(
∧

r<i≤d
ψi :

∧d
Π→

∧r
Π) ⊂

∩r
UL,S,T .

(iii) The map

detZp[G](CL,S,T ) =
∧d

Π⊗
∧d

Π∗ →
∩r

UL,S,T ; b1∧· · ·∧bd⊗b∗1∧· · ·∧b∗d 7→ (
∧

r<i≤d
ψi)(b1∧· · ·∧bd)

coincides with (−1)r(d−r)πVL/k,S,T . In particular, we have

πVL/k,S,T (b1∧· · ·∧bd⊗b
∗
1∧· · ·∧b∗d) = (−1)r(d−r)

∑
σ∈Sd,r

sgn(σ) det(ψi(bσ(j)))r<i,j≤dbσ(1)∧· · ·∧bσ(r)

and

imπVL/k,S,T ⊂ {a ∈
∩r

UL,S,T | era = a}.

Proof. For (i), see [10, Lemma 4.7(ii)]. For (ii) and (iii), see [10, Lemma 4.3]. □
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3. Higher rank Iwasawa theory

3.1. Notation. We fix a prime number p. Let k be a number field, and K∞/k a Galois
extension such that G := Gal(K∞/k) ≃ ∆×Γ, where ∆ is a finite abelian group and Γ ≃ Zp.
Set Λ := Zp[[G]]. Fix an isomorphism C ≃ Cp, and identify ∆̂ with HomZ(∆,Q

×
p ). For χ ∈

∆̂, put Λχ := Zp[imχ][[Γ]]. Note that the total quotient ring Q(Λ) has the decomposition

Q(Λ) ≃
⊕

χ∈∆̂/∼Qp

Q(Λχ),

where χ ∼Qp χ
′ if and only if there exists σ ∈ GQp such that χ = σ ◦ χ′.

We use the following notation:

• K := KΓ
∞ (so Gal(K/k) = ∆);

• k∞ := K∆
∞ (so k∞/k is a Zp-extension with Galois group Γ);

• kn: the n-th layer of k∞/k;
• Kn: the n-th layer of K∞/K;
• Gn := Gal(Kn/k).

For each character χ ∈ Ĝ we also set

• Lχ := Kkerχ
∞ ;

• Lχ,∞ := Lχ · k∞;
• Lχ,n: the n-th layer of Lχ,∞/Lχ;
• Gχ := Gal(Lχ,∞/k);
• Gχ,n := Gal(Lχ,n/k);
• Gχ := Gal(Lχ/k);
• Γχ := Gal(Lχ,∞/Lχ);
• Γχ,n := Gal(Lχ,n/Lχ);
• S: a finite set of places of k which contains S∞(k) ∪ Sram(K∞/k) ∪ Sp(k);
• T : a finite set of places of k which is disjoint from S;
• Vχ := {v ∈ S | v splits completely in Lχ,∞} (this is a proper subset of S);
• rχ := #Vχ.

For any intermediate field L of K∞/k, we denote lim←−F UF,S,T by UL,S,T , where F runs

over all intermediate field of L/k which is finite over k and the inverse limit is taken with
respect to the norm maps. Similarly, CL,S,T is the complex defined by the inverse limit of

the complexes CF,S,T with respect to the natural transition maps, and ATS (L) the inverse

limit of the p-primary parts ATS (F ) of the T ray class groups of OF,S with respect to the
norm maps. We denote lim←−F YF,S by YL,S , where the inverse limit is taken with respect to
the maps

YF ′,S → YF,S ; wF ′ 7→ wF ,

where F ⊂ F ′, wF ′ ∈ SF ′ , and wF ∈ SF is the place lying under wF ′ . We use similar
notation for XL,S etc.

3.2. Iwasawa main conjecture I. In this section we formulate the main conjecture of
Iwasawa theory for general number fields, that is a key to our study.
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3.2.1. For any character χ in Ĝ there is a natural composite homomorphism

λχ : detΛ(CK∞,S,T ) → detZp[Gχ](CLχ,S,T )

↪→ detCp[Gχ](CpCLχ,S,T )
∼→ detCp[Gχ](CpULχ,S,T )⊗Cp[Gχ] det

−1
Cp[Gχ]

(CpXLχ,S)

∼→ detCp[Gχ](CpXLχ,S)⊗Cp[Gχ] det
−1
Cp[Gχ]

(CpXLχ,S)

≃ Cp[Gχ]
χ→ Cp,

where the fourth map is induced by λLχ,S , the fifth map is the evaluation, and the last map
is induced by χ.

We can now state our higher rank main conjecture of Iwasawa theory in its first form.

Conjecture 3.1 (IMC(K∞/k, S, T )). There exists a Λ-basis LK∞/k,S,T of the module detΛ(CK∞,S,T )

for which, at every χ ∈ ∆̂ and every ψ ∈ Ĝχ for which rψ,S = rχ one has λψ(LK∞/k,S,T ) =

L
(rχ)
k,S,T (ψ

−1, 0).

Remark 3.2. We note that this conjecture is equivariant with respect to ∆. But it is
important to note that this conjecture is much weaker than the (relevant case of the)
equivariant Tamagawa number conjecture. For example, if k∞/k is the cyclotomic Zp-
extension, then for any ψ that is trivial on the decomposition group in Gχ of any p-adic
place of k one has rψ,S > rχ and so there is no interpolation condition at ψ specified above.
When rχ = 0, (the χ-component of) the element LK∞/k,S,T is the p-adic L-function, and in
the general case rχ > 0, it plays a role of p-adic L-functions. We will see in §3.2.2 that the
interpolation condition characterizes LK∞/k,S,T uniquely.

Remark 3.3. The explicit definition of the elements ϵ
Vχ
Lχ,n/k,S,T

implies directly that the as-

sertion of Conjecture 3.1 is valid if and only if there is a Λ-basis LK∞/k,S,T of detΛ(CK∞,S,T )

for which, for every character χ ∈ ∆̂ and every positive integer n, the image of LK∞/k,S,T

under the map

detΛ(CK∞,S,T )→ detZp[Gχ,n](CLχ,n,S,T )
π
Vχ
Lχ,n/k,S,T→ erχCp

∧rχ
ULχ,n,S,T

is equal to ϵ
Vχ
Lχ,n/k,S,T

.

It is not difficult to see that the validity of Conjecture 3.1 is independent of T . We assume
in the sequel that T contains two places of unequal residue characteristics and hence that
each group UL,S,T is Zp-free.

3.2.2. For each character χ ∈ ∆̂, there is a natural ring homomorphism

Zp[[Gχ]] = Zp[[Gχ × Γ]]
χ→ Zp[imχ][[Γ]] = Λχ ⊂ Q(Λχ).

In the sequel we use this homomorphism to regard Q(Λχ) as a Zp[[Gχ]]-algebra.
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In the next result we describe an important connection between the element LK∞/k,S,T

that is predicted to exist by Conjecture 3.1 and the inverse limit (over n) of the Rubin-

Stark elements ϵ
Vχ
Lχ,n/k,S,T

. This result shows, in particular, that the element LK∞/k,S,T in

Conjecture 3.1 is unique (if it exists).
In the sequel we set ∩rχ

ULχ,∞,S,T := lim←−
n

∩rχ
ULχ,n,S,T ,

where the inverse limit is taken with respect to the map∩rχ
ULχ,m,S,T →

∩rχ
ULχ,n,S,T

induced by the norm map ULχ,m,S,T → ULχ,n,S,T , where n ≤ m. Note that Rubin-Stark
elements are norm compatible (see [32, Proposition 6.1] or [33, Proposition 3.5]), so if we
know that Conjecture RS(Lχ,n/k, S, T, Vχ)p is valid for all sufficiently large n, then we can
define the element

ϵ
Vχ
Lχ,∞/k,S,T := lim←−

n

ϵ
Vχ
Lχ,n/k,S,T

∈
∩rχ

ULχ,∞,S,T .

Theorem 3.4.

(i) For each χ ∈ ∆̂, the homomorphism

detΛ(CK∞,S,T )→ detZp[Gχ,n](CLχ,n,S,T )
π
Vχ
Lχ,n/k,S,T→

∩rχ
ULχ,n,S,T

(see Proposition 2.6(iii)) induces an isomorphism of Q(Λχ)-modules

π
Vχ
Lχ,∞/k,S,T : detΛ(CK∞,S,T )⊗Λ Q(Λχ) ≃ (

∩rχ
ULχ,∞,S,T )⊗Zp[[Gχ]] Q(Λχ).

(ii) If Conjecture 3.1 is valid, then we have

π
Vχ
Lχ,∞/k,S,T (LK∞/k,S,T ) = ϵ

Vχ
Lχ,∞/k,S,T .

(Note that in this case Conjecture RS(Lχ,n/k, S, T, Vχ)p is valid for all n by Remark
3.3 and Proposition 2.6(iii).)

Proof. Since the module ATS (K∞)⊗Λ Q(Λχ) vanishes, there are canonical isomorphisms

detΛ(CK∞,S,T )⊗Λ Q(Λχ)(2)

≃ detQ(Λχ)(CK∞,S,T ⊗Λ Q(Λχ))

≃ detQ(Λχ)(UK∞,S,T ⊗Λ Q(Λχ))⊗Q(Λχ) det
−1
Q(Λχ)

(XK∞,S ⊗Λ Q(Λχ)).

It is also easy to check that there are natural isomorphisms

UK∞,S,T ⊗Λ Q(Λχ) ≃ ULχ,∞,S,T ⊗Zp[[Gχ]] Q(Λχ)

and
XK∞,S ⊗Λ Q(Λχ) ≃ XLχ,∞,S ⊗Zp[[Gχ]] Q(Λχ) ≃ YLχ,∞,Vχ ⊗Zp[[Gχ]] Q(Λχ),

and that these are Q(Λχ)-vector spaces of dimension r := rχ(= #Vχ). The isomorphism
(2) is therefore a canonical isomorphism of the form

detΛ(CK∞,S,T )⊗Λ Q(Λχ) ≃ (
∧r

ULχ,∞,S,T ⊗
∧r
Y∗
Lχ,∞,Vχ)⊗Zp[[Gχ]] Q(Λχ).
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Composing this isomorphism with the map induced by the non-canonical isomorphism∧r
Y∗
Lχ,∞,Vχ

∼→ Zp[[Gχ]];w∗
1 ∧ · · · ∧ w∗

r 7→ 1,

we have

detΛ(CK∞,S,T )⊗Λ Q(Λχ) ≃ (
∧r

ULχ,∞,S,T )⊗Zp[[Gχ]] Q(Λχ).

