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Abstract. In this paper, we formulate a new conjecture concerning
Kato’s Euler system for elliptic curves E over Q. This ‘Generalized Perrin-Riou
Conjecture’ predicts a precise congruence relation between a Darmon-type
derivative of the zeta element of E over an arbitrary real abelian field and the
critical value of an appropriate higher derivative of the L-function of E over Q.
We prove the conjecture specializes in the relevant case of analytic rank one
to recover Perrin-Riou’s conjecture on the logarithms of zeta elements, and
also that, under mild technical hypotheses, the ‘order of vanishing’ part of
the conjecture is unconditionally valid in arbitrary rank. This approach also
allows us to prove a natural higher-rank generalization of Rubin’s formula con-
cerning derivatives of p-adic L-functions and to establish an explicit connection
between the p-part of the classical Birch and Swinnerton-Dyer formula and the
Iwasawa main conjecture in arbitrary rank and for arbitrary reduction at p.
In a companion article we prove that the approach developed here also pro-
vides a new interpretation of the Mazur—Tate conjecture that leads to the first
(unconditional) theoretical evidence in support of this conjecture for curves of
strictly positive rank.

1. Introduction.

1.1. Background.

A central problem in modern number theory is to understand the arithmetic mean-
ing of the values of zeta and L-functions. The Birch and Swinnerton-Dyer conjecture
and main conjecture in Iwasawa theory are important instances of this problem, being
respectively related to the Hasse-Weil L-function of an elliptic curve and to the p-adic
L-function of an appropriate motive.

For an elliptic curve E defined over Q, significant progress on the problem was made
by Kato in [23] who used Beilinson elements in the K-theory of modular curves to define
canonical ‘zeta elements’ in étale (Galois) cohomology groups that could be explicitly
related to the values of Hasse—Weil L-functions.

To be a little more precise we fix an odd prime p, a finite abelian extension F' of
Q, a finite set of places S of Q that contains the Archimedean place, p, all primes that
ramify in F' and all primes at which E has bad reduction. We write Op, g for the subring
of F' comprising elements that are integral at all non-Archimedean places whose residue
characteristic does not belong to S and T,(E) for the p-adic Tate module of E.

Then the zeta element zp constructed by Kato belongs to the étale cohomology
group H'(Ops,T,(E)) and is explicitly related via the dual exponential map to the
value at one of the Hasse-Weil L-function of E (we assume the integrality of Kato’s
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zeta element for simplicity: for more precise statements see Section 2). As F' varies over
subfields of finite degree of the cyclotomic Z,-extension of @, these elements zp form a
projective system that can be used to recover the p-adic L-function of E. In addition,
as F' varies more generally, the elements zp form an Euler system and so can be used to
bound the p-adic Selmer group of E. In this way zeta elements have led to partial results
on both the main conjecture and Birch and Swinnerton-Dyer conjecture for E. For this
reason, such elements have subsequently been much studied in the literature and have
led to numerous important results.

Our main purpose in these articles is to investigate a conjectural property of Kato’s
elements that it seems has not been observed previously and to demonstrate that this
property, whenever valid, has significant applications. The conjecture itself predicts a
precise link between a ‘Darmon-type’ derivative of zp for any given F and the value
at the critical point of an appropriate higher derivative of the L-function of F over Q.
This conjectural link constitutes a simultaneous refinement of well-known conjectures of
Perrin-Riou [34] and of Mazur and Tate [29] and will be described in more detail in the
next section.

Although we shall not pursue it here, it seems reasonable to expect that the general
approach we develop can also be applied to elliptic curves with complex multiplication,
with the role of Kato’s zeta elements being replaced by elliptic units twisted by a Hecke
character.

We also expect that it should be possible to extend our approach to the setting of
abelian varieties and to modular forms and their families, and we hope to return to these
questions in a subsequent article.

1.2. Conjectures and results at finite level.
We shall now give an overview of the central conjecture that we formulate and the
evidence for it that we have so far obtained.

1.2.1. At the outset we fix a finite real abelian extension F' of Q and set G :=
Gal(F/Q). Then, following a general idea introduced by Darmon in [15], the key object
of our study will be the element

Nrjg(zr) == Z olzr)®o !

ceG

of HI(OFﬁs, Tp(E)) ®Zp ZP[G]

We write r for the rank of E(Q) and assume that » > 0, that E(Q) has no element of
order p and that the p-part of the Tate—Shafarevich group of E/Q is finite. Then, under
these hypotheses, in Definition 2.4 we shall use the leading term at s = 1 of L(E,s)
to (unconditionally) define a canonical ‘Birch and Swinnerton-Dyer element’ nBSP in
the dimension one vector space over C, that is spanned by /\2,, HY(Zs,T,(E)). With I
denoting the augmentation ideal of Z,[G], we shall also define (in Section 2.3) a canonical

‘Bockstein regulator map’

Bocp : /\Z HY(Zs, Ty(E)) — H'(Zs, T,(E)) @z, I' 1/ I".
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Finally we note the Z,-module H'(Op,s, T,(E)) is free and so H*(Op,5,T,(E)) ®z, I"*
identifies with a submodule of H'(Op,s, T,(E)) ®z, Zy|G].

Then, in terms of this notation, the central conjecture of this article can be stated
as follows.

CONJECTURE 1.1 (the Generalized Perrin-Riou Conjecture).
(i) (“Order of vanishing’) N q(zr) belongs to H(Op,s,T,(E)) ®z, I"*.
(ii) (‘Integrality’) n®SP belongs to Ao, H' (Zs, T,(E)).

(iii) (‘Leading term formula’) The image of Nr/g(zr) in H'(Op,s, T,(E)) @z, I" /1"
is equal to Bocy(nBSP).

REMARK 1.2. A precise statement of Conjecture 1.1 will be given as Conjec-
ture 2.12. For the moment, we note a key advantage of its formulation is that it uses a
construction of regulators that works in the same way for all reduction types. A further
crucial advantage is that, in the case r = 1, the conjecture takes a particularly simple
form and can be proved under various natural hypotheses.

In the rest of this section we outline the evidence that we have obtained for the
above conjecture and also explain why it constitutes a simultaneous refinement and
generalization of conjectures of Perrin-Riou and of Mazur and Tate.

1.2.2.  We observe first that the containment predicted by Conjecture 1.1(i) can be
studied by using the equivariant theory of Euler systems that was recently described by
Sakamoto and the first and third authors in [10]. In particular, by using this approach
we are able to prove that Conjecture 1.1(i) is valid under certain mild hypotheses.

For example, the following concrete result will follow directly from stronger results
that we prove in Section 3. This result is a natural analogue for zeta elements of the
main result of Darmon [15, Theorem 2.4] concerning Heegner points.

THEOREM 1.3.  The containment of Conjecture 1.1(i) is valid if all of the following
conditions are satisfied.

a

b

p>3;
the p-primary part of WI(E/F) is finite;

c) the image of the representation Gg — Aut(T,(F)) ~ GLa(Z,) contains SLa(Z,);

(a)
(b)
(c)
(d)

d) for every prime number £ in S the group E(Qy) contains no element of order p.

REMARK 1.4. The assumption (a) in Theorem 1.3 can be removed by using the
theory of Kolyvagin systems for p = 3 which has recently been developed by Sakamoto
[38].

Concerning Conjecture 1.1(ii), we can show in all cases that the predicted contain-
ment is valid whenever the p-part of the Birch and Swinnerton-Dyer formula for E over
Q, or ‘BSD,(E)’ as we shall abbreviate it in the sequel, is valid. (In fact, a stronger
version of this result will be proved in Proposition 2.6.)
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Finally, to discuss the prediction of Conjecture 1.1(iii) we shall initially specialize
to the case that the analytic rank ords—1 L(E,s) of E is equal to one. In this case, well-
known results of Gross and Zagier and of Kolyvagin (amongst others) imply that r = 1
and so parts (i) and (ii) of Conjecture 1.1 are valid trivially.

It is also straightforward to check in this case that the equality in Conjecture 1.1(iii)
is valid for every choice of field F if and only if one has zp = n®5P. By analysing
the latter equality, we shall thereby obtain the explicit interpretation of this case of
Conjecture 1.1 that is given in the next result. (A proof of this result will be explained
in Remark 2.13(ii).)

In the sequel we write Lg(E, s) for the S-truncated Hasse-Weil L-function of E.

THEOREM 1.5. If E has analytic rank one, then Conjecture 1.1 is valid for any
field F if and only if one has 2q € H(Q,T,(E)) and

Ls(E,1)

log,,(2q) = ) ?

1 .
) 0g,,(z)

Here log,, : H}(Q,TP(E)) — Q, is the formal logarithm associated to the (fized) Néron
differential w, L'y(E, 1) denotes the value at s =1 of the first derivative of Ls(E,s), Q"
is the real Néron period, x is a generator of E(Q) modulo torsion and (—,—)s is the

Néron—Tate height pairing.

The displayed equality in Theorem 1.5 is equivalent to the central conjecture for-
mulated by Perrin-Riou in [34, Section 3.3]. This result therefore allows us to regard
Conjecture 1.1 as a natural extension of Perrin-Riou’s conjecture to elliptic curves of
arbitrary rank and, at the same time, to interpret results in support of Perrin-Riou’s
conjecture (see, for example, Biiyiikboduk [13, Theorem 2.4(iv)], Venerucci [45, Theo-
rem A], Biiylikboduk, Pollack and Sasaki [14] and Bertolini, Darmon and Venerucci [4])
as evidence in support of Conjecture 1.1 in the case of analytic rank one.

In a different direction, we show in the companion article [9] that the formalism
leading to Conjecture 1.1 also gives rise to a new interpretation of the Mazur—Tate
conjecture (from [29]) concerning congruence relations between modular symbols and
the discriminants of height pairings defined in terms of geometrical bi-extensions, and
thereby leads to the first (unconditional) theoretical evidence in support of the latter
conjecture for elliptic curves of strictly positive rank.

We hope these observations give an indication of the interest of the general approach
underlying the formulation of Conjecture 1.1. In this regard, we observe that one of the
key motivations behind the development of this approach was an attempt to formulate a
natural analogue for elliptic curves of the conjecture formulated in [6, Conjecture 5.4] in
the setting of the multiplicative group. We finally recall that the latter conjecture was
itself formulated as a natural strengthening of the ‘refined class number formula for G,
that was previously conjectured by the third author [39], and (independently) by Mazur
and Rubin [28].
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1.3. Iwasawa-theoretic considerations.

In this section we discuss how the simultaneous study of Conjecture 1.1 for the
family of intermediate fields £ of the cyclotomic Z,-extension Q. of Q sheds light on a
range of important problems.

1.3.1. To explain this, for each natural number n we write Q, for the unique
subfield of Q. of degree p™ over Q.

We know the validity of Conjecture 1.1(i) with F' = Q,, (see Proposition 4.4), and
we write i, for the image of Ny, /o(2q, ) under the natural projection

H'(Oy, .5, Tp(E)) ®z, I~ — H'(Oq, s, T,(E)) ®z, I, '/,

where I,, denotes the augmentation ideal of Z,[Gal(Q,,/Q)].

Then we can show the element k, belongs to the subgroup H'(Zg,T,(E)) ®z,
I~ /11 of HY(Oq,,s,Ty(E)) @z, I~ /I}; and, moreover, that as n varies the elements
Ky are compatible with the natural projection maps

H'(Zs, T,(E)) ®z, L, /1, = H'(Zs, T,(E)) ®z, I,_1/1;_;.

Hence, writing I for the augmentation ideal of Z,[[Gal(Qo/Q)]], one obtains an
element of H'(Zg, Ty(E)) ®z, 1"~ /I" by setting

Koo 1= limk, € im H' (Zs, Ty(E)) ©z, I, /1, =~ H'(Zs, Ty(E)) @z, I' /1"

(cf. Definition 4.5; we note that no conjecture is needed to deduce the existence of £oo).
In addition, the family of maps (Bocg, ), induces a canonical homomorphism

C,- /\;le(ZS, T,(E)) - C, - H'(Zs, Ty(E)) @z, I"*/T"

and the fact that the Z,-module I"~1/I" is torsion-free implies that the natural map
HY(Zg,Ty(E)) @z, I" ' /I" — Cp, - H'(Zg,Ty(E)) @z, I" ' /I"

is injective. In particular, this allows one to formulate Conjecture 1.1(iii) for the family
of elements Ny, /q(2q,) without having to assume the validity of Conjecture 1.1(ii).
We shall show (in Proposition 4.14) that this version of Conjecture 1.1(iii) is equiv-
alent to the following prediction.
In the sequel we write Lg) (E, 1) for the coefficient of (s—1)" in the Taylor expansion
at s =1of Lg(E,s).

CONJECTURE 1.6 (Conjecture 4.8). If r is also equal to the analytic rank
ords—1 L(E,s) of E, then one has

LY(E,1)

. pBoc
Ot . Roo R“" ’

Koo —

where QF s the real Néron period, R.. is the Néron—Tate requlator and RE°¢ is the
‘Bockstein regulator’ in H*(Zg, T,(E)) ®z, I"~* /1" that is introduced in Definition 4.10.
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REMARK 1.7. If r is equal to ords—; L(E, s), then the r-th derivative of Lg(F,s)
is holomorphic at s = 1 and its (non-zero) value at s =1 is equal to 7! - L(;)(E7 1).