As in the proofs of Proposition 2.6(iii) and of [10, Lemma 4.3], this isomorphism is induced

by lim←−n π
Vχ
Lχ,n/k,S,T

. Now the isomorphism in claim (i) is thus obtained directly from Lemma

3.5 below.
Claim (ii) follows by noting that the image of LK∞/k,S,T under the map

detΛ(CK∞,S,T )→ detZp[Gχ,n](CLχ,n,S,T )
π
Vχ
Lχ,n/k,S,T→

∩rχ
ULχ,n,S,T

is equal to ϵ
Vχ
Lχ,n/k,S,T

. □

Lemma 3.5. With notation as above, there is a canonical identification

(
∩r

ULχ,∞,S,T )⊗Zp[[Gχ]] Q(Λχ) = (
∧r

ULχ,∞,S,T )⊗Zp[[Gχ]] Q(Λχ).

Proof. Take a representative Π∞ → Π∞ of CLχ,∞,S,T as in §2.4. Put Πn := Π∞ ⊗Zp[[Gχ]]

Zp[Gχ,n]. We have ∩r
ULχ,n,S,T = (Qp

∧r
ULχ,n,S,T ) ∩

∧r
Πn

(see Proposition 2.6(i)) and so lim←−n
∩r

Zp[Gχ,n]
ULχ,n,S,T can be regarded as a submodule of

the free Zp[[Gχ]]-module lim←−n
∧rΠn =

∧rΠ∞. For simplicity, we set Gn := Gχ,n, G := Gχ,
Un := ULχ,n,S,T , U∞ := ULχ,∞,S,T , and Q := Q(Λχ). We will show the equality

((lim←−
n

Qp

∧r
Un) ∩

∧r
Π∞)⊗Zp[[G]] Q = (

∧r
U∞)⊗Zp[[G]] Q

of the submodules of (
∧rΠ∞)⊗Zp[[G]] Q.

It is easy to see that

(
∧r

U∞)⊗Zp[[G]] Q ⊂ ((lim←−
n

Qp

∧r
Un) ∩

∧r
Π∞)⊗Zp[[G]] Q.

Conversely, take a ∈ (lim←−nQp
∧rUn) ∩

∧rΠ∞ and set Mn := coker(Un → Πn). Then we
have

lim←−
n

Mn ≃ coker(U∞ → Π∞) =:M∞.

Since Π∞ ⊗Zp[[G]] Q ≃ (U∞ ⊗Zp[[G]] Q)⊕ (M∞ ⊗Zp[[G]] Q), we have the decomposition

(
∧r

Π∞)⊗Zp[[G]] Q ≃
r⊕
i=0

(
∧r−i

U∞ ⊗
∧i

M∞)⊗Zp[[G]] Q.

Write

a = (ai)i ∈
r⊕
i=0

(
∧r−i

U∞ ⊗
∧i

M∞)⊗Zp[[G]] Q.
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It is sufficient to show that ai = 0 for all i > 0. We may assume that

ai ∈ im(
∧r−i

U∞ ⊗
∧i

M∞ → (
∧r−i

U∞ ⊗
∧i

M∞)⊗Zp[[G]] Q)

for every i. Since a ∈
∧rΠ∞, we can also write a = (a(n))n ∈ lim←−n

∧rΠn. For each n, we
have a decomposition

Qp

∧r
Πn ≃

r⊕
i=0

(Qp

∧r−i
Un ⊗Qp[Gn] Qp

∧i
Mn),

and we write

a(n) = (a(n),i)i ∈
r⊕
i=0

(Qp

∧r−i
Un ⊗Qp[Gn] Qp

∧i
Mn).

Since a ∈ lim←−nQp
∧rUn, we must have a(n),i = 0 for all i > 0. To prove ai = 0 for all i > 0,

it is sufficient to show that the natural map

(3) im(
∧r−i

U∞ ⊗
∧i

M∞ → (
∧r−i

U∞ ⊗
∧i

M∞)⊗Zp[[G]] Q)

→ lim←−
n

(Qp

∧r−i
Un ⊗Qp[Gn] Qp

∧i
Mn)

is injective. Note that M∞ is isomorphic to a submodule of Π∞, since M∞ ≃ ker(Π∞ →
H1(CLχ,∞,S,T )). Hence both U∞ and M∞ are embedded in Π∞, and we have

ker(
∧r−i

U∞ ⊗
∧i

M∞ → (
∧r−i

U∞ ⊗
∧i

M∞)⊗Zp[[G]] Q)

= ker(
∧r−i

U∞ ⊗
∧i

M∞
α→ (

∧r
(Π∞ ⊕Π∞))⊗Zp[[G]] Λχ).

Set Λχ,n := Zp[imχ][Γχ,n]. The commutative diagram∧r−iU∞ ⊗
∧iM∞

α //

β
��

(
∧r(Π∞ ⊕Π∞))⊗Zp[[G]] Λχ

f

��
lim←−nQp((

∧r−iUn ⊗
∧iMn)⊗Zp[Gn] Λχ,n) g

// lim←−nQp((
∧r(Πn ⊕Πn))⊗Zp[Gn] Λχ,n)

and the injectivity of f and g implies kerα = kerβ. Hence we have

ker(
∧r−i

U∞ ⊗
∧i

M∞ → (
∧r−i

U∞ ⊗
∧i

M∞)⊗Zp[[G]] Q) = kerα = kerβ.

This shows the injectivity of (3). □
Remark 3.6. Assume that Conjecture RS(Lχ,n/k, S, T, Vχ)p is valid for all χ ∈ ∆̂ and n.
Using Theorem 3.4, we can define

LK∞/k,S,T ∈ detΛ(CK∞,S,T )⊗Λ Q(Λ) =
⊕

χ∈∆̂/∼Qp

(detΛ(CK∞,S,T )⊗Λ Q(Λχ))

by LK∞/k,S,T := (π
Vχ,−1
Lχ,∞/k,S,T (ϵ

Vχ
Lχ,∞/k,S,T ))χ. Then Conjecture 3.1 is equivalent to

Λ · LK∞/k,S,T = detΛ(CK∞,S,T ).
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3.3. Iwasawa main conjecture II. In this subsection, we work under the following sim-
plifying assumptions:

(∗) p is odd, and Vχ contains no finite places for every χ ∈ ∆̂.

We note that the second assumption here is satisfied whenever k∞/k is the cyclotomic
Zp-extension.

3.3.1. We start by quickly reviewing some basic facts concerning the height one prime ideals
of Λ.

We say that a height one prime ideal p of Λ is ‘regular’ (resp. ‘singular’) if one has p /∈ p
(resp. p ∈ p).

If p is regular, then Λp is identified with the localization of Λ[1/p] at pΛ[1/p]. Since we
have the decomposition

Λ

[
1

p

]
=

⊕
χ∈∆̂/∼Qp

Λχ

[
1

p

]
,

we have Q(Λp) = Q(Λχp) for some χp ∈ ∆̂/∼Qp . Since Λχp [1/p] is a regular local ring, Λp

is a discrete valuation ring.
Next, suppose that p is a singular prime. We have the decomposition

Λ =
⊕

χ∈∆̂′/∼Qp

Zp[imχ][∆p][[Γ]],

where ∆p is the Sylow p-subgroup of ∆, and ∆′ is the unique subgroup of ∆ which is
isomorphic to ∆/∆p. From this, we see that Λp is identified with the localization of some
Zp[imχ][∆p][[Γ]] at pZp[imχ][∆p][[Γ]]. By [9, Lemma 6.2(i)], we have

pZp[imχ][∆p][[Γ]] = (
√
pZp[imχ][∆p]),

where we denote the radical of an ideal I by
√
I. This shows that there is a one-to-one

correspondence between the set of all singular primes of Λ and the set ∆̂′/∼Qp . We denote

by χp ∈ ∆̂′/∼Qp the character corresponding to p. The next lemma shows that

Q(Λp) =
⊕

χ∈∆̂/∼Qp ,χ|∆′=χp

Q(Λχ).

Lemma 3.7. Let E/Qp be a finite unramified extension, and O its ring of integers. Let P be

a finite abelian group whose order is a power of p. Put Λ := O[P ][[Γ]] and p :=
√
pO[P ]Λ.

(p is the unique singular prime of Λ.) Then we have

Q(Λp) = Q(Λ) =
⊕

χ∈P̂ /∼E

Q(O[imχ][[Γ]]).

Proof. SinceQ(Λp) = Q(Λp[1/p]) and Λp[1/p] =
⊕

χ∈P̂ /∼E
eχΛp[1/p], where eχ :=

∑
χ′∼Eχ

eχ′ ,

we have

Q(Λp) =
⊕

χ∈P̂ /∼E

Q

(
eχΛp

[
1

p

])
.



17

For χ ∈ P̂ /∼E , put qχ := ker(Λ
χ→ O[imχ][[Γ]]). We can easily see that

√
pO[P ] =

(p, IO(P )), where IO(P ) is the kernel of the augmentation map O[P ] → O. From this, we
also see that √

pO[P ] = ker(O[P ] χ→ O[imχ]→ O[imχ]/πχO[imχ] ≃ O/pO)

holds for any χ ∈ P̂ /∼E , where πχ ∈ O[imχ] is a uniformizer. This shows that qχ ⊂ p.
Hence, we know that Λqχ is the localization of Λp[1/p] at qχΛp[1/p]. One can check that
Λqχ = Q(eχΛp[1/p]). Since we have Λqχ = Q(O[imχ][[Γ]]), the lemma follows. □

For a height one prime ideal p of Λ, define a subset Υp ⊂ ∆̂/∼Qp by

Υp :=

{
{χp} if p is regular,

{χ ∈ ∆̂/∼Qp | χ |∆′= χp} if p is singular.

The above argument shows that Q(Λp) =
⊕

χ∈Υp
Q(Λχ).

To end this section we recall a useful result concerning µ-invariants, whose proof is in
[18, Lemma 5.6].

Lemma 3.8. Let M be a finitely generated torsion Λ-module. Let p be a singular prime of
Λ. Then the following are equivalent:

(i) The µ-invariant of the Zp[[Γ]]-module eχpM vanishes.
(ii) For any χ ∈ Υp, the µ-invariant of the Zp[imχ][[Γ]]-module M ⊗Zp[∆′] Zp[imχ]

vanishes.
(iii) Mp = 0.

3.3.2. In the rest of this section we assume the condition (∗).

Lemma 3.9. Let p be a singular prime of Λ. Then Vχ is independent of χ ∈ Υp. In
particular, for any χ ∈ Υp, the Q(Λp)-module UK∞,S,T ⊗Λ Q(Λp) is free of rank rχ.

Proof. It is sufficient to show that Vχ = Vχp for any χ ∈ Υp. Note that the extension degree
[Lχ,∞ : Lχp,∞] = [Lχ : Lχp ] is a power of p. Since p is odd by the assumption (∗), we see
that an infinite place of k which splits completely in Lχp,∞ also splits completely in Lχ,∞.
By the assumption (∗), we know every places in Vχp is infinite. Hence we have Vχ = Vχp . □

The above result motivates us, for any height one prime ideal p of Λ, to define Vp := Vχ
and rp := rχ by choosing some χ ∈ Υp.

Assume that Conjecture RS(Lχ,n/k, S, T, Vχ)p holds for all χ ∈ ∆̂ and n. We then define
the ‘p-part’ of the Rubin-Stark element

ϵpK∞/k,S,T ∈ (
∧rp

UK∞,S,T )⊗Λ Q(Λp)

as the image of

(ϵ
Vχ
Lχ,∞/k,S,T )χ∈Υp ∈

⊕
χ∈Υp

∩rp
ULχ,∞,S,T

under the natural map⊕
χ∈Υp

∩rp
ULχ,∞,S,T →

⊕
χ∈Υp

(
∩rp

ULχ,∞,S,T )⊗Zp[[Gχ]] Q(Λχ) = (
∧rp

UK∞,S,T )⊗Λ Q(Λp).
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(see Lemma 3.5).

Lemma 3.10. Let p be a height one prime ideal of Λ. When p is singular, assume that
the µ-invariant of eχpA

T
S (K∞) (as Zp[[Γ]]-module) vanishes. Then the following claims are

valid.

(i) The Λp-module (UK∞,S,T )p is free of rank rp.

(ii) If Conjecture RS(Lχ,n/k, S, T, Vχ)p is valid for every χ in ∆̂ and every natural num-
ber n, then there is an inclusion

Λp · ϵpK∞/k,S,T ⊂ (
∧rp

Λ
UK∞,S,T )p.

Proof. As in the proof of Lemma 3.5, we choose a representative ψ∞ : Π∞ → Π∞ of
CK∞,S,T . We have the exact sequence

0→ UK∞,S,T → Π∞
ψ∞→ Π∞ → H1(CK∞,S,T )→ 0.(4)

If p is regular, then Λp is a discrete valuation ring and the exact sequence (4) implies that
the Λp-modules (UK∞,S,T )p and im(ψ∞)p are free. Since UK∞,S,T ⊗Λ Q(Λp) is isomorphic
to YK∞,Vp ⊗Λ Q(Λp), we also know that the rank of (UK∞,S,T )p is rp.

Suppose next that p is singular. Since the µ-invariant of eχpXK∞,S\Vp vanishes, we ap-
ply Lemma 3.8 to deduce that (XK∞,S)p = (YK∞,Vp)p. In a similar way, the assumption

that the µ-invariant of eχpA
T
S (K∞) vanishes implies that ATS (K∞)p = 0. Hence we have

H1(CK∞,S,T )p = (YK∞,Vp)p. By assumption (∗), we know that YK∞,Vp is projective as

a Λ-module. This implies that H1(CK∞,S,T )p = (YK∞,Vp)p is a free Λp-module of rank
rp. By choosing splittings of the sequence (4), we then easily deduce that the Λp-modules
(UK∞,S,T )p and im(ψ∞)p are free and that the rank of (UK∞,S,T )p is equal to rp.

At this stage we have proved that, for any height one prime ideal p of Λ, the Λp-module
(UK∞,S,T )p is both free of rank rp (as required to prove claim (i)) and also a direct summand
of (Π∞)p, and hence that

(5) (
∧rp

Λ
UK∞,S,T )p = (

∧rp

Λ
UK∞,S,T ⊗Λ Q(Λp)) ∩ (

∧rp

Λ
Π∞)p.

Now we make the stated assumption concerning the validity of the p-part of the Rubin-
Stark conjecture. This implies, by the proof of Theorem 3.4(i), that for each p the element
ϵpK∞/k,S,T lies in both (

∧rp
Λ Π∞)p and⊕

χ∈Υp

(
∧rχ

Λ
UK∞,S,T )⊗Λ Q(Λχ) = (

∧rp

Λ
UK∞,S,T )⊗Λ Q(Λp),

and hence, by (5) that it belongs to (
∧rp

Λ UK∞,S,T )p, as required to prove claim (ii). □
We can now decompose Conjecture 3.1 into the statements for p components.

Proposition 3.11. Assume that Conjecture RS(Lχ,n/k, S, T, Vχ)p holds for all characters

χ in ∆̂ and all sufficiently large n and that for each character χ in ∆̂′/∼Qp the µ-invariant

of the Zp[[Γ]]-module eχA
T
S (K∞) vanishes. Then Conjectures 3.1 holds if and only if

(6) Λp · ϵpK∞/k,S,T = Fitt
rp
Λ (H1(CK∞,S,T ))p · (

∧rp

Λ
UK∞,S,T )p.

for every height one prime ideal p of Λ.
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Remark 3.12. At every height one prime ideal p there is an equality

Fitt
rp
Λ (H1(CK∞,S,T ))p = Fitt0Λ(A

T
S (K∞))pFitt

0
Λ(XK∞,S\Vp)p .

If p is regular, then Λp is a discrete valuation ring and this equality follows directly from
the exact sequence

0→ ATS (K∞)→ H1(CK∞,S,T )→ XK∞,S → 0.

If p is singular, then the equality is valid since the result of Lemma 3.8 implies (XK∞,S\Vp)p
vanishes and so H1(CK∞,S,T )p is isomorphic to the direct sum ATS (K∞)p ⊕ (YK∞,Vp)p.

Remark 3.13. If the prime p is singular, then (XK∞,S\Vp)p vanishes and Fitt0Λ(A
T
S (K∞))p =

Λp if the µ-invariant of the Zp[[Γ]]-module eχpA
T
S (K∞) vanishes (see Lemma 3.8). Thus, in

this case, for any such p the equality (6) is equivalent to

Λp · ϵpK∞/k,S,T = (
∧rp

Λ
UK∞,S,T )p .

Thus, we know that by Lemma 3.10 (ii) the validity of the p-part of the Rubin-Stark
conjecture already gives strong evidence of the above equality.

Proof. Since detΛ(CK∞,S,T ) is an invertible Λ-module the equality Λ·LK∞/k,S,T = detΛ(CK∞,S,T )
in Conjecture 3.1 is valid if and only if at every height one prime ideal p of Λ one has

Λp · LK∞/k,S,T = detΛ(CK∞,S,T )p(7)

(see [9, Lemma 6.1]).
If p is regular, then one easily sees that this equality is valid if and only if the equality

Λp · ϵpK∞/k,S,T = Fitt
rp
Λ (H1(CK∞,S,T )) · (

∧rp

Λ
UK∞,S,T )p

is valid, by using Theorem 3.4(ii).
If p is singular, then the assumed vanishing of the µ-invariants and the argument in the

proof of Lemma 3.10(i) together show that the Λp-modules (UK∞,S,T )p and H1(CK∞,S,T )p
are both free of rank rp. Noting this, we see that (7) holds if and only if one has

Λp · ϵpK∞/k,S,T = (
∧rp

Λ
UK∞,S,T )p

and so in this case the claimed result follows from Remark 3.13. □

3.3.3. In our earlier paper [10] we defined canonical Selmer modules SS,T (Gm/F ) and StrS,T (Gm/F )
for Gm over number fields F that are of finite degree over Q. For any intermediate field L
of K∞/k, we now set

Sp,S,T (Gm/L) := lim←−
F

SS,T (Gm/F )⊗ Zp, Strp,S,T (Gm/L) := lim←−
F

StrS,T (Gm/F )⊗ Zp

where in both limits F runs over all finite extensions of k in L and the transition morphisms
are the natural corestriction maps.

We note in particular that, by its very definition, Strp,S,T (Gm/L) coincides withH
1(CL,S,T ).

In addition, this definition implies that for any subset V of S comprising places that split
completely in L the kernel of the natural (composite) projection map

Strp,S,T (Gm/L)V := ker(Strp,S,T (Gm/L)→ XL,S → YL,V )
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lies in a canonical exact sequence of the form

(8) 0→ ATS (L)→ Strp,S,T (Gm/L)V → XL,S\V → 0.

We now interpret our Iwasawa main conjecture in terms of classical characteristic ideals.

Conjecture 3.14 (IMC(K∞/k, S, T ) II). Assume Conjecture RS(Lχ,n/k, S, T, Vχ)p holds

for all χ ∈ ∆̂ and all non-negative integers n where Lχ,n, ∆, etc are defined in §3. Then

for any χ ∈ ∆̂ there are equalities

charΛχ((
∩rχ

ULχ,∞,S,T /⟨ϵ
Vχ
Lχ,∞/k,S,T ⟩)

χ)=charΛχ(Strp,S,T (Gm/Lχ,∞)χVχ)(9)

=charΛχ(A
T
S (Lχ,∞)χ)charΛχ((XLχ,∞,S\Vχ)

χ).

Here, for any Zp[[Gχ]]-module M we write Mχ for the Λχ-module M ⊗Zp[Gχ] Zp[imχ] and
charΛχ(M

χ) for its characteristic ideal in Λχ. In addition, the second displayed equality is
a direct consequence of the appropriate case of the exact sequence (8).

Proposition 3.15. Assume that Conjecture RS(Lχ,n/k, S, T, Vχ)p is valid for all characters

χ in ∆̂ and all n and that for each character χ ∈ ∆̂′/∼Qp the µ-invariant of the Zp[[Γ]]-
module eχA

T
S (K∞) vanishes. Then Conjectures 3.1 is equivalent to Conjecture 3.14.

Proof. Note that by our assumption µ = 0 we have (
∩rpUK∞,S,T )p = (

∧rpUK∞,S,T )p for any
height one prime p, using (5). Thus, the equality (6) implies the equality (9) for any χ.