REMARK 1.8.  We will show that the Bockstein regulator that occurs in Conjec-
ture 1.6 has the following properties.
(i) Ifr =1, then

RBOC = logw (SL’) - T

for any element z of E(Q) that generates E(Q) modulo torsion (cf. Remark 4.12).
(ii) Suppose that E does not have additive reduction at p and write (—, —), for the
classical p-adic height pairing. Then for any element = of E(Q) one has

(x, R°)p = log,,(z) - Ry,
where R, denotes the p-adic regulator (cf. Theorems 5.6 and 5.11).

If r = 1, then ko simply coincides with zg and so Remark 1.8(i) implies that
Conjecture 1.6 is valid if and only if one has

_ Ls(B 1)

2Q = OF R log,(z) - x

for any element x of F(Q) that generates E(Q) modulo torsion. This equality is equiva-
lent to Perrin-Riou’s conjecture.

In addition, whilst Remark 1.8(ii) implies that the Bockstein regulator RE°¢ is a
variant of the classical p-adic regulator, a key role will be played in our approach by
the fact that RE°¢ can be defined even in the case that E has additive reduction at p
(in which case a construction of the p-adic regulator is still unknown).

1.3.2. To interpret Conjecture 1.6 in terms of p-adic L-functions, we must first
prove a ‘generalized Rubin formula’ for the element k.

To discuss this result, and some of its consequences, we assume until further notice
that E does not have additive reduction at p.

If E has good reduction at p, then we write « for an allowable root of the Hecke
polynomial X2 — a,X + p. We set 8 := p/a.

If F has non—split multiplicative reduction at p, then we set o := —1 and § := —p

We also write /.Z( p for the ‘r-th derivative’ of the S-truncated p-adic L-function L’g P
of E (for a precise deﬁnltlon of this term see Section 6.2).

THEOREM 1.9 (the generalized Rubin formula, Theorem 6.2).

(i) If E has good or non-split multiplicative reduction at p, then for every element x

of E(@) one has
1 ! .
(@, Koo )p = (1 - > (1 — > log,,(x) - (:g;_
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(ii) If E has split multiplicative reduction at p, then for every element x of E(Q) one
has

1 r
(2, Kog)p - L = (1 — p) log,, (z) - £g;1)7

where L denotes the ‘L-invariant’ of E (see Remark 6.4).

REMARK 1.10. If r = 1, then one has ko, = 2zg and Theorem 1.9(i) recovers the
formula that is proved by Rubin in [36, Theorem 1(ii)] in the case that F has good
ordinary reduction at p.

We shall then show that this result has the following consequences.

COROLLARY 1.11 (Corollary 6.7).  The Generalized Perrin-Riou Conjecture (Con-
jecture 1.6) implies the following ‘p-adic Beilinson formula’: one has

1\ N . LY(EN)
(1-2) (-5)s=5"%"n

if E has good or non-split multiplicative reduction at p, and

(r)
con _ g Esum (B D
S,p QO+t R, 7

if E has split multiplicative reduction at p.

In the next result we refer to the Iwasawa main conjecture for £ and Qo /Q that is
formulated in Conjecture 7.1.

COROLLARY 1.12 (Corollary 7.4).  Assume that the p-primary part of II(E/Q) is
finite and E does not have additive reduction at p. Then the Iwasawa main conjecture
for £ and Qo /Q implies the validity up to multiplication by an element of Z, of the
p-adic Birch and Swinnerton-Dyer formula for E.

REMARK 1.13. If the p-adic height pairing is non-degenerate, then the result of
Corollary 1.12 was first proved by Schneider [41] (in the good ordinary case), Jones [21]
(in the multiplicative case) and Perrin-Riou in [34] (in the good supersingular case).

1.3.3. Going beyond the result of Corollary 1.12, our approach also allows the
detailed analysis of descent arguments in Iwasawa theory without restrictive hypotheses
on either the analytic rank or reduction type of E (and hence, therefore, for curves with
additive reduction at p).

For example, in this way we are able to prove the following analogue for E of the main
result of our earlier article [7] concerning the equivariant Tamagawa number conjecture
for G, (cf. Remark 7.7). We note, in particular, that since the following result imposes no
restrictions on the reduction of E at p, it sheds some new light on the link between main
conjectures in Iwasawa theory and the classical Birch and Swinnerton-Dyer conjecture.
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THEOREM 1.14 (Theorem 7.6).  Assume all of the following hypotheses:
o III(E/Q) is finite;
e the analytic rank of E is equal to the rank r of E(Q);
e the Iwasawa main conjecture of Conjecture 7.1 is valid;
e the Generalized Perrin-Riou Conjecture of Conjecture 1.6 is valid;
e the Bockstein requlator R2°¢ does not vanish.

Then there exists an element u of Z, such that

LU)(E, 1) #I(E/Q) - Tam(E)

Qt - R v #E(Q)gors ’

where Tam(E) denotes the product of the Tamagawa factors of E/Q.
In particular, the conjecture BSD,(E) is valid.

1.4. General notation.

For the reader’s convenience we collect together some of the general notation that
will be used throughout this article.

At the outset we fix an odd prime number p. The symbol ¢ will also usually denote
a prime number.

For a field K, the absolute Galois group of K is denoted by G .

We fix an algebraic closure Q of Q. We also fix an algebraic closure @p of Q, and
fix an embedding Q — Q,.

For a positive integer m, we denote by p,, C Q the group of m-th roots of unity.

For an abelian group X, we use the following notations:

e Xios: the subgroup of torsion elements;

Xt := X/ Xtors: the torsion-free quotient;

rank(X) := rankz(X¢s);
e X|[p]: the subgroup of elements annihilated by p;
e X[p>]: the subgroup of elements annihilated by a power of p.

If X is endowed with an action of complex conjugation, we denote by X+ the
subgroup of X fixed by the action.
If X is an R-module (with R a commutative ring), we set

X" := Hompg(X, R).

Note that this notation has ambiguity, since X may be regarded as an R’-module with
another ring R’ and X* can mean Hompg/ (X, R'). However, this ambiguity would not
make any danger of confusion since the meaning is usually clear from the context.
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For an element 2 € X, we denote by (x)r the submodule generated by x over R.
We abbreviate it to (z) when R is clear from the context.
Suppose that X is a free R-module with basis {z1,...,z,}. We denote by

z;: X >R

the dual of z;, i.e., the map defined by

1 if §=yj,
Ty e
0 if i #j.

For a perfect complex C' of R-modules, we denote by detr(C) the determinant
module of C. This module is understood to be a graded invertible R-module (with the
grade suppressed from the symbol).

For a number field F' and a finite set .S of places of Q, we denote by Op s the ring
of Sp-integers of F', where Sr denotes the set of places of F' lying above a place in
S. In particular, Og g is denoted simply by Zs. We denote by RI'(Op s, —) the etale
cohomology complex R4 (Spec(OF.s), —).

As usual, the notation H} (F,—) indicates the Bloch-Kato Selmer group and
H}(FU, —) the Bloch-Kato local condition for a place v of F.

For an elliptic curve F defined over Q, we denote by L(E,s) the Hasse-Weil L-
function of E. For a finite set S of places of Q, we denote by Lg(E, s) the S-truncated
L-function of E. We denote by L§(FE, 1) the leading term at s = 1.

The Tate-Shafarevich group of E over a number field F' is denoted by III(E/F).
The product of Tamagawa factors of E/Q is denoted by Tam(FE).

We use some other standard notations concerning elliptic curves and modular curves,
such as F(E,Q%E/Q), H,(E(C),Q), E1(Qp), Y1(INV), X1(IV), etc.

2. Formulation of the Generalized Perrin-Riou Conjecture.
We fix a prime number p and assume throughout the article that p is odd.

2.1. Kato’s Euler system.

Let E be an elliptic curve over Q of conductor V.

Fix a modular parametrization ¢ : X1(N) — E and write f = >~ , a,¢" for the
normalized newform of weight 2 and level N corresponding to E.

Let T),(E) be the p-adic Tate module of £ and set V := Q, ®z, T,(E). Let T be a
Gq-stable sublattice of V' that is given by the image of the following map:

~ V, (2.1.1)
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where the second arrow is the Manin—Drinfeld splitting (see [42, Section 5.2] or [18,
Section 1.9.3]), the third is induced by ¢ and the last is induced by the Weil pairing.
Note that T identifies with the maximal quotient of H'(Yi(N) xg Q,Z,(1)) on
which Hecke operators T'(n) act via a,, and may be different from T),(E). If E[p] is an
irreducible Gg-representation, we may assume 7' = T,,(E).
We fix the following data:

e an embedding Q — C;
e a finite set S of places of Q such that {co} U{¢|pN} C S;

e integers c¢,d > 1 such that cd is coprime to 6 and all primes in S, and that c=d =1
(mod N);

e an element & € SLy(Z).

For this data and any positive integer m that is coprime to cd, Kato constructed in
[23, (8.1.3)] a ‘zeta element’

ed?m (& Sm) = a2 (£,1,1,€, 8 \ {o0})

in H'(Og(pu,.),5,. T), where Sy, denotes the set SU{¢ | m}.

It is also known that the collection (c,qzm (£, Sm))m forms an Euler system (see [23,
Example 13.3]).

For a finite abelian extension F of Q that is unramified outside S, we set

e,d?F = ¢,d?r(§,8) = Corgu,.)/F(c,d?m(§, S)),

where m = mp denotes the conductor of F.
For later purposes we make a specific choice of £ as follows. Just as in (2.1.1), the
fixed modular parametrization ¢ : X;(N) — E induces a map

Hy(X1(N)(C), {cusps}, Z) ~ H'(Yi(N)(C), Z(1))
— H'(E(C),Q(1)) ~ Hi(E(C),Q), (2.1.2)

where the first and last isomorphisms are obtained by the Poincaré duality.
We write ¢ for the image of this map (so J# is a lattice of Hy(E(C),Q)) and let

0(§) e
denote the image under the map (2.1.2) of the modular symbol
{£(0),¢(00)} € Hi(X1(N)(C), {cusps}, Z).

Let g denote the complex conjugation and set et := (1 + g)/2.
We then fix £ so that the following condition is satisfied:

the element e™§(¢) of Hy(E(C),Q)" isa Zy-basis of (Z,) @z #)7". (2.1.3)
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The existence of such & € SLy(Z) is justified as follows. By a well-known theorem of
Manin, we know that Hy (X1(N)(C), {cusps}, Z) is generated by the set {{a(0), a(c0)} |
o € SLy(Z)}. This implies that the Z,-module (Z,) ®z )" is generated by the set
{eTd(a) | @ € SLa(Z)}. Since (Zy) @z )t ~ L,y and Z,) is local, Nakayama’s lemma
implies the existence of £ € SLy(Z) such that e™d(&) generates (Z,) ®z )"

Throughout this article, we also fix a minimal Weierstrass model of E over Z and
let

w e T(E, Qg /)

be the corresponding Néron differential.
We define the real period for (w, ) by setting

Q¢ = / w. (2.1.4)
etd(é)

(In general, this integral need only agree with the usual real Néron period Q7 up to
multiplication by an element of Q*. However, if E[p] is irreducible, then ¢ and QF will
agree up to multiplication by an element of Z(Xp ).)

Then Kato’s reciprocity law [23, Theorems 6.6 and 9.7] gives the formula

Ls(E,1)

exp,,(c,a20) = cd(c —1)(d — 1) 0

in Q, (2.1.5)

where exp?, : H'(Zs,T) — H'(Q,,T) — Q, is the dual exponential map associated to w.

REMARK 2.1. As in [23, Theorem 12.5], one may normalize Kato’s zeta element
in order to construct an element z of H'(Zg,V) with the property that exp}(z) =
Ly (E,1)/Q, where the L-function is truncated just at p rather than at all places
in S. However, one does not in general know that this element z lies in H'(Zg,T). This
delicate integrality issue is the reason that we prefer to use 420 = ¢,a20(§,S) rather
than the normalized element. In addition, if H'(Zg,T) is Z,-free, then one expects that
the element

1
T - 1)d—1) o

of HY(Zg,V) actually belongs to H(Zg,T) but, as far as we are aware, this has not
been proved in full generality.

2.2. Birch and Swinnerton-Dyer elements.

In this subsection, we introduce a natural notion of ‘Birch and Swinnerton-Dyer
element’.

Such elements constitute an analogue for elliptic curves of the ‘Rubin—Stark ele-
ments’ that are associated to the multiplicative group.

In the sequel we shall denote the ‘algebraic rank’ rank(E(Q)) of E over Q by raig or
often, for simplicity, by r.

Throughout this section we shall then assume the following.
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HYPOTHESIS 2.2.
(i) HY(Zs,T) is Zy-free;
(ii) r:=rae > 0;
(iii) TI(E/Q)[p>] is finite.

REMARK 2.3. If E[p] is irreducible, then T' = T,,(E) and E(Q)[p] = 0 so Hypo-
thesis 2.2(i) is automatically satisfied.