On the other hand, for a height one regular prime p, we can regard p to be a prime of Λχ
for some χ, so the equality (9) implies the equality (6). For a singular prime p, by Lemma
3.8, (9) for any χ implies (

∧rpUK∞,S,T )p/⟨ϵpK∞/k,S,T ⟩ = 0, thus the equality (6) by Remark

3.13.
The proposition therefore follows from Proposition 3.11. □

3.4. The case of CM-fields. Concerning the minus components for CM-extensions, we
can prove our equivariant main conjecture using the usual main conjecture proved by Wiles.

Theorem 3.16. Suppose that p is odd, k is totally real, k∞/k is the cyclotomic Zp-
extension, and K is CM. If the µ-invariant of the cyclotomic Zp-extension K∞/K vanishes,
then the minus part of Conjecture 3.1 is valid for (K∞/k, S, T ).

Proof. In fact, for an odd character χ, one has rχ = 0 and the Rubin-Stark elements are

Stickelberger elements. Therefore, ϵ
Vχ
Lχ,∞/k,S,T is the p-adic L-function of Deligne-Ribet.

We shall prove the equality (9) in Conjecture 3.14 for each odd χ ∈ ∆̂. We fix such
a character χ, and may take K = Lχ and S = S∞(k) ∪ Sram(K∞/k) ∪ Sp(k). Let S′

p be
the set of p-adic primes which split completely in K. If v ∈ S \ Vχ is prime to p, it is
ramified in Lχ = K, so we have charΛχ(X

χ
Lχ,∞,S\Vχ) = charΛχ(Y

χ
Lχ,∞,S′

p
). Let AT (Lχ,∞)

be the inverse limit of the p-component of the T -ray class group of the full integer ring of
Lχ,n. By sending the prime w above v in S′

p to the class of w, we obtain a homomorphism

YχLχ,∞,S′
p
−→ AT (Lχ,∞)χ, which is known to be injective. Since the sequence

YχLχ,∞,S −→ AT (Lχ,∞)χ −→ ATS (Lχ,∞)χ −→ 0
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is exact and the kernel of YχLχ,∞,S −→ Y
χ
Lχ,∞,S′

p
is finite, we have

charΛχ(A
T
S (Lχ,∞)χ)charΛχ((YLχ,∞,S)

χ) = charΛχ(A
T (Lχ,∞)χ).

Therefore, by noting χ ̸= 1, the equality (9) in Conjecture 3.14 becomes

charΛχ(A
T (Lχ,∞)χ) = θχLχ,∞/k,S,T (0)Λχ,

where θχLχ,∞/k,S,T (0) is the χ-component of ϵ∅Lχ,∞/k,S,T , which is the Stickelberger element

in this case. The above equality is nothing but the usual main conjecture proved by Wiles
[40], so we have proved this theorem.

□

3.5. Consequences for number fields of finite degree. Let p, k, k∞, and K be as in
Theorem 3.16. We shall describe unconditional equivariant results on the Galois module
structure of Selmer modules for K, which follow from the validity of Theorem 3.16.

To do this we set Λ := Zp[[Gal(K∞/k)]] and for any Λ-module M we denote by M− the
minus part consisting of elements on which the complex conjugation acts as −1 (namely,
M− = e−M). We note, in particular, that θK∞/k,S,T (0) belongs to Λ−.

We also write x 7→ x# for the Zp-linear involutions of both Λ and the group rings Zp[G]
for finite quotients G of Gal(K∞/k) which is induced by inverting elements of Gal(K∞/k).

Corollary 3.17. If the p-adic µ-invariant of K∞/K vanishes, then one has

FittΛ−(Strp,S,T (Gm/K∞)−) = Λ · θK∞/k,S,T (0)

and

FittΛ−(Sp,S,T (Gm/K∞)−) = Λ · θK∞/k,S,T (0)
#.

Proof. Since one has rχ = 0 for any odd character χ, the first displayed equality is equivalent
to Conjecture 3.1 in this case and is therefore valid as a consequence of Theorem 3.16.

The second displayed equality is then obtained directly by applying the general result of
[10, Lemma 2.8] to the first equality. □

Corollary 3.18. Let L be an intermediate CM-field of K∞/k which is finite over k, and
set G := Gal(L/k). If the p-adic µ-invariant of K∞/K vanishes, then there are equalities

FittZp[G]−(Strp,S,T (Gm/L)
−) = Zp[G] · θL/k,S,T (0)

and

FittZp[G]−(Sp,S,T (Gm/L)
−) = Zp[G] · θL/k,S,T (0)#.

Proof. This follows by combining Corollary 3.17 with the general result of Lemma 3.19
below and standard properties of Fitting ideals. □

Lemma 3.19. Suppose that L/k is a Galois extension of finite number fields with Galois
group G. Then there are natural isomorphisms

StrS,T (Gm/L)G
∼→ StrS,T (Gm/k) and SS,T (Gm/L)G

∼→ SS,T (Gm/k).
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Proof. The ‘Weil-étale cohomology complex’ RΓT ((OL,S)W ,Gm) is perfect and so there
exist projective Z[G]-modules P1 and P2, and a homomorphism of Z[G]-modules P1 → P2

whose cokernel identifies with StrS,T (Gm/L) and is such that the cokernel of the induced map

PG1 → PG2 identifies with StrS,T (Gm/k) (see [10, §5.4]).
The first isomorphism is then obtained by noting that the norm map induces an isomor-

phism of modules (P2)G
∼→ PG2 .

The second claimed isomorphism can also be obtained in a similar way, noting that
SS,T (Gm/L) is obtained as the cohomology in the highest (non-zero) degree of a perfect
complex (see [10, Proposition 2.4]). □

We write OL for the ring of integers of L and ClT (L) for the ray class group of OL
with modulus Πw∈TLw. We denote the Sylow p-subgroup of ClT (L) by AT (L) and write
(AT (L)−)∨ for the Pontrjagin dual of the minus part of AT (L).

The next corollary of Theorem 3.16 that we record coincides with one of the main results
of Greither and Popescu in [22].

Corollary 3.20. Let L be an intermediate CM-field of K∞/k which is finite over k, and
set G := Gal(L/k). If the p-adic µ-invariant for K∞/K vanishes, then one has

θL/k,S,T (0)
# ∈ FittZp[G]−((A

T (L)−)∨).

Proof. The canonical exact sequence

0→ ClT (L)∨ → SS∞(k),T (Gm/L)→ Hom(O×
L ,Z)→ 0

from [10, Proposition 2.2] implies that the natural map Sp,S∞(k),T (Gm/L)
− ≃ (AT (L)−)∨ is

bijective.
In addition, from [10, Proposition 2.4(ii)], we know that the canonical homomorphism

SS,T (Gm/L)→ SS∞(k),T (Gm/L) is surjective.
The stated claim therefore follows directly from the second equality in Corollary 3.18. □

Remark 3.21.
(i) Our derivation of the equality in Corollary 3.20 differs from that given in [22] in that we
avoid any use of the Galois modules related to 1-motives that are constructed in loc. cit.
Instead, we used the theory of Selmer modules SS,T (Gm/L) introduced in [10].
(ii) The Brumer-Stark conjecture predicts θL/k,Sram(L/k),T (0) belongs to the annihilator

AnnZp[G]−(A
T (L)) and if no p-adic place of L+ splits in L, then Corollary 3.20 implies

a stronger version of this conjecture.
(iii) We have assumed throughout §3 that S contains all p-adic places of k and so the
Stickelberger element θL/k,S,T (0) that occurs in Corollary 3.20 is, in general, imprimitive.
In particular, if any p-adic place of k splits completely in L, then θL/k,S,T (0) vanishes and
the assertion of Corollary 3.20 is trivially valid. However, by applying Corollary 1.2 and
[10, Corollary 1.14] in this context, one can now also obtain results such as Corollary 1.3.

4. Iwasawa-theoretic Rubin-Stark Congruences

In this section, we formulate an Iwasawa-theoretic version of the conjecture proposed by
Mazur and Rubin [28] and by the third author [33] (see also [10, Conjecture 5.4]). This
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conjecture is a natural generalization of the Gross-Stark conjecture [23], and plays a key
role in the descent argument that we present in the next section.

We use the notation as in the previous section.

4.1. Statement of the congruences. We first recall the formulation of the conjecture of
Mazur and Rubin and of the third author.

Take a character χ ∈ Ĝ. Take a proper subset V ′ ⊂ S so that all v ∈ V ′ splits completely
in Lχ (i.e. χ(Gv) = 1) and that Vχ ⊂ V ′. Put r′ := #V ′. We recall the formulation of the
conjecture of Mazur and Rubin and of the third author for (Lχ,n/Lχ/k, S, T, Vχ, V

′). For
simplicity, put

• Ln := Lχ,n;
• L := Lχ;
• Gn := Gχ,n = Gal(Lχ,n/k);
• G := Gχ = Gal(Lχ/k);
• Γn := Γχ,n = Gal(Lχ,n/Lχ);
• V := Vχ = {v ∈ S | v splits completely in Lχ,∞};
• r := rχ = #Vχ.

Put e := r′ − r. Let I(Γn) denote the augmentation ideal of Zp[Γn]. It is shown in [33,
Lemma 2.11] that there exists a canonical injection∩r

UL,S,T ↪→
∩r

ULn,S,T

which induces the injection

νn : (
∩r

UL,S,T )⊗Zp I(Γn)
e/I(Γn)

e+1 ↪→ (
∩r

ULn,S,T )⊗Zp Zp[Γn]/I(Γn)e+1.

Note that this injection does not coincide with the map induced by the inclusion UL,S,T ↪→
ULn,S,T , and we have

νn(N
r
Ln/L

(a)) = NLn/L a

for all a ∈
∩rULn,S,T (see [33, Remark 2.12]). For an explicit description of the map νn, see

[28, Lemma 4.9] and [34, Remark 4.2].
Let In be the kernel of the natural map Zp[Gn]→ Zp[G]. For v ∈ V ′ \V , let recw : L× →

Γn denote the local reciprocity map at w (recall that w is the fixed place lying above v).
Define

Recw :=
∑
σ∈G

(recw(σ(·))− 1)σ−1 ∈ HomZ[G](L
×, In/I

2
n).

It is shown in [33, Proposition 2.7] that
∧
v∈V ′\VRecw induces a homomorphism

Recn :
∩r′

UL,S,T →
∩r

UL,S,T ⊗Zp I(Γn)
e/I(Γn)

e+1.