Following [10, Lemma 6.1], we note that these assumptions imply the existence of
a canonical isomorphism

H'(Zs,V) =~ Q, ®z E(Q) (2.2.1)

and also, since the image of the localization map H'(Zs,V) — H'(Q,,V) lies in
H}(Qp, V) =Q, ®z, £1(Q,), of a canonical short exact sequence

0— Qp ®z, E1(Q)" = Q, ®2 E(Q)* — H*(Zs,V) — 0. (2.2.2)

We fix an embedding R — C,, and consider the following canonical ‘period-regulator’
isomorphism of C,-modules

A:C,®z, /\Z H'(Zs,T) ~ C, @ /\ZE(Q)

Here the first isomorphism is induced by (2.2.1), the second by the Néron—Tate height
pairing

(= =)o : E(Q) x E(Q) = R,
the third by (2.2.2), the fourth by the dual exponential map
exp® 1 E1(Qp)" = Qp o T(E, Q)

the last by the period map

[(E, Q) = Hi(E(C),R)™"; w— (7 > Lw) .
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DEFINITION 2.4. Fix an element x of the space /\&ZIHQ(ZS, V). Then the Birch

and Swinnerton-Dyer element nESP = nBSP (¢ 9) of the data ¢, S and « is the element
of C, ®z, /\ngl(ZS, T) obtained by setting

BSD = AHLE(B, 1) - (eT6() @ ).
The ‘(¢, d)-modified Birch and Swinnerton-Dyer element’ for the given data is the element
ey = cd(c —1)(d = 1) - ng°P.

REMARK 2.5. Each choice of an ordered basis of E(Q) gives rise to a natural
choice of element x as above (see Section 4.3.2). In the special case r = 1 and ¢ = 1, the
above definition simplifies to an equality

Li(E,1
nBSP — ng( }%OO) -log,,(z) - x
in C, ®z E(Q) ~ C, ®z, HY(Zs,T), where R, is the Néron-Tate regulator, log,, :
EQ) — E(Qp) — Q, is the formal group logarithm associated to w and x is any
element of F(Q) that generates F(Q)ys.

The p-part of the Birch and Swinnerton-Dyer formula for F asserts that there should
be an equality of Z,-submodules of C, of the form

L*(E,1) - Z, = (#11(E/Q)[p™] - Tam(E) - #E(Q);ors - Q" - Roc) - Zy,

where Tam(E) denotes the product of the Tamagawa factors of E/Q. In the sequel we
shall abbreviate this equality of lattices to ‘BSD,(E)’.

The next result explains the connection between this conjectural equality and the
integrality properties of Birch and Swinnerton-Dyer elements.

ProposiTION  2.6. Set r:i=ras and fir a Zy-basis x of the lattice
ZIHQ (Zs,T). Then BSD,(E) is valid if and only if there is an equality of Z,-lattices

Zy 00 = #H*(Zs, T)ons - [\, H'(Zs.T). (2.2.3)
P

In particular, the validity of BSD,(E) implies that nSSP belongs to /\ngl(Zs, T).

ProOOF. It is well-known that the validity of BSD,(E) is equivalent to the equality
of lattices that underlies the statement of the Tamagawa number conjecture (or ‘TNC’
for short) for the pair (h*(E)(1),Z,) (this has been shown, for example, by Kings in
[24]). Tt is therefore sufficient to show that the equality (2.2.3) is equivalent to the TNC
and to do this we must recall the formulation of the latter conjecture.

The statement of the TNC involves a canonical isomorphism of C,-modules

9 : C, ®g, dety ! (RT(Zs, T*(1))) = C, (2.2.4)

that arises as follows. Firstly, global duality induces a canonical isomorphism
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dety, " (RTe(Zs, T*(1))) = det ' (RT(Zs, T)) @z, T*(1)*
(cf. [11, Proposition 2.22]) and hence also a canonical isomorphism
C,p ®z, dety | (RT.(Zs, T*(1)))

r r—1
~ C, ®q, (/\@le(Zs,v) ®q, /\@p H*(Zs,V)" ®q, V*(1)+) . (2.2.5)

The isomorphism + in (2.2.4) is then obtained by combining the latter isomorphism
with the canonical ‘comparison’ isomorphism

V()" = Q, ®¢ H'(E(C),Q(1)" ~ Q, @ Hi(E(C),Q)*

and the period-regulator isomorphism

T r—1
N:Cyg, \, H'(Zs,V) = Cy g, (HﬂE(C),Q)*’* 2a [\, H2(ZS,V)>

constructed earlier.
If 3 is the unique element of C, ®z, detipl(RFc(ZS,T*(l))) that satisfies ¥(3) =
L%(E,1), then the TNC predicts that

Zy -3 = dety | (RTo(Zs, T*(1))).

Given this, the claimed result is a consequence of the fact that the isomorphism
(2.2.5) sends the element 3 to

r r—1
BSD @ 2* @ et§(€) € C HYZs,V H*(Zg,V)* V*(1)*
P 00 0 8(E) € €y g, (N HHEs V) o, \) BB, V)" 90, V7 (1)),

and the lattice det;, ' (RT.(Zsg, T*(1))) to

r r—1
#H*(Zs, T)tors - /\ZPH1<Z57 T) ®z, /\Zp H?(Zs, T @z, T* ()" O

2.3. Bockstein regulator maps.

In this subsection, we shall introduce a canonical construction of Bockstein regulator
maps (see (2.3.3) below).

We first set some notations. Let F/Q be a finite abelian extension unramified outside
S and G its Galois group. Since all results and conjectures we study are of p-adic nature,
we may assume that [F': Q] is a p-power. In particular, since p is odd, F' is a totally real
field. The augmentation ideal

Ip :=ker(Zy[G] — Zy)
and the augmentation quotients

Qb = I/ Ig+
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for a non-negative integer a will play important roles. We remark that Q% is understood
to be Z,|G]/Ir = Zp.

For simplicity, in this subsection we shall abbreviate the ideal Ir to I.

At the outset we note that the tautological short exact sequence

0— I/I* = Z,|G)/I* = Z, — 0
gives rise to a canonical exact triangle of complexes of Z,-modules of the form
RE(OF,s,T) @5, I/1° = RU(OF,s,T) @5 (61 Zp|G)/1* = RU(Op5,T) @5 (1 Zp-

Next we recall (from, for example, [17, Proposition 1.6.5]) that R['(Op,s, T') is acyclic
outside degrees one and two and that there exists a canonical isomorphism in the derived
category of Z,-modules

RI(Ops,T) @5, 1) Zp ~ RT(Zs, T). (2.3.1)

Taking account of these facts, the above triangle gives rise to a morphism of com-
plexes of Z,-modules

dp : RU(Zs,T) = (RT(Zs, T) @5, 1/17)(1]
and hence to a composite homomorphism of Z,-modules

.7l (“DXH'(6r) 12 L 2
Bp: H'(Zs,T) ———= H*(R[(Zs, T) ®5 1/I7)
— H*(Zs,T) @z, I/1?

—  H(Zs,T)y ®z, 1/ 17, (2.3.2)

in which the equality is valid since RI'(Zg,T) is acyclic in degrees greater than two and
the last map is induced by the natural map from H?(Zg,T) to H*(Zs,T)xs.
We write

r r—1
Bocp : \, H'(Zs,T) = H'(Zs,T) @z, \| H*(Zs, T)s @z, Q"

for the homomorphism of Z,-modules with the property that

T

Bocp(y1 A= Ayp) = 3 (1) y; @ (Br(yn) A+ ABr(yim1) ABr(yis1) A+ A Br(yr))
i=1

for all elements y; of H'(Zg,T).
Then, each choice of basis element « of the (free, rank one) Z,-module
ZlH 2(Zs,T)s, gives rise to a composite ‘Bockstein regulator’ homomorphism

r Boc r—1 _
Bocpg : /\Z H'(Zs,T) = H'(Zs,T) ®z, /\Z H*(Zs, T)st @z, Q% '

P

1008, B (s, T) @2, Q3 Y, (2.3.3)



870 D. Burns, M. KURIHARA and T. SANO
where ¢, is the isomorphism /\ZlH %(Zs,T)s ~ Z, induced by the choice of z.

REMARK 2.7. If r =1 and x =1 is the canonical basis of /\ZlHQ(ZS, Tt = Zy,
then Bocp . = Bocp is simply equal to the identity map on H'(Zg, T).

2.4. The Generalized Perrin-Riou Conjecture.
In the sequel we shall write ., for the analytic rank ords—1 L(E, s) of E.

2.4.1. In [34], Perrin-Riou investigates relations between Kato’s Euler system and
the p-adic Birch and Swinnerton-Dyer conjecture. In particular, she formulates the
following conjecture.

CONJECTURE 2.8 (Perrin-Riou [34], see also [13]).

(i) The element . qzg is non-zero if and only if Tay is at most one.
(ii) If ran = Talg = 1, then in C, @z, HY(Zgs,T) ~ C, ®z E(Q) one has

Ls(E,1)

c,d?Q = Cd(C — ].)(d — ].)W

log,,(x) - x, (2.4.1)

where x is any element of E(Q) that generates E(Q)ys.

REMARK 2.9. This conjecture is a slight modification of, but equivalent to, Perrin-
Riou’s original formulation of the conjecture. By Kato’s reciprocity law (2.1.5), the
element . 42q is explicitly related to L(E, 1) and, in particular, does not vanish if 7,, = 0.
Perrin-Riou’s conjecture predicts that . 42g does not vanish even if r,, = 1 and, moreover,
that it should be explicitly related to the first derivative L'(F,1) via the formula (2.4.1).

By Remark 2.5, we immediately obtain the following interpretation of Perrin-Riou’s
conjecture in terms of the BSD element.

PROPOSITION 2.10.  If 7y, = Ta1g = 1 and @ = 1, then Conjecture 2.8(ii) is valid if
BSD

and only if one has ¢ 429 = c,dNy

REMARK 2.11.  An interpretation of Perrin-Riou’s conjecture in the same style as
Proposition 2.10 was previously given by Sakamoto and the first and the third authors
in [10, Section 6]. (In fact, a natural ‘equivariant’ refinement of this conjecture is also
formulated in loc. cit.)

2.4.2. We shall now give a precise formulation of Conjecture 1.1.

For this purpose we will always assume the validity of Hypothesis 2.2. We also use
the notation Ir and Q% introduced in Section 2.3.

We set r := 7,1, and write

vp HY(Zs,T) @z, Q" — H (OF,5,T) ®z, Q%"
— H'(Op,s,T) ®z, Z,[G)/ 1}, (2.4.2)
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for the composite homomorphism that is induced by the restriction map H'(Zg,T) —
HY(OF,s,T) and the natural inclusion Q" < Z,[G]/I. This map tr is actually in-
jective. (This follows easily from the facts that H'(Zg, T) is Z,-free and that H'(Zg,T)
identifies with the submodule H'(Opg,T)¢ of G-invariant elements in H'(Ops,T)
(since H°(Zg,T) vanishes).)

Motivated by constructions of Darmon in [16] and [15] (relating to cyclotomic units
and to Heegner points respectively), we define the ‘Darmon norm’ of . 42r to be the
element of H'(Op,s,T) @z, Z,|G] obtained by setting

Nrjole,azr) = Z 0(cazr)®@o L.

ceG

We can now give a precise formulation of Conjecture 1.1. This prediction involves
the Birch and Swinnerton-Dyer element C,dntSD and Bockstein regulator map Bocp g

that were respectively defined in Sections 2.2 and 2.3.

CONJECTURE 2.12 (the Generalized Perrin-Riou Conjecture).  Set r := ra,. Then
for each Z,-basis element x of /\ZlHQ(ZS,T)tf the following claims are valid.

(i) The element . anBSP belongs to /\ngl(Zs,T).

(ii) The image in H(Op,s,T)®z, Lp|G]/ I} of the Darmon norm N q(c,azr) of c,azr
BSD

s equal to Lp (BOCFym(c,dnm ))
REMARK 2.13.
(i) Proposition 2.6 shows that Conjecture 2.12(i) is implied by the validity of
BSD,(E).
(ii) Assume 7y, = 1 and that £ = 1 in Ag_lHQ(ZS,T)tf = Zp. Then in this case
one has ’

Nejole.azr) = Npjgleazr) in H'(Op,s,T) ®z, Z,[G)/Ir ~ H' (OF,s,T),

where Np/g := > ;0. In particular, since Corp/qg(c,a2r) = ca2g and Bocpg is
the identity map on H'(Zg,T) (by Remark 2.7), Conjecture 2.12 is equivalent in this
case to an equality 420 = C’dnzBSD. From Proposition 2.10 it therefore follows that if
Tan = Talg = 1 then Conjecture 2.12 is equivalent to Perrin-Riou’s conjecture (as stated
in Conjecture 2.8(ii)). This observation proves Theorem 1.5 and also motivates us to
refer to Conjecture 2.12 as the ‘Generalized Perrin-Riou Conjecture’.

REMARK 2.14. The formulation of Conjecture 2.12 can also be regarded as a nat-
ural analogue for elliptic curves of the conjectural ‘refined class number formula for
G, concerning Rubin—Stark elements that was originally formulated independently by
Mazur and Rubin [28, Conjecture 5.2] and by the third author [39, Conjecture 3] and
then subsequently refined by the present authors in [6, Conjecture 5.4].

REMARK 2.15. It is straightforward to show that the element BOCF,w(C’danSD),
and hence also the validity of Conjecture 2.12(ii), is independent of the choice of basis
element x.
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REMARK 2.16. In Section 4.1 we will reinterpret Conjecture 2.12 in terms of a
natural ‘Darmon-type’ derivative of . 42zp.

2.5. An algebraic analogue.

We now formulate an analogue of Conjecture 2.12 that is more algebraic, and ele-
mentary, in nature.

To do this we recall that if III(E/Q) is finite, then the Birch and Swinnerton-Dyer
formula for E predicts that

M = #I1(E/Q) - Tam(E) - QT - Ry

Ls(®1) = FEQ)L, !

(2.5.1)
LeS\{oo}

where Q7 is the usual real Néron period of E, L, is the standard Euler factor at ¢ of the
Hasse-Weil L-function (so that ([[,cg\ (o) Le)L7(E,1) = Lg(£,1)) and Tam(E) is the
product of Tamagawa factors.

DEFINITION 2.17.  Set r := ra),. Then for each element x of /\&ZIHQ(ZS, V) the

algebraic Birch and Swinnerton-Dyer element ni& = n2l8(¢, S) of the data &, S and « is
the element of C, ®z, /\ngl (Zs,T) obtained by setting

#UI(E/Q) - Tam(E) - Q1 - Ry
II FEQ2,

Ma® = AT (€70 ® z)

LeS\{oo}

The ‘(¢, d)-modified algebraic Birch and Swinnerton-Dyer element’ of the given data is
then defined by setting

C,dn;ﬁg =cd(c—1)(d—1) - nilg.

REMARK 2.18. It is clear that, if & is non-zero, then the Birch and Swinnerton-Dyer
formula (2.5.1) is valid for E if and only if the elements 728 and . 4n%'® are respectively

equal to the Birch and Swinnerton-Dyer elements nE5P and . 4nESP from Definition 2.4.

An easy exercise shows that if « is a Zp-basis element of A2;1H2(ZS,T)tf, then
there is an equality of lattices

Zp : n;]g = #H2(ZS7T)tors ° /\Z Hl(ZS,T) (252)

and hence 7% belongs to Nz, H' (Zs,T).
Upon combining this fact with Remark 2.18, one is led to formulate the following
algebraic analogue of Conjecture 2.12.

CONJECTURE 2.19 (the refined Mazur-Tate conjecture).  Set r := ra,. Then for
each Zy-basis element x of /\Zle(ZS,T)tf the image in H*(Op,s,T)®z, L,|G]/I} of
Nrg(eazr) is equal to Lp (BocF,m(Cydnglg)).
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REMARK 2.20. We refer to this conjecture as a ‘refined Mazur—Tate conjecture’
since in the complementary article [9] it is proved (in general, modulo standard assump-
tions concerning the non-vanishing of p-adic regulators) that, under mild and natural
hypotheses on E at p, the equality predicted by Conjecture 2.19 in the setting of the
cyclotomic Z,-extension of Q (see Conjecture 4.15 below) implies the p-component of the
congruences for modular elements that are conjectured by Mazur and Tate in [29]. This
fact is in turn a key ingredient in the approach used in [9] to obtain the first (uncondi-
tional) theoretical evidence in support of the conjecture of Mazur and Tate for elliptic
curves of strictly positive rank.

3. Fitting ideals and order of vanishing.

In this section we shall discuss a further arithmetic property of Kato’s zeta elements
and, in particular, use it to prove Theorem 1.3.

Throughout we fix F', G and Ir as in Section 2.3 and continue to assume that
H'(Zs,T) is Z,free. However, unless explicitly stated, in this subsection we do not
need to assume either that ra, > 0 or that III(E/Q)[p*] is finite.

3.1. A ‘main conjecture’ at finite level.
We write m for the conductor of F' and set

teq = cd(c—o.)(d—0q) € Zp|G],

where o, is the element of G obtained by restriction of the automorphism of Q(u,,,) that
sends (,, to (2.

We then propose the following conjecture involving the initial Fitting ideal of the
Zy|G)-module H*(Ops,T).

CONJECTURE 3.1.
{(I)(c,dZF) ‘ P c HOII]ZP[G] (H1(0F75, T), ZP[G])} = tqd . Fitt%p[G] (H2(0F73, T))

REMARK 3.2. Conjecture 3.1 is analogous to the ‘weak main conjecture’ for mod-
ular elements that is formulated by Mazur and Tate [29, Conjecture 3]. (In fact, since
our conjecture predicts an equality rather than simply an inclusion, it corresponds to a
strengthening of [29, Conjecture 3]). It is also an analogue of the conjectures [6, Conjec-
ture 7.3] and [8, Conjecture 3.6(ii)] that were formulated by the present authors in the
setting of the multiplicative group.

The prediction in Conjecture 3.1 can be studied by using the equivariant theory of
Euler systems developed by Sakamoto and the first and third authors in [10]. In this
way, the following evidence for Conjecture 3.1 is obtained in [10, Theorem 6.11].

PROPOSITION 3.3.  Assume that the following conditions are all satisfied.
(a) p> 3 (see Remark 1.4 for p=3);

(b) LL(E/F)[p] is finite;
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(c) the image of the representation Gg — Aut(T,(E)) ~ GL2(Z,) contains SLa(Z,);
(d) E(Qq)[p] vanishes for all primes £ in S.

Then for any homomorphism ® : H'(Ops,T) — Z,[G) of Z,[G]-modules one has
(I)(c,dZF) S Fitt%p te] (H2(OF75, T))

3.2. The proof of Theorem 1.3.

In the rest of this section, we assume the conditions (a), (b), (c¢) and (d) in Theo-
rem 1.3 (which are the same as those in Proposition 3.3). In particular, E[p] is irreducible
by (c), and we may assume T = T,,(E).

3.2.1. The connection between Conjecture 3.1 and Conjecture 1.1(i) is explained
by the following result.

PROPOSITION 3.4.  Assume that E(F)[p] vanishes and TU(E/Q)[p™>] is finite. Set
a :=max{0, 7.z — 1} and define a Zy[G]-submodule of If. by setting

Irsa = #H*(Zs, T)ors - I + I3
Then Ng/q(c.azr) belongs to HY(Opgs,T) ®z, IF,5,a whenever one has
®(c,azr) € Fitty (g (H*(Or,s,T)) (32.1)
for all ® € Homy, ¢1(H' (Op,s5,T), Zp[G]).

PROOF. Set M := H1(0F75, T) and JF,S = Fitt%p[G] (H2(0F75, T))
Then there exists a canonical isomorphism of Z,-modules

v : Homg, (M, Z,) = Homgz, | (M,Z,[G]); ¢ — Z gp(a(—))a‘l.
ceG

Hence, for every ¢ € Homgz, (M, Z,), one has

(¢ ® 1) (Nrjgleazr)) = t(d)(c.azr) € Jrs. (3.2.2)

Here ¢ ® 1 denotes the map M ®z, Zy[G] — Z,[G] induced naturally by ¢ so that the
equality follows directly from a comparison of the definitions of Nr/g(c,q2r) and ¢, and
the containment in Jp g is an immediate consequence of (3.2.1).

Since E(F)[p] is assumed to vanish, the Z,-module M is free. We fix a basis
{zi}1<i<n of M and write Np/g(c,a2r) as a sum

Nrjgleazr) =Y 2 @1;
j=1

with each t; € Z,[G]. Then, with {z]}i<i<, denoting the corresponding dual basis of
Homgz, (M, Z,), for every i the containment (3.2.2) (with ¢ = z7) implies that
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ti=(x;®1) Z$j Qt; | = (2] ® 1)(NF/Q(c,dZF)) € Jrs
j=1

and hence also that Np/q(c,a2r) € M ®z, Jr,s.
To complete the proof it is therefore enough to prove an inclusion

Jrs CIrs.a. (3.2.3)

To do this we note that H(Op s, T) vanishes for all i > 2 and hence that the natural
corestriction map H2(Op 5, T) — H?*(Zg,T) is surjective.

In addition, since III(E/Q)[p>] is assumed to be finite, the Z,-rank of H?(Zg,T)
is equal to a and so the Z,-module H?(Zsg,T) is isomorphic to H*(Zg, T)ors ® Z4.

The corestriction map therefore induces a surjective homomorphism of Z,[G]-
modules

H?*(Ops,T) - H*(Zs, T )tors & Zs,
and hence an inclusion of Fitting ideals
Jr,s = Fitty, (¢ (H*(Or.s,T))
C Fitt) o) (H*(Zs, T)tors ® Z5) = Fitt) 6 (H*(Zs, T)rors) - I

To deduce (3.2.3) from this it is thus enough to note the image of
Fitt%p (G] (H?*(Zs, T)tors) under the natural map Z,[G| — Z,[G]/Ir ~ Z, is equal to

Fitty ((H*(Zs,T)tors)c) = Fitty (H*(Zs,T)tors) = #H?(Zs, T)tors - Zp- O

REMARK 3.5. The above argument also shows the validity of the containment
(3.2.1) would imply that

®(c,q42r) € I for every ® € Homy, 6)(H (OF,s,T), Zy[G]). (3.2.4)

This prediction constitutes an analogue for Kato’s Euler system . 4zr of the ‘weak van-
ishing’ conjecture for modular elements that is formulated by Mazur and Tate in [29,
Conjecture 1].

3.2.2. If the algebraic rank r := r,, of E over Q is strictly positive, then the
integer a in Proposition 3.4 is equal to 7 — 1 and so one has I = I;;_l.

One therefore obtains a proof of Theorem 1.3 directly upon combining the results
of Propositions 3.3 and 3.4.

4. Derivatives of Kato’s Euler system.

In this section, we shall define a canonical ‘Darmon derivative’ . gxr of Kato’s zeta
element . gzF and use it to reinterpret the conjectures formulated above.

In particular, in this way we are able to formulate more explicit versions of the
Conjectures 2.12 and 2.19 for subfields F' of the cyclotomic Z,-extension of Q.
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Throughout this section, we assume that H(Zg,T) is Z,-free and IU(E/Q)[p>] is
finite.

4.1. Darmon derivatives.
We use the notations in Section 2.3.

4.1.1. We shall use the fact that the complex
CF = RHOIIIZI7 (RFC(Oﬂs, T*(].)), Zp[fﬂ)

is a perfect complex of Z,[G]-modules that is acyclic outside degrees zero and one, and
that there exists a canonical isomorphism

H°(Cp) ~ H' (Ops,T) (4.1.1)
and a canonical exact sequence
0— H*(Op;s,T) = H' (Cp) = Zp|G] @z, T*(1)"* = 0. (4.1.2)

(See [11, Proposition 2.22].)

In particular, by [11, Proposition A.11(i)], one finds that Cr is represented by a
complex of the form Pr — Pr, where Pp is a finitely generated free Z,[G]-module and
the first term is placed in degree zero.

In this way we obtain an exact sequence of Z,[G]-modules

0— HY(Ops,T) = Pp 15 Pp — HY(Cr) — 0. (4.1.3)

Then (2.3.1) implies that Cq is represented by the complex Py f;% Py obtained by

taking G-invariants of the complex Pg ELIN Pr and hence that there is an exact sequence
0= H\(Zs,T) — Py 2% Py — H'Y(Cg) — 0. (4.1.4)

We use this sequence to regard H'(Zg, T) as a submodule of Py. We also note that,
just as in (2.4.2), there are natural injective homomorphisms

ur : Py ®z, Q% < Pp ®z, Q% — Pr @y, L,|G) /I3
(where, we recall, Q% denotes I%/I%H).

DEFINITION 4.1.  Set a := max{0, ra; —1} and assume that the containment (3.2.4)
is valid for all ® in Homy, ¢(H'(Op,s,T), Zy[G]). Then [6, Proposition 4.17] implies
the existence of a unique element . 4k of Py ®z, Q% with the property that

tr(c,abr) = Npjole,azr)

in Pr ®z, Zy, [G]/I%H. We shall refer to . gk as the Darmon derivative of . 42p.
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4.1.2. Conjecture 2.12 predicts that the element . 457 belongs to the image of the
(injective) homomorphism

H'(Zs,T) ®z, Q% — Py ®z, Q%. (4.1.5)

At this stage, however, we can only verify this prediction in certain special cases.

In the next section we shall verify that it is valid if F' is contained in the cyclotomic
Zp-extension Qs of Q. In the following result we record some evidence in the general
case.

Before stating the result we note that the condition

D(.q2rF) € Fitt%p[c] (H*(Op,,T)) for every ® € Homgz, () (H'(Op,s,T),Z,[G])

is valid whenever the data F, F,S and p satisfy the conditions (a), (b), (c) and (d) of
Proposition 3.3 and that, in general, its validity would follow from that of Conjecture 3.1.

We further note that claim (ii) of the following result constitutes a natural analogue
for zeta elements of one of the main results of Darmon in [15, Theorem 2.5] concerning
Heegner points.

THEOREM 4.2. Set z:=q2F and k := . gkp. If one has
O(z) € Fitt%p[G](H2((9pys,T)) Jor every ® in Homy, c)(H'(Op,s,T), Zy|G]), then the

following claims are valid.

(i) If pY is the minimum of the exponents of the groups #H?*(Zs,T)tors - Q% and
H2%(Zs, T)tors, then p" - Kk belongs to the image of the map (4.1.5).

(ii) The image of k under the natural map
Py ®z, QF — Po ®z, Q% @2 Z/(p)
belongs to the image of the map
HY(Zs,T) ®z, Q% ®z Z/(p) = Py ®z, Q% ®2 Z/(p)
induced by (4.1.5).