Finally, define

Nn :
∩r

ULn,S,T →
∩r

ULn,S,T ⊗Zp Zp[Γn]/I(Γn)e+1

by

Nn(a) :=
∑
σ∈Γn

σa⊗ σ−1.

We now state the formulation of [33, Conjecture 3] (or [28, Conjecture 5.2]).
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Conjecture 4.1 (MRS(Ln/L/k, S, T, V, V
′)p). Assume Conjectures RS(Ln/k, S, T, V )p and

RS(L/k, S, T, V ′)p. Then we have

Nn(ϵVLn/k,S,T
) = (−1)reνn(Recn(ϵV

′

L/k,S,T )) in
∩r

ULn,S,T ⊗Zp Zp[Γn]/I(Γn)e+1.

(Note that the sign in the right hand side depends on the labeling of S. We follow the
convention in [10, §5.3]. )

Note that [10, Conjecture MRS(K/L/k, S, T, V, V ′)] is slightly stronger than the above
conjecture (see [10, Remark 5.7]).

We shall next give an Iwasawa theoretic version of the above conjecture. Note that, since
the inverse limit lim←−n I(Γn)

e/I(Γn)
e+1 is isomorphic to Zp, the map

lim←−
n

Recn :
∩r′

UL,S,T →
∩r

UL,S,T ⊗Zp lim←−
n

I(Γn)
e/I(Γn)

e+1

uniquely extends to give a Cp-linear map

Cp
∧r′

UL,S,T → Cp(
∧r

UL,S,T ⊗Zp lim←−
n

I(Γn)
e/I(Γn)

e+1)

which we denote by Rec∞.

Conjecture 4.2 (MRS(K∞/k, S, T, χ, V
′)). Assume that Conjecture RS(Ln/k, S, T, V )p is

valid for all n. Then, there exists a (unique)

κ = (κn)n ∈
∩r

UL,S,T ⊗Zp lim←−
n

I(Γn)
e/I(Γn)

e+1

such that νn(κn) = Nn(ϵVLn/k,S,T
) for all n and that

eχκ = (−1)reeχRec∞(ϵV
′

L/k,S,T ) in Cp(
∧r

UL,S,T ⊗Zp lim←−
n

I(Γn)
e/I(Γn)

e+1).

Remark 4.3. Clearly the validity of Conjecture MRS(Ln/L/k, S, T, V, V
′)p for all n implies

the validity of MRS(K∞/k, S, T, χ, V
′). A significant advantage of the above formulation

of Conjecture MRS(K∞/k, S, T, χ, V
′) is that we do not need to assume that Conjecture

RS(L/k, S, T, V ′)p is valid.

Proposition 4.4.

(i) If V = V ′, then MRS(K∞/k, S, T, χ, V
′) is valid.

(ii) If V ⊂ V ′′ ⊂ V ′, then MRS(K∞/k, S, T, χ, V
′) implies MRS(K∞/k, S, T, χ, V

′′).
(iii) Suppose that χ(Gv) = 1 for all v ∈ S and #V ′ = #S−1. Then, for any V ′′ ⊂ S with

V ⊂ V ′′ and #V ′′ = #S− 1, MRS(K∞/k, S, T, χ, V
′) and MRS(K∞/k, S, T, χ, V

′′)
are equivalent.

(iv) If v ∈ V ′ \ V is a finite place which is unramified in L∞, then MRS(K∞/k, S \
{v}, T, χ, V ′ \ {v}) implies MRS(K∞/k, S, T, χ, V

′).
(v) If #V ′ ̸= #S − 1 and v ∈ S \ V ′ is a finite place which is unramified in L∞, then

MRS(K∞/k, S \ {v}, T, χ, V ′) implies MRS(K∞/k, S, T, χ, V
′).
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Proof. Claim (i) follows from the ‘norm relation’ of Rubin-Stark elements, see [33, Remark
3.9] or [28, Proposition 5.7]. Claim (ii) follows from [33, Proposition 3.12]. Claim (iii) follows
from [34, Lemma 5.1]. Claim (iv) follows from the proof of [33, Proposition 3.13]. Claim (v)

follows by noting ϵVLn/k,S,T
= (1−Fr−1

v )ϵVLn/k,S\{v},T and ϵV
′

L/k,S,T = (1−Fr−1
v )ϵV

′

L/k,S\{v},T . □

Corollary 4.5. If every place v in V ′ \ V is both non-archimedean and unramified in L∞,
then MRS(K∞/k, S, T, χ, V

′) is valid.

Proof. By Proposition 4.4(iv), we may assume V = V ′. By Proposition 4.4(i), we know
that MRS(K∞/k, S, T, χ, V

′) is valid in this case. □

Consider the following condition:

NTZ(K∞/k, χ) χ(Gp) ̸= 1 for all p ∈ Sp(k) which ramify in Lχ,∞.

This condition is usually called ‘no trivial zeros’.

Corollary 4.6. If χ satisfies NTZ(K∞/k, χ), then MRS(K∞/k, S, T, χ, V
′) is valid.

Proof. In this case we see that every v ∈ V ′ \ V is finite and unramified in L∞. □

4.2. Connection to the Gross-Stark conjecture. In this subsection we help set the
context for Conjecture MRS(K∞/k, S, T, χ, V

′) by showing that it specializes to recover the
Gross-Stark Conjecture (as stated in Conjecture 4.7 below).

To do this we assume throughout that k is totally real, k∞/k is the cyclotomic Zp-
extension and χ is totally odd. We also set V ′ := {v ∈ S | χ(Gv) = 1} (and note that this
is a proper subset of S since χ is totally odd) and we assume that every v ∈ V ′ lies above
p (noting that this assumption is not restrictive as a consequence of Proposition 4.4(iv)).

We shall now show that this case of MRS(K∞/k, S, T, χ, V
′) is equivalent to the Gross-

Stark conjecture.
As a first step, we note that in this case V is empty (that is, r = 0) and so one knows

that Conjecture RS(Ln/k, S, T, V )p is valid for all n (by [32, Theorem 3.3]). In fact, one has
ϵVLn/k,S,T

= θLn/k,S,T (0) ∈ Zp[Gn] and, by [28, Proposition 5.4], the assertion of Conjecture

MRS(K∞/k, S, T, χ, V
′) is equivalent to the following claims: one has

θLn/k,S,T (0) ∈ I
r′
n(10)

for all n and

eχθL∞/k,S,T (0) = eχRec∞(ϵV
′

L/k,S,T ) in Cp[G]⊗Zp lim←−
n

I(Γn)
r′/I(Γn)

r′+1,(11)

where we set

θL∞/k,S,T (0) := lim←−
n

θLn/k,S,T (0) ∈ lim←−
n

Ir
′
n /I

r′+1
n ≃ Zp[G]⊗Zp lim←−

n

I(Γn)
r′/I(Γn)

r′+1.

We also note that the validity of (10) follows as a consequence of our Iwasawa main conjec-
ture (Conjecture 3.1) by using Proposition 2.6(iii) and the result of [10, Lemma 5.20] (see
the argument in §5.3).

To study (11) we set χ1 := χ|∆ ∈ ∆̂ and regard (as we may) the product χ2 := χχ−1
1 as

a character of Γ = Gal(k∞/k).
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Note that Gal(L∞/k) = Gχ1 × Γχ1 . Fix a topological generator γ ∈ Γχ1 , and identify
Zp[im(χ1)][[Γχ1 ]] with the ring of power series Zp[im(χ1)][[t]] via the correspondence γ =
1 + t.

We then define gχ1

L∞/k,S,T (t) to be the image of θL∞/k,S,T (0) under the map

Zp[[Gal(L∞/k)]] = Zp[Gχ1 ][[Γχ1 ]]→ Zp[im(χ1)][[Γχ1 ]] = Zp[im(χ1)][[t]]

induced by χ1. We recall that the p-adic L-function of Deligne-Ribet is defined by

Lk,S,T,p(χ
−1ω, s) := gχ1

L∞/k,S,T (χ2(γ)χcyc(γ)
s − 1),

where χcyc is the cyclotomic character, and we note that one can show Lk,S,T,p(χ
−1ω, s) to

be independent of the choice of γ.
The validity of (10) implies an inequality

ords=0Lk,S,T,p(χ
−1ω, s) ≥ r′.(12)

It is known that (12) is a consequence of the Iwasawa main conjecture (in the sense of Wiles
[40]), which is itself known to be valid when p is odd. In addition, Spiess has recently proved
that (12) is valid, including the case p = 2, by using Shintani cocycles [37]. In all cases,
therefore, we can define

L
(r′)
k,S,T,p(χ

−1ω, 0) := lim
s→0

s−r
′
Lk,S,T,p(χ

−1ω, s) ∈ Cp.

For v ∈ V ′, define

Logw : L× → Zp[G]
by Logw(a) := −

∑
σ∈G logp(NLw/Qp

(σa))σ−1, where logp : Q×
p → Zp is Iwasawa’s logarithm

(in the sense that logp(p) = 0). We set

LogV ′ :=
∧

v∈V ′
Logw : Cp

∧r′

UL,S,T → Cp[G].

We shall denote the map Cp[G]→ Cp induced by χ also by χ.
For v ∈ V ′, we define

Ordw : L× → Z[G]
by Ordw(a) :=

∑
σ∈G ordw(σa)σ

−1, and set

OrdV ′ :=
∧

v∈V ′
Ordw : Cp

∧r′

UL,S,T → Cp[G].

On the χ-component, OrdV ′ induces an isomorphism

χ ◦OrdV ′ : eχCp
∧r′

UL,S,T
∼→ Cp.

Taking a non-zero element x ∈ eχCp
∧r′UL,S,T , we define the L-invariant by

L(χ) := χ(LogV ′(x))

χ(OrdV ′(x))
∈ Cp.

Since eχCp
∧r′UL,S,T is a one dimensional Cp-vector space, we see that L(χ) does not

depend on the choice of x.
Then the Gross-Stark conjecture is stated as follows.
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Conjecture 4.7 (GS(L/k, S, T, χ)). One has L
(r′)
k,S,T,p(χ

−1ω, 0) = L(χ)Lk,S\V ′,T (χ
−1, 0).

Remark 4.8. This formulation constitutes a natural higher rank generalization of the form
of the Gross-Stark conjecture that is considered by Darmon, Dasgupta and Pollack (see [15,
Conjecture 1]).

Letting x = eχϵ
V ′

L/k,S,T , we obtain

χ(LogV ′(ϵV
′

L/k,S,T )) = L(χ)Lk,S\V ′,T (χ
−1, 0).