PROOF.  Set Q% := #H2(Zg, T)tors Q% C Z,|G)/I%. Then the sequences (4.1.3)
and (4.1.4) combine to give a commutative diagram

a a f a
0—= H'(OFs,T) 1z, ZP[G]/IF+1 — Pr @z, ZP[G]/IF+1 —> Pr ®z, ZP[G]/IF+1

B e e

0 —— H'Y(Zs,T) @, @“F Fo ®z, @‘fw - Py ®z, @%

in which the maps 7y are obtained by restricting ¢f.
Then the argument of Proposition 3.4 implies that

K € Py ®z, Qp C Py ®z, Qp, (4.1.6)
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and so the commutativity of this diagram implies that

ir(fo(k)) = frr(k) = fr(NFg(z) =0

and hence, since i is injective, that f@(f-@) =0.
Now, the exact sequence (4.1.4) induces exact sequences

0— HY(Zs,T) ®z, Q% — Po ®z, Q% X% im(fg) ®z, Q% — 0
and
0 — Tory” (H*(Zs, T)iors, Q%) 22 im(fo) ®z, Q% 2% Py @2, Q%

with the property that ug o p; is equal to f@. (The first sequence here is exact since the
Z,-module im(fg) is free and the second is exact as consequence of the fact that (4.1.2)
identifies H?(Zg, T)tors With H*(Cq)tors.)

These sequences combine with the equality fg(x) = 0 to imply j; (k) belongs to the
image of uo in the lower sequence above.

Thus, since the definition of p~ ensures it annihilates the group
Tor?” (HQ(ZS,T)torS,@%), it follows that w;(p" - k) vanishes, and hence that pV - &
belongs to H(Zs,T) @z, Q% C H'(Zs,T) ®z, Q%. This proves claim (i).

Turning to claim (ii), we note first that if H?(Zg, T)ors is trivial, then claim (i)
implies k belongs to the image of the map (4.1.5) and so claim (ii) follows immediately.

On the other hand, if H?(Zg, T )tors is non-trivial, then é% is contained in p - Q%
and so (4.1.6) implies that the projection of x to Py ®z, Q% ® Z/(p) vanishes. In this
case, therefore, the result of claim (ii) is also clear. 0

REMARK 4.3. If G has exponent p and 7,1, > 0, then a > 0 and so Q% is annihilated
by p. In any such case, therefore, Theorem 4.2(ii) implies (under the stated hypotheses)
that x belongs to the image of the map (4.1.5). In general, the argument of Theo-
rem 4.2 shows that the group H2(ZS7T)t0rS constitutes the obstruction to attempts to
deduce this containment from Euler system arguments (via the result of Proposition 3.3).
To describe this obstruction more explicitly we assume that E[p] is an irreducible Gg-
representation. In this case, one can assume T' = T,(E) and then one sees that the
obstruction H?(Zg, T )tors sits in the exact sequence

EQ ®2Z,» @ ImBQ)/p" = (H*Zs,T)iors) — MI(E/Q)[p] =0
£eS\{oo} ™
obtained from global duality, in which the first arrow denotes the natural diagonal map.

4.2. Iwasawa—Darmon derivatives.
To consider the above constructions in an Iwasawa-theoretic setting we shall use the
following notations for non-negative integers n and i:

e Q,: the n-th layer of the cyclotomic Z,-extension Qo /Q (i.e., the subfield of Qo
such that [Q, : Q] = p™),
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Gn = Gal((@n/@)7
I = ker(Zy[Gr] = Zy),

Q% :=I2/I¢"! with a := max{0,r.g — 1} as above,
e H :=H(Oq,.s,T),

® . din ‘= ¢,d*Q,»

I':= Gal(Qu /Q),

o A:=Zp[[l]],

o 1= ker(Z,[[T]] > Z,),
° Qa — Ia/[a-‘rl,
o Hi:= T&nn HE.

4.2.1. We first verify the prediction (3.2.4) in this setting.

PROPOSITION 4.4.  For any non-negative integer n, the element .4z, belongs to
I¢ - H}.
In particular, the weak vanishing order prediction of (3.2.4) holds for the field F =

Q. for every n.

PROOF. We use Kato’s result on the Iwasawa main conjecture [23, Section 12].
By [23, Theorem 12.4(2)], we know that Q @z H! is a free Q ®z A-module of rank one.
This together with the injectivity of H!/IH' — H'(Zg,T) and the assumption that
HY(Zg,T) is Z,-free implies that H' is a free A-module of rank one. Since

H? — H*(Zg,T)y ~ 78

is surjective, the characteristic ideal of H? is in I®. Therefore, the characteristic ideal
of H'/(..a200) is also in it by [28, Theorem 12.5(3)], where . 4200 := (c.a2n)n (note that
(c.d#n)n is in the inverse limit lim | H! =H?'). This shows that

edZoo € T - HY,

which implies the conclusion of Proposition 4.4. O

By using Proposition 4.4, we can now explicitly construct the Darmon derivative of
c.d?n. To do this we fix a topological generator v of I' and denote the image of v in G,
by the same symbol. In view of Proposition 4.4 one has

c,d?n = (7 - 1)awn

for some choice of element w,, of H.
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We then compute

NQW/Q(C,dZn) = Z J(C,dzn) ®0—71

ceGy,

= Z oy —1)w, @ ?
oeGy,

=Y ow,@0 ' (y-1)" € H} @y, If.
oeGy,

Thus, in H} ®z, Q%, we have

Nag.,./q(c,a2n) = Z ow, ® (v —1)%.

oceGy

Hence, the derivative in Definition 4.1 is explicitly given by
e,dtin = Corg, jo(wn) ® (v —1)* € H; ®z, Qn- (4.2.1)

One easily sees that this element is well-defined, i.e., independent of the choice of w,,.
Furthermore, the collection (¢ ,4kn)n is an inverse system, so we can give the following
definition.

DEFINITION 4.5.  We define the Twasawa—Darmon derivative of Kato’s Euler sys-
tem by
¢, dRoo = (c,d"fn)n S @H& ®Zp Q?L = Hl(ZS,T) ®Zp Qa'

n

We also define the normalized version

= ey e © B V) 02, Q°
REMARK 4.6. The Iwasawa-Darmon derivative can be regarded as a natural ana-
logue of the ‘cyclotomic p-units’ that are defined by Solomon in [43] in the setting of
the classical cyclotomic unit Euler system. In a more general setting, it is an analogue
of the derivative k of the (conjectural) Rubin-Stark Euler system that occurs in [7,
Conjecture 4.2].

REMARK 4.7.  If 7, is at most one, then a = 0, Q* = Z, and in H'(Zg, V') one has

1
Koo = 2Q i= - DEd-1 “¢,d?Q

so that Definition 4.5 gives nothing new in this case.

4.3. The Generalized Perrin-Riou Conjecture at infinite level.
In this section we assume Hypothesis 2.2 in order to state an Iwasawa-theoretic
version of Conjecture 2.12. We set 7 := r4ig.
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4.3.1. To do this we fix a Z,-basis x of /\ZIHQ(ZS7 T)ts and write
Bocn,s = Bocg, o i \| H'(Zs,T) = H'(Zs,T) @2, I;"/1I;
P

for the Bockstein regulator map (2.3.3) for the field Q,,, as defined in Section 2.3.
As n varies these maps combine to induce a homomorphism

lim Bocy, - /\;le(ZS,T) — HY(Zs,T) @z, im I, /I = H(Zs,T) ©2, Q"
and hence also, by scalar extension, a homomorphism
"ot 1 1
BoCoo s : Cp ®3, /\Z HY(Zs,T) = Cp @z, H(Zs,T) ®z, Q""" (4.3.1)

We recall from Definition 2.4 the Birch and Swinnerton-Dyer element nE5P that is
constructed (unconditionally) in the space C, ®z, /\2;, HY(Zs,T).

CONJECTURE 4.8. One has

Koo = BOCoo & (75°P)

in Cp @z, HY(Zs,T) @z, Q"""

REMARK 4.9. In contrast to the more general situation considered in Conjec-
ture 2.12 we do not here need to assume n55P belongs to /\szl(Zs, T). This is because
the group Q" ! is Z,-torsion-free and so one loses no information by defining the Bock-
stein homomorphism Bocs,  on C,-modules. In particular, if » = 1, then the discussion
of Remark 2.13 shows that Conjecture 4.8 is equivalent to Perrin-Riou’s original conjec-
ture. Finally, we observe that Conjecture 4.8 is a natural analogue for elliptic curves of
the conjecture formulated for the multiplicative group in [7, Conjecture 4.2].

4.3.2. We shall now give an explicit interpretation of Conjecture 4.8 in terms of
the leading term LE(E,1) (see Proposition 4.14 below).

Take a Z-basis {x1,...,2,} of E(Q)y. We define an element x € /\é;lHQ(ZS,V)
as the element corresponding to

1021 ® (2} A+ Aap) € Qy @z, (E1(Q) @2 ) E(Q)")

under the isomorphism
r—1 9 r *
Ny, H(@s.V) = Q, 0z, (E:1(Q)) 92 \ EQ)")

induced by (2.2.2). (Here we regard 1 ® x; € Q, ®z F(Q) as an element of Q, ®z,
E1(Qp).) We note that, by linearity, the definition of the Bockstein regulator map
(4.3.1) is extended for any element in /\é;lH %(Zs, V), which is not necessarily a Z,-

basis of /\ZlH2 (Zg,T). Thus Bocs o is defined for above x.
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Let w be the fixed Néron differential and log, : F(Q) — E(Q,) — Q, the formal
logarithm associated to w. We give the following definition.

DEFINITION 4.10. We define the Bockstein requlator associated to w by setting
REOC = log,,(21) - Bocs z(x1 A - Ap) € (Qp ®z E(Q)) ®2z, QL

(Here we identify H'(Zs,V) = Q, ®z E(Q) by (2.2.1).) One can check that this does
not depend on the choice of the basis {x1,...,2,} of E(Q).

REMARK 4.11. The Bockstein regulator defined above is closely related to the
classical p-adic regulators: for details, see Theorems 5.6 and 5.11 below.

REMARK 4.12.  When r =1, then Bocy o is the identity map and one has
RB¢ = log () -z € Q, ®z E(Q)
for any generator x of E(Q)xs.

REMARK 4.13. Let Q¢ be as in (2.1.4) and Re the Néron—Tate regulator. Then
one can check that

LY(E, 1
o (12°0) = Gl R

In fact, by the definition of the Birch and Swinnerton-Dyer element, one checks that

BSD __ LE(E, 1)

= T 0 R log, (1) - 21 A Ay (4.3.2)

By Remark 4.13, we obtain the following interpretation of Conjecture 4.8.

PROPOSITION 4.14.  Conjecture 4.8 is valid if and only if one has

— Lg(E’1> Boc
Koo = Q¢ R R,
in Cp ®z, H'(Zs,T) ®z, Q"' ~ (C, 2 E(Q)) @z, Q"

4.3.3. Using Proposition 4.14 we state an Iwasawa-theoretic version of the ‘alge-
braic’ variant Conjecture 2.19 of Conjecture 2.12. This conjecture is therefore a natural
‘algebraic’ variant of Conjecture 4.8.

We recall that L, denotes the Euler factor at a prime £ so that one has

I Zc| L (B1) =L5(E D).
LeS\{oo}
We also write vg for the non-zero rational number that is defined by the equality

Q+ = ’Ug . Qg (433)
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where Q7 is the real Néron period that occurs in (2.5.1).

CONJECTURE 4.15.  IfIII(E/Q) is finite, then in (Q, ®z E(Q)) ®z, Q" one has

#HI(E/Q) : Tam(E) oc
we =ve | e | gy =R

LeS\{oo}

REMARK 4.16. One checks easily that Conjecture 4.15 is equivalent to an equality
Koo = BOCoo & (nilg),

where  is any non-zero element of /\&;lH 2(Zs,V) and n¥® is the algebraic Birch and

Swinnerton-Dyer element that is defined (unconditionally) in Definition 2.17.

REMARK 4.17. In Corollary 6.6 below we will show that Conjecture 4.15 is a
refinement of the p-adic Birch and Swinnerton-Dyer formula (from [30, Chapter II,
Section 10]). Similarly, in Corollary 6.7 we will show that Conjecture 4.8 leads to an
explicit formula for the leading term of the p-adic L-function (which we will refer to as
a ‘p-adic Beilinson formula’).

A key advantage of the formulations of Conjectures 4.8 and 4.15 is that they do
not involve the p-adic L-function and so are not in principle dependent on the precise
reduction type of E at p. In particular, the conjectures make sense (and are canonical)
even when F has additive reduction at p.

5. p-adic height pairings and the Bockstein regulator.

In this section, as an important preliminary to the proofs of Theorem 1.9 and Corol-
laries 1.11 and 1.12, we shall make an explicit comparison of the Bockstein regulator
RB°¢ defined in Definition 4.10 with the various notions of classical p-adic regulator (see
Theorems 5.6 and 5.11 below).

In the following, we say ‘p is — if E has — reduction at p. For example, ‘p is good
ordinary’ means that F has good ordinary reduction at p.

In this section, we assume that E does not have additive reduction at p.

We shall use the same notations as in Sections 2 and 4.

5.1. Review of p-adic height pairings.
In this section, we give a review of the construction of p-adic height pairing using
Selmer complexes.

5.1.1. The ordinary case. Suppose first that p is ordinary, i.e., good ordinary
or multiplicative. In this case we follow Nekovai’s construction of a p-adic height pair-
ing in [32, Section 11]. (It is possible to treat this case in a more general context in
Section 5.1.2 below, but it requires the theory of (¢, I')-modules.)

We recall the definition of Nekovéi’s Selmer complex.

To do this we note that, since p is ordinary, we have a canonical filtration FTV C V
of Gg,-modules (due to Greenberg, see [19]).
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We set 7T := T'N FTV. For any non-negative integer n, we also denote the unique
p-adic place of Q,, by p.