Thus we see that Conjecture GS(L/k, S, T, χ) is equivalent to the equality

L
(r′)
k,S,T,p(χ

−1ω, 0) = χ(LogV ′(ϵV
′

L/k,S,T )).

Concerning the relation between Rec∞ and LogV ′ , we note the fact

χcyc(recw(a)) = NLw/Qp
(a)−1,

where v ∈ V ′ and a ∈ L×.
Given this fact, it is straightforward to check (under the validity of (10)) that Conjecture

GS(L/k, S, T, χ) is equivalent to (11).
At this stage we have therefore proved the following result.

Theorem 4.9. Suppose that k is totally real, k∞/k is the cyclotomic Zp-extension, and χ
is totally odd. Set V ′ := {v ∈ S | χ(Gv) = 1} and assume that every v ∈ V ′ lies above p.
Assume also that (10) is valid. Then Conjecture GS(L/k, S, T, χ) is equivalent to Conjecture
MRS(K∞/k, S, T, χ, V

′).

4.3. A proof in the case k = Q. In [10, Corollary 1.2] the known validity of the eTNC for
Tate motives over abelian fields is used to prove that Conjecture MRS(K/L/k, S, T, V, V ′)
is valid in the case k = Q.

In this subsection, we shall give a much simpler proof of the latter result which uses only
Theorem 4.9, the known validity of the Gross-Stark conjecture over abelian fields and a
classical result of Solomon [35].

We note that for any χ and n the Rubin-Stark conjecture is known to be true for
(Lχ,n/Q, S, T, Vχ). In fact, in this setting the Rubin-Stark element is given by a cyclo-
tomic unit when rχ = 1 and by the Stickelberger element when rχ = 0 (see [30, §4.2 and
Example 3.2.10], for example).

Theorem 4.10. Suppose that k = Q. Then, MRS(K∞/k, S, T, χ, V
′) is valid.

Proof. By Proposition 4.4(ii), we may assume that V ′ is maximal, namely,

r′ = min{#{v ∈ S | χ(Gv) = 1},#S − 1}.
By Corollary 4.6, we may assume that χ(p) = 1.

Suppose first that χ is odd. Since Conjecture GS(L/Q, S, T, χ) is valid (see [23, §4]),
Conjecture MRS(K∞/Q, S, T, χ, V ′) follows from Theorem 4.9.

Suppose next that χ = 1. In this case we have r′ = #S − 1. We may assume p /∈ V ′ by
Proposition 4.4(iii). In this case every v ∈ V ′ \ V is unramified in L∞. Hence, the theorem
follows from Corollary 4.5.
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Finally, suppose that χ ̸= 1 is even. By Proposition 4.4(iv) and (v), we may assume
S = {∞, p} ∪ Sram(L/Q) and V ′ = {∞, p}. We label S = {v0, v1, . . .} so that v1 = ∞ and
v2 = p.

Fix a topological generator γ of Γ = Gal(L∞/L). Then we construct an element κ(L, γ) ∈
lim←−n L

×/(L×)p
n
as follows. Note that NLn/L(ϵ

V
Ln/Q,S,T ) vanishes since χ(p) = 1. So we can

take βn ∈ L×
n such that βγ−1

n = ϵVLn/Q,S,T (Hilbert’s theorem 90). Define

κn := NLn/L(βn) ∈ L
×/(L×)p

n
.

This element is independent of the choice of βn, and for any m > n the natural map

L×/(L×)p
m → L×/(L×)p

n

sends κm to κn. We define

κ(L, γ) := (κn)n ∈ lim←−
n

L×/(L×)p
n
.

Then, by Solomon [35, Proposition 2.3(i)], we know that

κ(L, γ) ∈ Zp ⊗Z OL
[
1

p

]×
↪→ lim←−

n

L×/(L×)p
n
.

Fix a prime p of L lying above p. Define

Ordp : L
× → Zp[G]

by Ordp(a) :=
∑

σ∈G ordp(σa)σ
−1. Similarly, define

Logp : L
× → Zp[G]

by Logp(a) := −
∑

σ∈G logp(ιp(σa))σ
−1, where ιp : L ↪→ Lp = Qp is the natural embedding.

Then by the result of Solomon [35, Theorem 2.1 and Remark 2.4], one deduces

Ordp(κ(L, γ)) = −
1

logp(χcyc(γ))
Logp(ϵ

V
L/Q,S\{p},T ).

From this, we have

Ordp(κ(L, γ))⊗ (γ − 1) = −Recp(ϵVL/Q,S\{p},T ) in Zp[G]⊗Zp I(Γ)/I(Γ)
2,(13)

where I(Γ) is the augmentation ideal of Zp[[Γ]].
We know that eχCpUL,S is a two-dimensional Cp-vector space. Lemma 4.11 below

shows that {eχϵVL/Q,S\{p},T , eχκ(L, γ)} is a Cp-basis of this space. For simplicity, set ϵVL :=

ϵVL/Q,S\{p},T . Note that the isomorphism

Ordp : eχCp
∧2

UL,S
∼→ eχCpUL

sends eχϵ
V
L ∧ κ(L, γ) to −χ(Ordp(κ(L, γ)))eχϵ

V
L . Since we have

Ordp(eχϵ
V ′

L/Q,S,T ) = −eχϵ
V
L

(see [32, Proposition 5.2] or [33, Proposition 3.6]), we have

eχϵ
V ′

L/Q,S,T = −χ(Ordp(κ(L, γ)))
−1eχϵ

V
L ∧ κ(L, γ).
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Hence we have

Recp(eχϵ
V ′

L/Q,S,T ) = χ(Ordp(κ(L, γ)))
−1eχκ(L, γ) · Recp(ϵVL )

= −eχκ(L, γ)⊗ (γ − 1),

where the first equality follows by noting that Recp(κ(L, γ)) = 0 (since κ(L, γ) lies in the
universal norm by definition), and the second by (13).

Now, noting that

νn : UL,S,T ⊗Zp I(Γn)/I(Γn)
2 ↪→ ULn,S,T ⊗Zp Zp[Γn]/I(Γn)2

is induced by the inclusion map L ↪→ Ln, and that

Nn(ϵVLn/Q,S,T ) = κn ⊗ (γ − 1),

it is easy to see that the element κ := κ(L, γ)⊗ (γ − 1) has the properties in the statement
of Conjecture MRS(K∞/Q, S, T, χ, V ′).

This completes the proof the claimed result. □

Lemma 4.11. Assume that k = Q and χ ̸= 1 is even such that χ(p) = 1. Assume also that
S = {∞, p} ∪ Sram(L/Q). Then, {eχϵVL/Q,S\{p},T , eχκ(L, γ)} is a Cp-basis of eχCpUL,S.

Proof. This result follows from [36, Remark 4.4]. But we give a sketch of another proof,
which is essentially given by Flach in [18].

In the next section, we define the ‘Bockstein map’

β : eχCpUL,S → eχCp(XL,S ⊗Zp I(Γ)/I(Γ)
2).

We see that β is injective on eχCpUL, and that kerβ ≃ UL∞,S ⊗Λ Cp where we put Λ :=
Zp[[G]] and Cp is regarded as a Λ-algebra via χ. Hence we have

eχCpUL,S = eχCpUL ⊕ (UL∞,S ⊗Λ Cp).

Since eχϵ
V
L/Q,S\{p},T is non-zero, this is a basis of eχCpUL,S\{p} = eχCpUL. We prove that

eχκ(L, γ) is a basis of UL∞,S ⊗Λ Cp.
By using the exact sequence 0 → UL∞,S

γ−1→ UL∞,S → UL,S , we see that there exists a

unique element α ∈ UL∞,S such that (γ−1)α = ϵVL∞/Q,S,T . By the cyclotomic Iwasawa main

conjecture over Q, we see that α is a basis of UL∞,S ⊗Λ Λpχ , where pχ := ker(χ : Λ→ Cp).
The image of α under the map

UL∞,S ⊗Λ Λpχ
χ→ UL∞,S ⊗Λ Cp ↪→ eχCpUL,S

is equal to eχκ(L, γ). □

5. A strategy for proving the eTNC

5.1. Statement of the main result and applications. In the sequel we fix an inter-
mediate field L of K∞/k which is finite over k and set G := Gal(L/k). In this section we
always assume the following conditions to be satisfied:

(R) for every χ ∈ Ĝ, one has rχ,S < #S;
(S) no finite place of k splits completely in k∞.
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Remark 5.1. Before proceeding we note that the condition (R) is very mild since it is
automatically satisfied when the class number of k is equal to one and, for any k, is satisfied
when S is large enough. We also note that the condition (S) is satisfied when, for example,
k∞/k is the cyclotomic Zp-extension.

The following result is one of the main results of this article and, as we will see, it provides
an effective strategy for proving the special case of the eTNC that we are considering here.

Theorem 5.2. Assume the following conditions:

(hIMC) The main conjecture IMC(K∞/k, S, T ) (Conjecture 3.1) is valid;

(F) for every χ in Ĝ, the module of Γχ-coinvariants of ATS (Lχ,∞) is finite;

(MRS) for every χ in Ĝ, Conjecture MRS(K∞/k, S, T, χ, V
′
χ) (Conjecture 4.2) is valid for

a maximal set V ′
χ (so that #V ′

χ = min{#{v ∈ S | χ(Gv) = 1},#S − 1}).
Then, the conjecture eTNC(h0(SpecL),Zp[G]) (Conjecture 2.3) is valid.

Remark 5.3. We note that the set V ′
χ in condition (MRS) is not uniquely determined

when every place v in S satisfies χ(Gv) = 1, but that the validity of the conjecture
MRS(K∞/k, S, T, χ, V

′
χ) is independent of the choice of V ′

χ (by Proposition 4.4(iii)).

Remark 5.4. One checks easily that the condition (F) is equivalent to the finiteness of
the the module of Γχ-coinvariants of AS(Lχ,∞). Hence, taking account of an observation of
Kolster in [27, Theorem 1.14], the condition (F) can be regarded as a natural generalization
of the Gross conjecture [23, Conjecture 1.15]. We also note here that this Gross conjecture
was asserted by Coates and Lichtenbaum in [13, Conjecture 2.2] before [23] in a special
setting. In particular, we recall that the condition (F) is satisfied in each of the following
cases:

• L is abelian over Q (due to Greenberg, see [21]),
• k∞/k is the cyclotomic Zp-extension and L has unique p-adic place (in this case
‘δL = 0’ holds obviously, see [27]),
• L is totally real and the Leopoldt conjecture is valid for L at p (see [27, Corollary
1.3]).

Remark 5.5. The condition (MRS) is satisfied for χ in Ĝ when the condition NTZ(K∞/k, χ)
is satisfied (see Corollary 4.6).

As an immediate corollary of Theorem 5.2, we obtain a new proof of a theorem that was
first proved by Greither and the first author [9] for p odd, and by Flach [19] for p = 2.

Corollary 5.6. If k = Q, then the conjecture eTNC(h0(SpecL),Zp[G]) is valid.

Proof. As we mentioned above, the conditions (R), (S) and (F) are all satisfied in this
case. In addition, the condition (hIMC) is a direct consequence of the classical Iwasawa
main conjecture solved by Mazur and Wiles (see [9] and [19]) and the condition (MRS) is
satisfied by Theorem 4.10. □

We also obtain a result over totally real fields.

Corollary 5.7. Suppose that p is odd, k is totally real, k∞/k is the cyclotomic Zp-extension,
and K is CM. Assume that (F) is satisfied, that the µ-invariant of K∞/K vanishes, and
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that for every odd character χ ∈ Ĝ Conjecture GS(Lχ/k, S, T, χ) is valid. Then, Conjecture
eTNC(h0(SpecL),Zp[G]−) is valid.

Proof. Fix S so that the condition (R) is satisfied. Then the minus-part of condition (hIMC)
is satisfied by Theorem 3.16 and the minus part of condition (MRS) by Theorem 4.9. □

When at most one p-adic place p of k satisfies χ(Gp) = 1, Dasgupta, Darmon and Pol-
lack proved the validity of Conjecture GS(Lχ/k, S, T, χ) under some assumptions including
Leopoldt’s conjecture (see [15]). Recently, in [39] Ventullo has removed all assumptions
from the arguments in [15], thus proving that Conjecture GS(Lχ/k, S, T, χ) is uncondition-
ally valid in this case. In this case the condition (F) is also valid by the argument of Gross
in [23, Proposition 2.13]. Hence we get the following result.

Corollary 5.8. Suppose that p is odd, k is totally real, k∞/k is the cyclotomic Zp-extension,
and K is CM. Assume that the µ-invariant of K∞/K vanishes, and that for each odd

character χ ∈ Ĝ there is at most one p-adic place p of k which satisfies χ(Gp) = 1. Then,
Conjecture eTNC(h0(SpecL),Zp[G]−) is valid.

Examples 5.9. It is not difficult to find many concrete families of examples satisfy-
ing the hypotheses of Corollary 5.8 and hence to deduce the unconditional validity of
eTNC(h0(SpecL),Zp[G]−) in some new and interesting cases. In particular, we shall now
describe several families of examples in which the extension k/Q is not abelian (noting that
if L/Q is abelian and k ⊂ L, then eTNC(h0(SpecL),Zp[G]) is already known to be valid).
(i) The case p = 3. As a simple example, we consider the case that k/Q is a S3-extension.
To do this we fix an irreducible cubic polynomial f(x) in Z[x] with discriminant 27d where
d is strictly positive and congruent to 2 modulo 3. (For example, one can take f(x) to
be x3 − 6x − 3, x3 − 15x − 3, etc.) The minimal splitting field k of f(x) over Q is then
totally real (since 27d > 0) and an S3-extension of Q (since 27d is not a square). Also, since
the discriminant of f(x) is divisible by 27 but not 81, the prime 3 is totally ramified in k.
Now set p := 3 and K := k(µp) = k(

√
−p) = k(

√
−d). Then the prime above p splits in

K/k because −d ≡ 1 (mod 3). In addition, as K/Q(
√
d,
√
−p) is a cyclic cubic extension,

the µ-invariant of K∞/K vanishes and so the extension K/k satisfies all the conditions of
Corollary 5.8 (with p = 3).
(ii) The case p > 3. In this case one can construct a suitable field K in the following way.
Fix a primitive p-th root of unity ζ, an integer i such that 1 ≤ i ≤ (p− 3)/2 and an integer
b which is prime to p, and then set

a := (1 + b(ζ − 1)2i+1)/(1 + b(ζ−1 − 1)2i+1).

Write ordπ for the normalized additive valuation of Q(µp) associated to the prime element
π = ζ−1. Then, since ordπ(a−1) = 2i+1 < p, (π) is totally ramified in Q(µp, p

√
a)/Q(µp).

Also, since c(a) = a−1 where c is the complex conjugation, Q(µp, p
√
a) is the composite of

a cyclic extension of Q(µp)
+ of degree p and Q(µp). This shows that Q(µp, p

√
a) is a CM-

field and, since 1 < 2i + 1 < p, the extension Q(µp, p
√
a)+/Q is non-abelian. We now take

a negative integer −d which is a quadratic residue modulo p, let K denote the CM-field
Q(µp, p

√
a,
√
−d) and set k := K+. Then p is totally ramified in k/Q and the p-adic prime

of k splits in K. In addition, k/Q is not abelian and the µ-invariant of K∞/K vanishes
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since K/Q(µp,
√
−d) is cyclic of degree p. This shows that the extension K/k satisfies all

of the hypotheses of Corollary 5.8.
(iii) In both of the cases (i) and (ii) described above, p is totally ramified in the extension
k∞/Q and so Corollary 5.8 implies that eTNC(h0(SpecKn),Zp[G]−) is valid for any non-
negative integer n. In addition, if F is any real abelian field of degree prime to [k : Q] in
which p is totally ramified, the minus component of the p-part of eTNC for FKn/k holds
for any non-negative integer n.

Remark 5.10. Finally we note that, by using similar methods to the proofs of the above
corollaries it is also possible to deduce the main result of Bley [2] as a consequence of
Theorem 5.2. In this case k is imaginary quadratic, the validity of (hIMC) can be derived
from Rubin’s result in [31] (as explained in [2]), and the conjecture (MRS) from Bley’s
result [1], which is itself an analogue of Solomon’s theorem [35] for elliptic units, by using
the same argument as Theorem 4.10.

5.2. A computation of Bockstein maps. Fix a character χ ∈ Ĝ. For simplicity, we set

• Ln := Lχ,n;
• L := Lχ;
• V := Vχ = {v ∈ S | v splits completely in Lχ,∞};
• r := rχ = #Vχ;
• V ′ := V ′

χ (as in (MRS) in Theorem 5.2);
• r′ := rχ,S = #V ′;
• e := r′ − r.

As in §4.1, we label S = {v0, v1, . . .} so that V = {v1, . . . , vr} and V ′ = {v1, . . . , vr′}, and
fix a place w lying above each v ∈ S. Also, as in §2.4, it will be useful to fix a representative
ΠK∞ → ΠK∞ of CK∞,S,T where the first term is placed in degree zero, and ΠK∞ is a free Λ-
module with basis {b1, . . . , bd}. This representative is chosen so that the natural surjection
ΠK∞ → H1(CK∞,S,T )→ XK∞,S sends bi to wi − w0 for every i with 1 ≤ i ≤ r′.

We define a height one regular prime ideal of Λ by setting

p := ker(Λ
χ→ Qp(χ) := Qp(imχ)).

Then the localization R := Λp is a discrete valuation ring and we write P for its maximal
ideal. We see that χ induces an isomorphism

E := R/P
∼→ Qp(χ).

We set C := CK∞,S,T ⊗Λ R and Π := ΠK∞ ⊗Λ R.

Lemma 5.11. Let γ be a topological generator of Γ = Gal(K∞/K). Let n be an integer
which satisfies γp

n ∈ Gal(K∞/L). Then γp
n − 1 is a uniformizer of R.

Proof. Regard χ ∈ Ĝ, and put χ1 := χ|∆ ∈ ∆̂. We identify R with the localization of

Λχ1 [1/p] = Zp[imχ1][[Γ]][1/p] at q := ker(Λχ1 [1/p]
χ|Γ→ Qp(χ)).

Then the lemma follows by noting the localization of Λχ1 [1/p]/(γ
pn−1) = Zp[imχ1][Γn][1/p]

at q is identified with Qp(χ). □

Lemma 5.12. Assume that the condition (F) is satisfied.
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(i) H0(C) is isomorphic to UK∞,S,T ⊗Λ R, and R-free of rank r.
(ii) H1(C) is isomorphic to XK∞,S ⊗Λ R.
(iii) The maximal R-torsion submodule H1(C)tors of H

1(C) is isomorphic to XK∞,S\V ⊗Λ

R, and annihilated by P . (So H1(C)tors is an E-vector space.)
(iv) H1(C)tf := H1(C)/H1(C)tors is isomorphic to YK∞,V ⊗Λ R and is therefore R-free

of rank r.
(v) dimE(H

1(C)tors) = e.

Proof. Since UK∞,S,T⊗ΛR = H0(C) is regarded as a submodule of Π, we see that UK∞,S,T⊗Λ

R is R-free. Put χ1 := χ|∆ ∈ ∆̂. Note that L∞ := Lχ,∞ = Lχ1,∞, and that the quotient
field of R is Q(Λχ1). As in the proof of Theorem 3.4, we have

UK∞,S,T ⊗Λ Q(Λχ1) ≃ YL∞,V ⊗Zp[[Gχ]] Q(Λχ1).

These are r-dimensional Q(Λχ1)-vector spaces. This proves (i).
To prove (ii), it is sufficient to show that ATS (K∞)⊗ΛR = 0. Fix a topological generator

γ of Γ, and regard Zp[[Γ]] as the ring of power series Zp[[t]] via the identification γ = 1+ t.
Let f be the characteristic polynomial of the Zp[[t]]-module ATS (L∞). By Lemma 5.11, for
sufficiently large n, γp

n − 1 is a uniformizer of R. On the other hand, by the assumption
(F), we see that f is prime to γp

n − 1. This implies (ii).
We prove (iii). Proving that H1(C)tors is isomorphic to XK∞,S\V ⊗Λ R, it is sufficient to

show that

XK∞,S ⊗Λ Q(Λχ1) ≃ YK∞,V ⊗Λ Q(Λχ1),

by (ii). This has been shown in the proof of Theorem 3.4. We prove that XK∞,S\V ⊗Λ R
is annihilated by P . Note that XK∞,S\V ⊗Λ R = XK∞,S\(V ∪S∞) ⊗Λ R, since the complex

conjugation c at v ∈ S∞ \ (V ∩ S∞) is non-trivial in Gχ1 , and hence c − 1 ∈ R×. Hence,
it is sufficient to show that, for every v ∈ S \ (V ∪ S∞), there exists σ ∈ Gv ∩ Γ such that
σ − 1 is a uniformizer of R, where Gv ⊂ G is the decomposition group at a place of K∞
lying above v. Thanks to the assumption (S), we find such σ by Lemma 5.11.