Then, following the exact triangle given in (the third row of) [32, (6.1.3.2)], we
define the Selmer complex of T" by setting

RL;(Qy, T) := Cone R[(Og, 5, T) = RO(Qup, T/F*T) & ) RT/¢(Quo.T)|[-1].
v€Sg,\{r}

(The local conditions are as in [32, (7.8.2)].)
We set

Hi(Q,,T) := H'(RU4(Q,,T)) and H}(Q,,V) = Q, @z, Hi(Q,, T).
We have a natural isomorphism
RT(Qu.T) @5, 6 Zp = RL(Q,T)

(see [32, Proposition 8.10.1] or [17, Proposition 1.6.5(3)]), and so we can define (—1)-
times the Bockstein map

HHQ,T) — HHQ,T) &z, I,/I?

associated to the complex ﬁ‘f (Qn,T) (in the same way as (2.3.2)). Taking im and
Qp ®z, —, we obtain a map

B:HHQ,V) = H}Q,V) @, I/I% (5.1.1)
Combining this map with the global duality map
H}(Q.V) = H}Q.V)"
(see [32, Section 6.3]), we obtain a pairing
(= =)p: HHQ,V) x H}(Q,V) = Q, @z, [/ 2.

Noting that there is a natural embedding Q, ®z E(Q) — PNI}(Q, V) (see Remark 5.1
below), we obtain the p-adic height pairing

(= =)p: E(Q) x E(Q) - Q, ®z, I/1*.

REMARK 5.1. If p is good ordinary or non-split multiplicative, then ﬁ}(Q,V)
coincides with the usual Selmer group H}(Q,V) (see [32, Section 0.10]). If p is split
multiplicative, then we have a canonical decomposition

H{(Q, V)~ H{(QV)&Q,

(see [32, Section 11.4.2]). In any case, we have a canonical embedding Q, ®z E(Q) —
H{(Q,V).
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REMARK 5.2. For comparisons of the above p-adic height pairing with the classical
ones, see [32, Sections 11.3 and 11.4].

5.1.2. The supersingular case. Suppose that p is good supersingular. In this
case we follow the construction of the p-adic height pairing due to Benois [2]. His
construction uses Selmer complexes associated to (¢, I')-modules, which was studied by
Pottharst [35]. See also the review in [3].

We fix one of the roots o € @p of the polynomial X2 — a,X + p. We set

L:=Qu(c).
We also set
Vi :=L®g,V and Dy := Dewys(VL) = Dar(Ve) ~ L ®q Hir(E/Q),

which is endowed with an action of the Frobenius operator ¢ and also a natural decreasing

filtration {D? };cz such that DY ~ L @ I'(E, QlE/Q). We set

tV,L = DL/D% ~ [ ®Q Lle(E)

Let N, be the subspace of Dy, on which ¢ acts via ap~!. Explicitly, IV, is the subspace
generated by p(w) — a~'w € Dr. Then the natural projection D;, — D /D% =ty
induces an isomorphism

Ny =ty (5.1.2)

A subspace of Dy, with this property is called a ‘splitting submodule’ in [2, Section 4.1.1].
We shall define a p-adic height pairing

(= =)p = (= —)pa : B(@Q) x E(Q) = L®gz, I/I°

Since there is a natural embedding Q, ®z E(Q) — H} (Q, V), it is sufficient to construct
a pairing

(= =)p t HHQ,V) x H}{(Q,V) = L@y, I/I*.

We recall some basic facts from the theory of (¢, I')-modules. Let ]D)Iig(VL) denote
the (¢, T'g,)-module associated Vi (where I'g, := Gal(Qp(pp>)/Qp)). (See [2, Theo-
rem 2.1.3].) By [2, Theorem 2.2.3], there is a submodule D, C DIig(VL) corresponding
to N, C Dr. (Note that N, has the filtration induced by that of Dy.) For a general

(¢,I'g,)-module D, one can define a complex (the ‘Fontaine-Herr complex’)

RT'(Q,, D),

which is denoted by C;,’,mp (D) in [2, Section 2.4]. When D = ]D)Iig(VL), this is natu-
rally quasi-isomorphic to R['(Qy, V1) (see [2, Proposition 2.5.2]). So there is a natural
morphism in the derived category of L-vector spaces

RT(Zs, Vi) — RU(Qp, Vi) ~ RD(Q,, Df, (V1)) — RD(Qp, DI, (V1) /Dy).

rig rig
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We define the Selmer complex by
RL4(Q, Vz) = Cone [RT(Zs, Vi) — RL(Q,, DI, (V1) /Do) & €D RT,4(Qe. Vi) | [-1).
£eS\{p}

(We adopt [3, (2.6)] as the definition.) We set f[}}(Q,VL) = Hi(ﬁf(Q,VL)). It is
known that

H}(QVy) ~ HF(Q, Vi).
(See [2, Theorem III].)
We next study the Iwasawa-theoretic version. We set

H = {f(X) = i enX™ € L[[X]] | f(X) converges on the open unit disk} .

Then, for a general (¢, I'g,)-module D, one can define an Iwasawa cohomology complex
of H-modules

RI'w (Qp, D).

(See [2, Section 2.8].) We fix a topological generator v € I'. Then I' acts on H by
identifying X =y — 1. We set

Vi=V,®LH,

where Gg acts on H via

(e ginaling .}

When D = ]D)mg(VL), we have a natural quasi-isomorphism RI'1y(Q,,D) ~ RI'(Q,, V1)
(see [2, Theorem 2.8.2]). Thus there is a natural morphism in the derived category of
‘H-modules

RT(Zs, V1) = RU(@,, V1) = RUp (@, Dl (V1)) = RT3 (Qy, Dl (Vi) /D).
We define the Iwasawa Selmer complex by

RT 11 (Q, V1) := Cone |RT(Zs, V1) = RT1y (Q,, DL, (Vi) /Do) & €D RT4(Qe. V1) | [-1]-
£eS\{p}

We know the following ‘control theorem’
ﬁ‘fJW(Q,VL) ®|7'_[L": ﬁf(@, VL) (5.1.3)

(See [35, Theorem 1.12].)
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We now give the definition of the p-adic height pairing. Let Z := (X) be the
augmentation ideal of H. Note that Z/Z? is identified with L ®z, I/I?. From the exact
sequence

0—Z/T> = H/T*> - L—0,
we obtain the exact triangle
RL 11w (Q, Vi) ®%, Z/T? — RT 1 (Q, Vi) ®% H/T? — R 1 (Q, Vi) @4 L.

By the control theorem (5.1.3), we have

RL(Q. V1) ®% Z/T? — RUy1w(Q, Vi) @5 H/Z? — RL(Q, V7).
The (—1)-times connecting homomorphism of this triangle gives a map

H}Q,Vp) — H*(RT(Q, Vp) &k T/1°%) = H3(Q,Vy) ®1 T/
Composing this map with the global duality map

H(Q.Vi) = H}(Q, VL)'
(see [2, Theorem 3.1.5]), we obtain
H}Q,Vp) — H}(Q, V)" @, T/T*

This gives the desired p-adic height pairing.

REMARK 5.3. The above construction makes sense even when p is good ordinary.
In this case, « is canonically chosen so that ord,(«) < 1, and we can take N, to be
Derys(FV). One sees that the p-adic height pairing with this choice coincides with that
in Section 5.1.1.

REMARK 5.4. Comparisons of this p-adic height pairing with the classical ones are
studied in detail by Benois [2]. In particular, this p-adic height pairing coincides with
the one constructed by Nekovér in [31], which is used by Kobayashi in [26].

5.2. A comparison result.
We shall define the p-adic regulator and compare it with the Bockstein regulator
RBe¢. In this subsection, we assume Hypothesis 2.2.

5.2.1. Let L be the splitting field of the polynomial X? — a,X + p over Q,. Note
that L = Q, unless p is supersingular.
Let

(=, =)p  B(Q) x E(Q) = L®g, I/1?

be the p-adic height pairing defined above. (When p is supersingular, this depends on
the choice of a root a of X2 —a, X + p.)
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DEFINITION 5.5. The p-adic regulator
R,=R,0€L®z, Q"
is defined to be the discriminant of the p-adic height pairing, i.e.,
Ry, := det((zi, zj)p)i<ij<r
with {z1,...,2,} a basis of E(Q)¢s.
The p-adic height pairing induces a map

E(Q) x (Q,®z E(Q)) ®z, Q" " = L®z, Q"

(z,(a®y)@b) > a-b-(z,y),, (5.2.1)

which we denote also by (—, —),.
The following gives a relation between R, and RBec,
THEOREM 5.6.  For any = € E(Q) we have
<1:,RE°C>Z) =log,, () - R,.

5.2.2. The proof of Theorem 5.6 will be given in Section 5.2.3. However, we first
need to prove several preliminary technical results.

LEMMA 5.7.  The p-adic height pairing is symmetric, i.e.,
(z, y>p = (y, 33>p
for any z,y € E(Q).

PROOF.  See [32, Corollary 11.2.2] and [2, Theorem I] in the ordinary and super-
singular cases respectively. O

LEMMA 5.8.  The following diagram is commutative.

E(Q) —— (L ®z E(Q))* @z, 1/1?

. (2.2.2)
Lmn Bn i
L &g, H*(Zs,V) @z, 1/1?,

where the horizontal arrow is the map induced by the p-adic height pairing

= (Y= (2,9)p)

(For the definition of By, := By, , see (2.3.2).)
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PROOF. We first suppose that p is ordinary. We have the commutative diagram

ROA(Q,T) @% 1/I2 —= RUp(Q, T) @5 ) Zy|Gnl /12— RTH(Q, T)

| |

RL(Zs,T) @Y% In/I; —=RT(Oq,,s,T) ®% 1. LplGnl/ I — RU(Zs, T),

whose rows are exact triangles. The map £, is defined by the connecting homomorphism
of the bottom triangle. On the other hand, the p-adic height pairing is defined by
the connecting homomorphism of the top triangle. Thus the claim follows from the
functoriality of the connecting homomorphism, i.e., the commutativity of the diagram

HYQ.T) —— H}(Q.T) @z, I,,/I?
H1(257T) — > H2(ZS,T) ®Zp In/I72m

where the horizontal arrows are connecting homomorphisms.
Next, suppose that p is good supersingular. With the notations in Section 5.1.2, we
have the commutative diagram with exact rows

F/ﬁﬂf((@, Vi) ®% /7% — RD 1, (Q, V1) o5 H/T? — F/ﬁﬂf(Q, VL)
R[(Zs, V1) ®% T/T?> — RT(Zs,V 1) ®5, H/I? — RIU(Zs, V).

Since the map l&nn By, coincides with the map defined by the connecting homomorphism
of the bottom triangle (by Shapiro’s lemma), the claim follows by the same argument as
in the ordinary case. O

LEMMA 5.9. Let M and N be L-vector spaces of dimension r and r—1 respectively.
Suppose that an exact sequence

0NSME L0 (5.2.2)

and L-linear maps f: M — M* and g: M — N* are given. Assume the following.

(a) The diagram

s commutative.
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(b) The map f satisfies f(z)(y) = f(y)(z) for any x,y € M.

Then for any x € M the following diagram is commutative.

r A R
ANM ———= N\ M

() x

A N, M. (5.2.3)

w:

Mep \j ' N* —— Mo, \pM*

Here ¢ is the natural isomorphism induced by (5.2.2), and the left vertical arrow is defined
by

T

(/\Hg) (1 A Aay) = 3 (=1 F @ glan) A Aglaia) Ag(aipn) A Aglar).

i=1

PROOF. Let {z1,...,2,} be a basis of M and fix € M. Tt is sufficient to prove

f(x)odo (/\r—lg) (1 Ao Aay) = €@) - flan) A+ A fay).

We shall describe the left hand side explicitly. Using assumption (a), we have

r—1

5o</\

=3 2@ f(@) A A f(@ima) AN F(@ign) Ao A f(a). (5.2.4)
i=1

) iennn

Thus we have
f(x)odo (/\rlg> (x1 A+ Axy)
= Zf(x)(xi)'f(xl) N N f(@im) NEA f(zipa) Ao A f(y).

Suppose first that f is bijective. Then {f(z1),..., f(x,)} is a basis of M* and we
can write

{= Z%‘f(%’) in M*
i=1

with some aq,...,a, € L. By assumption (b), we have f(z)(x;) = f(z;)(z) and so we
compute
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S @) @) f@) A A f@i) AN F(miga) Ao A f(x)

= Zaif(xl)(x) Cf(z) A A flay)
=L(z)- f(z1) A A fz,).

This proves the lemma in this case.
Suppose next that f is not bijective. Then {f(x1),..., f(x,)} is linearly dependent
SO We may assume

f(z1) = Z a; f (%)

1=2

with some ao,...,a, € L.
We then compute

Zf(x)(xi)'f(flfl)/\"'/\f(fﬁv:—l)/\fAf(xiH)/\'“Af(xr)

=Y f@)(@) - f@) A A f@i) ALA f(ziga) A A flay)

—l—Zf (a)( Za]f i) | A flaa) Ao AN f(zim) NN f(zipr) Ao A f(zy)

=2

7201]0 1'7 E/\f(IQ) /\f(ﬂ?r)

+Zaz zi)(@) - f(@i) A f(w2) Ao A f(@im) NEA f@iga) A A f ()
=0.
Since A" f is also zero in this case, this proves the desired commutativity. 0

5.2.3. We are now ready to prove Theorem 5.6.
To do this we first apply Lemma 5.9 with M := L®z E(Q), N := L®qg, H*(Zs,V)*
and the exact sequence

0 L ®g, H2(Zs, V)" — L&z BE(Q) =2 L — 0,

which is obtained from (2.2.2) (so we let £ in (5.2.2) be log,,). We fix a Z,-basis of I /I?
and identify it with Z,. By letting
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M —= M5 x— (y— (z,9))
and
g:zl'&nﬁn:M%N*,
we see that assumptions (a) and (b) in Lemma 5.9 are satisfied by Lemmas 5.8 and 5.7

respectively.
Let {z1,...,2,} be a basis of E(Q)y C M. By the definition of R,, we have

(/\ f) Ty AN ANap)=Rp -] AN--- Nz € /\LM*.
On the other hand, we have

r—1

5o</\

where § is as in (5.2.3). This again follows from the definition of RE°¢. Hence, for any
z € E(Q), the commutativity of (5.2.3) implies

g) (e A Aay) = BB @ (@ A naf) e Mag \T M7, (5.25)

f(a)(RE) = U(x) - Ry,
ie.,
<J;,RE°C>p = log,,(z) - R.
This completes the proof of Theorem 5.6.

5.3. Schneider’s height pairing.

We now consider the case that p is split multiplicative. In this case, the classical
p-adic height pairing constructed by Schneider [40] is different from that of Nekovar
constructed above. Explicitly, Schneider’s p-adic height pairing

(=, =5 E(Q) x E(Q) = Q, &z, I/I?

is related to Nekovai’s height pairing (—, —), by

(0 0)5™) = tl(aly) — 2B 08y g, G.3)

where ¢, denotes the isomorphism

_ eve lo »

by Qp @z, I/T* 770 Q, @2, T 29% Q, @z, (14 pZy) —2 Qp, (5.3.2)
with Xcye the cyclotomic character, and ¢ € Q, is the p-adic Tate period of E. (See
[32, Theorem 11.4.6], where Schneider’s height is denoted by hL°™.) Note that, by
the so-called ‘Saint Etienne theorem’ of Barré-Sirieix, Diaz, Gramain and Philibert [1],
one has log,(qe) # 0 and so the above formula makes sense. Since the relation (5.3.1)
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>Sch

characterizes (—, we adopt it as the definition of Schneider’s p-adic height pairing.

DEFINITION 5.10. We define Schneider’s p-adic regulator
RECh €Q,®z, Q"
by the discriminant of Schneider’s p-adic height pairing, i.e.,

Sch ._ Sch
RPC = det((lri,xﬂpc )19‘73’9

with {z1,...,2,} a basis of E(Q)s.

We identify Q, ®z, I/1? = Q, via the isomorphism /,. By using the relation (5.3.1),
one checks that

(x1,21)p (T1,22)p -+ log,(z1) - (T1,20)p

Sch _ (w2, 21)p oo e logy(w2) <o (2 a)p
Rp Ry —

Zlng (x;) det

logp qaE) :
<l‘7-, 1‘1>p C C Ing(xT) C <l‘7-, 1‘7->p

where the vector (log, (x;)); is put on the i-th column in the matrix on the right hand
side. In fact, this follows from the elementary formula

ar a2 - b o any
T a9 e e b2 e aoy
det(ai; + cbib;) = det(ai;) + ¢ b; det
i=1
a'f‘l ... ... b'f‘ DR a'f‘"‘

(with the vector (b;); put on the i-th column). Furthermore, by (5.2.4) and (5.2.5), we
have

(T1,21)p  (T1,22)p -+ log,(z1) -+ (T1,24)p
- (T2, 1)y o logy () e (@2, 3)p
]%BOC ZZEE:Iriég(jet . . . 9
<xrv$1>p o logy (@) -e- <73rvxr>p
and hence we have
RSch =R — logw (REOC)
p TP .
log, (¢r)

From this and Theorem 5.6, we obtain the following.
THEOREM 5.11.  For any x € E(Q) we have

(z, RE°C>IS,Ch = log,,(x) - RIS)Ch.



894 D. Burns, M. KURIHARA and T. SANO

6. The generalized Rubin formula and consequences.

In this section we relate Conjectures 4.8 and 4.15 to the p-adic analogue of the Birch
and Swinnerton-Dyer conjecture formulated by Mazur, Tate and Teitelbaum in [30] (see
Corollaries 6.6 and 6.7).

In particular, we continue to assume in this section that E does not have additive
reduction at p.

6.1. Review of the p-adic L-function.

In this subsection, we review the p-adic L-function of Mazur—Tate—-Teitelbaum [30].
See also the review in [23, Section 16.1].

When p is good, let a € @p be a root of X2 — a,X + p such that ord,(a) < 1 (an
‘allowable root’), and S(:= p/«) the other root. Note that, when p is good ordinary, «
is uniquely determined by this property.

When p is split (resp. non-split) multiplicative, we set o := 1 (resp. —1) and 8 :=p
(resp. —p).

We set

L:=Qu(a).

Note that L = Q, unless p is supersingular.

Recall that Q/Q denotes the cyclotomic Zy-extension and I' := Gal(Q/Q). Let
T denote the set of Q-valued characters of T' of finite order.

Recall also that an embedding Q < C is fixed. For a positive integer m, let (,, € Q
be the element corresponding to e2mV=1/m ¢ C. We also fix an isomorphism C ~ C,,.
From this, we obtain an embedding Q — @p. Thus each character in T is regarded both
@, and C-valued.

As in Section 2, we fix a Néron differential w € T'(E, Q}E/Q). Let £ be the element of
SLo(Z) used in the construction of Kato’s Euler system (and normalized as in (2.1.3)).
Let Q¢ be the real period associated to (w,§) (see (2.1.4)).

We fix a topological generator v of I'. Then we have a natural identification

O[] = Or[ly = 11].

Let | — |, : C, — R>q denote the p-adic absolute value normalized by |p|, = p~!. For a
positive integer h, we define

Hp = {icn(’v —1)" e L[y —-1]]

lim —'C"h"’ - o}

n—oo N

and

Hoo = U Hh.
h

For any continuous character y : I' — @: and f =3 cu(y—1)" € Hoo, we can define
a natural evaluation
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X(f) =Y enlx(7) - )" €@,
n

It is known that there is a unique element (the ‘p-adic L-function’ of F)
Lsp = Lspawe €H

that has the following property: for any character x € T one has

1 N\ Ls(B1)
OOIGHES

7(x) Ls(E,x"*,1)
am Qg

X(Lsp) =
if x has conductor p™ > 1.

Here in the latter case 7(x) denotes the Gauss sum
T(x) = S X0,
o€Gal(Q(upn)/Q)

and Lg(E,x 1, s) denotes the S-truncated Hasse~Weil L-function of E twisted by x 1.
For the construction of Lg, from Kato’s Euler system, see Theorem 6.10 below.

Let Z := (v —1) be the augmentation ideal of H.,. For a non-negative integer a, we
set

Q*:=1%/1°".
Note that we have a natural identification
Qa = ®Zp Qa.

We know the following ‘order of vanishing’ (which is actually a consequence of
Proposition 4.4).

PROPOSITION 6.1 ([23, Theorem 18.4]).  Set r := rankz(F(Q)). Then we have

Lo e A if p is good or non-split multiplicative,
S, . . . T
v Il if p is split multiplicative.

6.2. The generalized Rubin formula.

Let Eg; (resp. 5(57;1)) denote the image of Lg,, € Z" (resp. Z" 1) in Q" (resp. Q")

when p is good or non-split multiplicative (resp. split multiplicative).
Recall some notations. Let

<*7 7>p = <*7 7>p,oz : E(Q) X (Qp 7z E(Q)) Rz, QT71 — L Rz, Q=9

be the map induced by the p-adic height pairing (see (5.2.1)). Let log, : E(Qp) — Q,
be the formal logarithm associated to the fixed Néron differential w. Let
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Koo € H' (Zs, V) ®2, Q" = (Q, ®2 E(Q)) ®z, Q"

be the Iwasawa-Darmon derivative in Definition 4.5.
The following is a generalization of ‘Rubin’s formula’ for the higher rank case.

THEOREM 6.2 (the generalized Rubin formula).  Under Hypothesis 2.2, we have
the following.

(i) If p is good or non-split multiplicative, then for any x € E(Q) we have

-1
(T, Koo)p = (1 - 1) (1 - ;) log,,(x) - L) in Q.

(%

(ii) If p is split multiplicative, then for any x € E(Q) we have

1 1
Sch (r+1) r+1
T, K - —— (1 —rec =|1—-)log, (x) - L in Q.
< 00>p or ]p(q )( P(QE)) ( ) gw( ) S,p

Here qp € Q denotes the p-adic Tate period of E and rec, : Qy — T the local
reciprocity map.

REMARK 6.3. When r = 1, we have ko, = 2zg (see Remark 4.7), so Theorem 6.2(i)
asserts

A 1 W ; :
(x, 2q)p = (1 - ) (1 - ﬁ) log,(z) - Lg,, in Z/I".

[e%

When p is good ordinary, this formula is proved by Rubin [36, Theorem 1(ii)], which we
call ‘Rubin’s formula’ (following Nekovéi [32, (11.3.14)]). (Note that ‘L (1)’ in [36,
Theorem 1(ii)] corresponds to our (1 — é)ﬁg;) Thus Theorem 6.2(i) is regarded as a
‘higher rank’ generalization of Rubin’s formula.

REMARK 6.4. The element

1

2
m(l —recp(qn)) € Qy ®z, I/1

appearing in Theorem 6.2(ii) is essentially the ‘L-invariant’. In fact, one checks that the
image of this element under the isomorphism

-1 cye log,,
Q ®z, I/1*? "2 Q,®z, T X Qp ®z, (1+ply) —> Qp
(see (5.3.2)) is the usual L-invariant

logp(qE)
ord,(qr)"

REMARK 6.5. When r = 1, Theorem 6.2(ii) is obtained by Venerucci [44, Theo-
rem 12.31] and Biiyiikkboduk [12, Theorem 3.22].
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A proof of Theorem 6.2 will be given in Section 6.4. We state here some consequences
of the theorem. Recall that ve € Q* is defined by Q1 = v - Q¢ (see (4.3.3)).

COROLLARY 6.6.  Conjecture 4.15 implies the p-adic Birch and Swinnerton-Dyer
formaula in [30, Chapter II, Section 10], i.e.,

N LY o #111(E/Q) - Tam(E)
_ —Z .o\ = L R
(1-2) (1-5) = Y O e

if p is good or mon-split multiplicative, and

#1(E/Q) - Tam(E)
#E(Q)gors

T 1 C
26" = s reertas) e | T e RS

ordy(4p (e5\{oo,p}

if p is split multiplicative.
If R, # 0 (resp. RIS]Ch #0), then the converse also holds when p is good or non-split
multiplicative (resp. split multiplicative).

PrROOF. We only treat the case when p is good or non-split multiplicative. The
case when p is split multiplicative is treated similarly, by using Theorem 5.11.
Conjecture 4.15 asserts

[[ & #W0EQTmE)

FEQR, e @ ez B@)er,

Roo = Vg
£eS\{oo}

Take z € E(Q) such that log, (z) # 0. Taking (x, —), to both sides, we obtain

AN ") #111(E/Q)Tam(E)
1— = 1—-211 LY = L 1 R
(1-5) (1-5) omutor- 3 = AL 2 e, w0

by Theorems 6.2 and 5.6. Since log,,(z) # 0, we can cancel it from both sides and obtain
the desired formula.
If R, # 0, then the map y — (z + (z,y),) is injective, and so the converse holds. [

Similarly, we also obtain the following.

COROLLARY 6.7. Conjecture 4.8 implies the p-adic Beilinson formula, i.e.,

1\ 1\ . Ly(E,1)
1— = 1—=1. =27 21
(-3) (-5) =g imm 621

if p is good or mon-split multiplicative, and

L

(r+1) 1 Sch
_ 1— AN 2 2.2
Ls, ordp(qE)( rec,(qr)) Qe - o R, (6.2.2)
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if p is split multiplicative.
If R, # 0 (resp. RZS,Ch #0), then the converse also holds when p is good or non-split
multiplicative (resp. split multiplicative).

PrROOF. This follows by the same argument as the proof of Corollary 6.6, using
Proposition 4.14. O

REMARK 6.8.  When p is good and r,, = r = 1, the formula (6.2.1) was proved by
Perrin-Riou [33, Corollary 1.8] in the ordinary case, and by Kobayashi [26, Corollary 1.3]
in the supersingular case. (It is essentially the ‘p-adic Gross—Zagier formula’.) When p
is split multiplicative and r,, = r = 0, the formula (6.2.2) was first proved by Greenberg
and Stevens [20] and then by Kobayashi [25] and by Kato, Tsuji and the second author
(unpublished).

6.3. Review of the Coleman map.

As a preliminary of the proof of Theorem 6.2, we review the construction of the
Coleman map. We follow the explicit construction due to Rubin [37, Appendix]. See
also [27, Section 3].

We set

D := Derys (V).
Let ¢ denote the Frobenius operator acting on D. For a finite extension K/Q,,, we set
Dg := K ®q, D.
Let
[— =k : (K ®q, Dar(V)) x Dx — K

denote the natural pairing.
We use the following fact.