The assertion (iv) is immediate from the above argument.
The assertion (v) follows from (iii), (iv), and the fact that

XK∞,S ⊗Λ E ≃ XL,S ⊗Zp[Gχ] Qp(χ) ≃ eχQp(χ)XL,S ≃ eχQp(χ)YL,V ′

is an r′-dimensional E-vector space. □

In the following for any R-module M we often denote M ⊗R E by ME . Also, we assume
that (F) is satisfied.

Definition 5.13. The ‘Bockstein map’ is the homomorphism

β : H0(CE)→ H1(C ⊗R P ) = H1(C)⊗R P → H1(CE)⊗E P/P 2

induced by the natural exact triangle C ⊗R P → C → CE .

Note that there are canonical isomorphisms

H0(CE) ≃ UL,S,T ⊗Zp[Gχ] Qp(χ) ≃ eχQp(χ)UL,S,T ,

H1(CE) ≃ XL,S ⊗Zp[Gχ] Qp(χ) ≃ eχQp(χ)XL,S ≃ eχQp(χ)YL,V ′ ,
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where Qp(χ) is regarded as a Zp[Gχ]-algebra via χ. Note also that P is generated by γp
n−1

with sufficiently large n, where γ is a fixed topological generator of Γ (see Lemma 5.11).
There is a canonical isomorphism

I(Γχ)/I(Γχ)
2 ⊗Zp Qp(χ) ≃ P/P 2,

where I(Γχ) denotes the augmentation ideal of Zp[[Γχ]]. (Note that Γ = Gal(K∞/K) and
Γχ = Gal(L∞/L).) Thus, the Bockstein map is regarded as the map

β : eχQp(χ)UL,S,T → eχQp(χ)(XL,S⊗Zp I(Γχ)/I(Γχ)
2) ≃ eχQp(χ)(YL,V ′⊗Zp I(Γχ)/I(Γχ)

2).

Proposition 5.14. The Bockstein map β is induced by the map

UL,S,T → XL,S ⊗Zp I(Γχ)/I(Γχ)
2

given by a 7→
∑

w∈SL
w ⊗ (recw(a)− 1).

Proof. The proof is the same as for [18, Lemma 5.8] and we sketch the proof in loc. cit.
Take n so that the image of γp

n ∈ Gal(K∞/L) in Gal(L∞/L) = Γχ is a generator. We
regard γp

n ∈ Γχ. Define θ ∈ H1(L,Zp) = Hom(GL,Zp) by γp
n 7→ 1. Define

β′ : eχQp(χ)UL,S,T → eχQp(χ)(XL,S ⊗Zp I(Γχ)/I(Γχ)
2)

∼→ eχQp(χ)XL,S
by β(a) = β′(a)⊗ (γp

n − 1). Then, β′ is induced by the cup product

· ∪ θ : QpUL,S ≃ H1(OL,S ,Qp(1))→ H2(OL,S ,Qp(1)) ≃ QpXL,S\S∞ .

By class field theory we see that β is induced by the map a 7→
∑

w∈SL\S∞(L)w⊗(recw(a)−1).
Since recw(a) = 1 ∈ Γχ for all w ∈ S∞(L), the proposition follows. □
Proposition 5.15. We have canonical isomorphisms

kerβ ≃ H0(C)E and cokerβ ≃ H1(C)tf ⊗R P/P 2.

Proof. Let δ be the boundary map H0(CE)→ H1(C ⊗R P ) = H1(C)⊗R P . We have

ker δ ≃ coker(H0(C ⊗R P )→ H0(C)) = H0(C)E

and
im δ = ker(H1(C)⊗R P → H1(C)) = H1(C)[P ]⊗R P,

where H1(C)[P ] is the submodule of H1(C) which is annihilated by P . By Proposition 5.12
(iii), we know H1(C)[P ] = H1(C)tors. Hence, the natural map

H1(C)⊗R P → H1(C)⊗R P/P 2 ≃ H1(C)E ⊗E P/P 2 ≃ H1(CE)⊗E P/P 2

is injective on H1(C)tors ⊗R P . From this we see that kerβ ≃ H0(C)E . We also have

cokerβ ≃ coker(H1(C)tors ⊗R P → H1(C)⊗R P/P 2) ≃ H1(C)tf ⊗R P/P 2.

Hence we have completed the proof. □
By Lemma 5.12, we see that there are canonical isomorphisms

H0(C)E ≃ UK∞,S,T ⊗Λ Qp(χ),

H1(C)E ≃ XK∞,S ⊗Λ Qp(χ),

H1(C)tf,E ≃ YK∞,V ⊗Λ Qp(χ).
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Hence, by Proposition 5.15, we have the exact sequence

0→ UK∞,S,T ⊗Λ Qp(χ)→ eχQp(χ)UL,S,T
β→ eχQp(χ)(YL,V ′ ⊗Zp I(Γχ)/I(Γχ)

2)→ YK∞,V ⊗Λ P/P
2 → 0.

This induces an isomorphism

β̃ : eχQp(χ)(
∧r′

UL,S,T⊗
∧r′

Y∗
L,V ′)

∼→
∧r

(UK∞,S,T⊗ΛQp(χ))⊗
∧r

(Y∗
K∞,V⊗ΛQp(χ))⊗P e/P e+1.

We have isomorphisms ∧r′

Y∗
L,V ′

∼→ Zp[Gχ]; w∗
1 ∧ · · · ∧ w∗

r′ 7→ 1,∧r
(Y∗

K∞,V ⊗Λ Qp(χ))
∼→ Qp(χ); w

∗
1 ∧ · · · ∧ w∗

r 7→ 1.

By these isomorphisms, we see that β̃ induces an isomorphism

eχQp(χ)
∧r′

UL,S,T
∼→

∧r
(UK∞,S,T ⊗Λ Qp(χ))⊗ P e/P e+1,

which we denote also by β̃. Note that we have a natural injection∧r
(UK∞,S,T ⊗Λ Qp(χ))⊗ P e/P e+1 ↪→ eχQp(χ)(

∧r
UL,S,T ⊗Zp I(Γχ)

e/I(Γχ)
e+1).

Composing this with β̃, we have an injection

β̃ : eχQp(χ)
∧r′

UL,S,T ↪→ eχQp(χ)(
∧r

UL,S,T ⊗Zp I(Γχ)
e/I(Γχ)

e+1).

By Proposition 5.14, we obtain the following

Proposition 5.16. Let

Rec∞ : Cp
∧r′

UL,S,T → Cp(
∧r

UL,S,T ⊗Zp I(Γχ)
e/I(Γχ)

e+1)

be the map defined in §4.1. Then we have

(−1)reeχRec∞ = β̃.

In particular, eχRec∞ is injective.

5.3. The proof of the main result. In this section we prove Theorem 5.2.
We start with an important technical observation. Let Πn denote the free Zp[Gχ,n]-module

ΠK∞ ⊗Λ Zp[Gχ,n], and I(Γχ,n) denote the augmentation ideal of Zp[Γχ,n].
We recall from [10, Lemma 5.20] that the image of

πVLn/k,S,T
: detZp[Gχ,n](CLn,S,T )→

∧r
Πn

is contained in I(Γχ,n)
e ·
∧rΠn (see Proposition 2.6(iii)) and also from [10, Proposition 4.17]

that ν−1
n ◦ Nn induces the map

I(Γχ,n)
e ·

∧r
Πn →

∧r
Π0 ⊗Zp I(Γχ,n)

e/I(Γχ,n)
e+1.
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Lemma 5.17. There exists a commutative diagram

detZp[Gχ,n](CLn,S,T ) //

πV
Ln/k,S,T

��

detZp[Gχ](CL,S,T )

πV ′
L/k,S,T��

I(Γχ,n)
e ·

∧rΠn

ν−1
n ◦Nn

��

∩r′UL,S,T

(−1)reRecn
��∧rΠ0 ⊗Zp I(Γχ,n)

e/I(Γχ,n)
e+1

∩rUL,S,T ⊗Z I(Γχ,n)
e/I(Γχ,n)

e+1.
⊃oo

Proof. This follows from Proposition 2.6(iii) and [10, Lemma 5.22]. □
For any intermediate field F of K∞/k, we denote by LF/k,S,T the image of the (conjec-

tured) element LK∞/k,S,T of detΛ(CK∞,S,T ) under the isomorphism

Zp[[Gal(F/k)]]⊗Λ detΛ(CK∞,S,T ) ≃ detZp[[Gal(F/k)]](CF,S,T ).

Note that we have
πVLn/k,S,T

(LLn/k,S,T ) = ϵVLn/k,S,T
.

Hence, Lemma 5.17 implies that

(−1)reRecn(πV
′

L/k,S,T (LL/k,S,T )) = ν−1
n ◦ Nn(ϵVLn/k,S,T

) =: κn.

We set
κ := (κn)n ∈

∩r
UL,S,T ⊗Zp lim←−

n

I(Γχ,n)
e/I(Γχ,n)

e+1.

Then the validity of Conjecture MRS(K∞/k, S, T, χ, V
′) implies that

eχκ = (−1)reeχRec∞(ϵV
′

L/k,S,T ).

In addition, by Proposition 5.16, we know that eχRec∞ is injective, and so

πV
′

L/k,S,T (eχLL/k,S,T ) = eχϵ
V ′

L/k,S,T .

Hence, by Proposition 2.5, we see that eTNC(h0(SpecL),Zp[G]) is valid, as claimed.
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[39] K. Ventullo, On the rank one abelian Gross-Stark conjecture, Comment. Math. Helv. 90 (2015) 939-963.

[40] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990) 493-540.

King’s College London, Department of Mathematics, London WC2R 2LS, U.K.
E-mail address: david.burns@kcl.ac.uk

Keio University, Department of Mathematics, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-
8522, Japan

E-mail address: kurihara@math.keio.ac.jp



38 DAVID BURNS, MASATO KURIHARA AND TAKAMICHI SANO

Osaka City University, Department of Mathematics, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka,
558-8585, Japan

E-mail address: sano@sci.osaka-cu.ac.jp