LEMMA 6.9 ([23, Theorem 16.6(1)]). Set L := Qp(«). There exists a unique
V= Vqu € Dr, such that

o) =ap v =" and [w,v] = 1.
Let Q,,, denote the completion of Q,, at the unique prime lying above p. We set
Ly, :=L-Qpp.
Let v € Dy, be as in Lemma 6.9 and set

1 - 1—n— -
O = T LGy 41)/ L <Z =i " T W) + (1 - ) 1(V)>

=0

1 " i — 1 B
= TnJrl HL(HPVL+1)/LH (Z P Bz —+ 5 — 1) Ve DL". (631)

=0
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This element satisfies

TI'L,,L+1/L" (5n+1) = 571

and for any character y of G,

> o(8n)x(0) = <1 ) i‘> (1 ) ;) cet (6.3.2)

7ECn Lii)u if x has conductor p™ > 1
«
in Dy ) (see [37, Lemma A.1] or [27, Lemma 3.1]).

As in Section 4.2, we set

H,, := H'(Oq,,s,T) and H':=lim H,.

n

We define a map
Col, : H} — L[G,]
by

Col,,(z) := Z Trr, /1 ([exps(2), 06,1, )0,
O'EGn

where
exp, = exp@nvav CH! — Hl(Qn’p,T) — Qup ®q, Dar(V)
denotes the Bloch—Kato dual exponential map. This map induces a map on the inverse
limit
Col := l'glColn CH - Hoo.

This is the definition of the Coleman map.
We set

teq = cd(c — oo)(d — 0q) € Z,[[T])- (6.3.3)

)

Here o, € T is the restriction of the automorphism of Q(up) characterized by Cgﬂ‘ = (Cpn
for every n.
The following result is well-known.

THEOREM 6.10 (Kato [23, Theorem 16.6(2)]). We have

COI((QdZn)n) = tc,d . ES,p-
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6.4. The proof of Theorem 6.2.
In this subsection, we prove Theorem 6.2.

6.4.1. We first establish several important preliminary results.

We initially suppose that p is good or non-split multiplicative, and give a proof of
Theorem 6.2(i).

We shall use the derivative introduced by Nekovaf in [32, Section 11.3.14], based on
the idea of Rubin in [36].

With the notations in Section 5.1, we set

FoV e V/FTV if p is ordinary,
o Diig(VL)/]Da if p is supersingular.

For y € H', we define ‘Rubin’s derivative’
D(y) € H'(Q,, F~V) ®z, I/I?

as follows. (Compare the definition given by Nekovér in [32, Section 11.3.14], where the
symbol ‘Dzry,’ is used.)

Suppose first that p is ordinary. We have a commutative diagram with exact rows
and columns

ROH(Q,V) &Y I/I? ——=RT(Zs,V) @5 1/I? ——= RT(Q,, F~V) & I/I?

| l ]

— locy,
RFf,Iw(Qa V) ®Ij‘\ A/I2 E— RFIW(ZS7 V) ®[L\ A/I2 R — RFIW(QP, F_V) ®[L\ A/I2

| | |

RC4(Q,V) RT(Zs,V) —— > RI(Q,, FV). (6.4.1)

Here ﬁi“f(Q, V)= é\f‘f(QvT) ®%p Qp and

I:'\;\]--:‘]”,I\N(Qa V) = (m I/:\—;ff(anT)> ®%p Qp

Rl'w(Zg, V) and Rl (Qp, F'~ V) are defined in a similar way.

We regard y € H' as an element of H'(RI'1(Zs,V) ®5 A/I?). Since yo lies in
H(Q,V) (see (2.2.1)) and HY(Q,, F~V) = 0, a diagram chasing shows that there exists
a unique element D(y) € H(Qp, F~V) ®z, I/I? such that

loc,(y) = i(D(y)) in H'(RT1w(Qp, F~V) @5 A/T?).

This gives the definition of Rubin’s derivative in this case.
When p is supersingular, Rubin’s derivative is defined in the same way, by consid-
ering the commutative diagram with exact rows and columns
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RO4(Q, V) ®% I/I* —=RD(Zs, Vi) ®% 1/I? —=RU(Q,, F~V) &% 1/I?

| | |

RT 4.1 (Q, V1) ®Y H/I? —=RI(Zs, V1) @Y H/I? —= RU1y(Q,, F~V) ®Y, H/T?

| | |

RT4(Q, V) RT(Zs, V1) RT(Q,, F~V).

Let
(= =) Hp(Qp, V) x HY(Qp, FTV) = H*(Qp, L(1)) = L
be the pairing defined by the cup product. This pairing induces
(= =)p: B(Q) x (H'(Qy, F7V) @z, I/1?) = L@z, I/1° =T/T°. (6.4.2)
The following is an abstract version of Rubin’s formula.

THEOREM 6.11 (Rubin, Nekovédr).  Suppose that p is not split multiplicative. For
any x € E(Q) and y = (yn)n € lim H! =H!, we have

(@,90)p = (2,D(y))p in T/T.

ProOF. This is proved in [32, Proposition 11.3.15]. We give a proof for the
reader’s convenience. We treat only the ordinary case, since the supersingular case is
treated in a similar way.

Recall that the map 3 : ﬁ}(Q,V) — I;TJ%(Q,V) ®z, I/I? in (5.1.1) is defined to
be (—1)-times the connecting homomorphism of the left vertical triangle of (6.4.1). Let
§: HY(Qp, F7V) @y, I/I? — ﬁ?(@, V) be the connecting homomorphism of the upper
horizontal triangle of (6.4.1). Then, by the compatibility of connecting homomorphisms
(see [32, Lemma 1.2.19]), we have

Blyo) = 3(D(y)).

We identify H3(Q,V) = HHQ,V)* = Q, ® E(Q)* by global duality. Then for any
z € E(Q) we have

Byo)(x) = (2, y0)p

by the definition of the p-adic height pairing. On the other hand, by the compatibility
between local and global duality, we have

3(D(y))(z) = (2, D(Y))p-

Thus we have

(@, 90)p = (2, D(y))p- -



902 D. Burns, M. KURIHARA and T. SANO

We shall now apply Theorem 6.11 in our setting.

LEMMA 6.12. Let o gkoo € H} ®z, Q"1 be the Iwasawa—Darmon derivative in
Definition 4.5. Then there exists a unique w = (wy,), € @n H! =H" such that

c,d?n = (7 - l)rilwn
for every n and
c,dRoo = Wo & ('Y - 1)7"—1.

PROOF. By the proof of Proposition 4.4, we have . gz € I""'-H!. Since H! is a
free A-module of rank one, there exists a unique w € H' such that edZoo = (7 — 1) tw.
The description of . gkoo follows from (4.2.1). O

By Lemma 6.12, we can define the ‘Rubin’s derivative of the Iwasawa—Darmon
derivative’

Dlcattine) = Dlw) - (v~ 1)~ € H(Qp, F~V) @2, Q.
Applying Theorem 6.11 to this element, we obtain the following.
COROLLARY 6.13.  For any x € E(Q), we have
(@, c.dhico)p = (2, Dlc,akico))p in Q"
where
(=, =)p: E(Q) x (H'(Qp, F7V) ®z, Q") — Q"
is the map induced by (6.4.2).
LEMMA 6.14. Lety € H'. Then we have
Col(y) e T
and
Col(y) = (expo(d0), D(y))p in I/T7,

where expy = expg, v : D — L ®q, H} (Qp, V) denotes the Bloch-Kato exponential
map.

PrROOF. We shall show the first claim. By the construction of the Coleman map,
it is sufficient to show that

Z TYL,L/L([eXp:(yn)aUén]Ln) =0
oeG,
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for every n. The left hand side is equal to [expj (o), do]r. Since yo lies in H}(Q, V), we

know that expg(yo) = 0 and so we have proved the first claim.
Next, we shall show the second claim. Note that, by construction, we have

COln(yn) - Z (expn(dn),ayn)Lnafl,
oGy

where exp,, : Dr, — H} (Lp, V) denotes the Bloch-Kato exponential map and
(= =)  Hi(Ln, V) x H{(Qpp, FV) = L
denotes the cup product pairing. Noting this, one verifies
Col(y) = (expy(do), D(y))p in Z/T?

by the definition of D(y).

O

6.4.2. Proof of Theorem 6.2(i). Let w € H! be the element in Lemma 6.12.

We compute

ted - Lsp = Col((cazn)n) (by Theorem 6.10)
= Col(w) - (y—1)""! (by Lemma 6.12)
€ZI" (by Lemma 6.14).

Hence, in the quotient Q" = Z"/Z" !, we compute

tea - L) = (expy(0o), D(w)), - (v —1)""'  (by Lemma 6.14)
= (eXpo((SO)vD(C,dKOO))P'

By (6.3.2), note that

Since [w, v]r =1 by Lemma 6.9, we have

<1 _ 1>1 (1 _ ;) log, () expo(d0) = = in H(Q,, V)

(%

for any x € E(Q). Thus we have
1\ 1 ")
(1-2) (1= ) 1om@ten £6) = @Dl
= (@, c,dRoo)p (by Corollary 6.13).

Upon multiplying both sides by t;}l we obtain the desired formula.
This completes the proof of Theorem 6.2(i).
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6.4.3. We now suppose that p is split multiplicative and prepare for the proof of
Theorem 6.2(ii).
Note first that, by Tate’s uniformization, we have an exact sequence of Gig,-modules

0—-2,1) T —Z,—0. (6.4.3)

This means that FTV ~ Q,(1) and F~V :=V/FTV ~Q,.
Since H°(Qp, F~V) does not vanish in this case, Rubin’s derivative D(y) is not
determined uniquely, so we impose more condition to define it. Let

pp: H(Qy, FV) = HYQ,, FV) @, I/1?

be the connecting homomorphism obtained from the right vertical exact triangle in
(6.4.1). We know that

im(pp) = <10gp chc> ®z, I/I2»

where we regard log, Xcyc : Gg, — Q) as an element of HY(Q,, F~V)=HYQ,,Q,) =
Homeont (G, ,Qp). (See the proof of [44, Lemma 15.1] for example.) Let

T HY(Qp, V) ®gz, I/1? - HY(Q,, F~V) ®z, 1/I?

be the map induced by V. — F~V. Then one sees that im(p,) Nim(w,) = 0 (since
log,,(¢r) # 0), by which one can take a unique element

D(y) € im(mp)

such that loc,(y) = i(D(y)) in H'(RT1w(Qp, F~V) ®% A/I%). Compare Venerucci’s
construction [44, Lemma 15.1] (where I/I? is identified with Z,).
An analogue of Theorem 6.11 is as follows.

THEOREM 6.15.  Suppose that p is split multiplicative. For any x € E(Q) and
Y= (yn)n € 1<£Hn H%, = Hl, we have

(@,90)p™" = (2, D(y))p in Qp&g, I/1%.

ProoOF.  We identify Q, ®z, I/I? = Q, via the isomorphism ¢, in (5.3.2). By the
same argument as in Venerucci [44, Proposition 15.2], we have

logp (qE)

Sch.
ord,(¢k)

log,,(z) - D(y)(Frp) = — {z,90)p

(See also [44, (127)].) Here D(y)(Fr,) means the evaluation of D(y) € H'(Q,, Q,) =
Homeont (G, ,Qp) at the arithmetic Frobenius Fr, (this corresponds to Dery(x) in [44,

Section 15], where x corresponds to our y). Since D(y)(Fr,) = — iii‘;(((éi)) exp’ (D(y)) (se
[25, (6)] or (6.4.4) below) and log,(qr) # 0, we have

@

log,,(z) exp,(D(y)) = (z,40),™"
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Since the left hand side is equal to (z, D(y)),, we obtain the desired formula. O

Theorem 6.15 immediately implies the following, which is an analogue of Corol-
lary 6.13.

COROLLARY 6.16.  For any « € E(Q), we have

< a(,d'%oo>SCh (Z‘ D(cdﬁoo))p in Qp ®Z Q

Since E over Q, is a Tate curve, we have an isomorphism E(Q,) ~ Q. /{(gr). We
denote by A, the composite map

A Q= (Q/{ap) © Qp =~ E(Qy) ® Qp — H'(Qp, V)

where the final map is the Kummer map. This map A, also coincides with the composite
QF = H'(Qp, Qp(1)) = HY(Qp, FTV) — H'(Qp, V) where the first map is the Kummer
map. Therefore, for any a € Q, and 2z € H'(Q,,V) we have

(Ap(a), 2)p = (a,mp(2))c,,

where 7, : H'(Q,,V) — H'(Qp,Q,) is the natural map induced by V. — F~V = Q,,
and (—, —)g,, is the pairing induced by the cup product H*(Q,, Q,(1)) x H}(Q,, Q,) —
H*(Qyp, Qp(1)) ~ Qp.

The following result explains how the L-invariant occurs in our generalized version
of Rubin’s formula.

LEMMA 6.17.  For any z € HY(Q,, V) we have

M) 2y (1= 1) = (s, - (= 1) = —lng(qE()’” expl (2)(1 — recy (qs))
in Q, @z, I/1%.

Proor.  We write log,, : (Q;/{¢r)) ® Qy — Q, for the logarithm that vanishes
n (¢p) and note that this coincides with the formal logarithm via the isomorphism
E(Qp) ~ Qp /{gr). We also write exp,, for the inverse of log, .
Then, by using the equality of functions

-ord
ord,(qr) P

log,, =log, —

(cf. the proof of [45, Corollary 3.7]), one computes that

Ap(p) = Ap(expy,, (log,,, (1))
= (o (i)

—expg, o (251950
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in E(Q,) ® Q. Thus we have

. logp (QE)

Apo(p), 2)p = ord,(qz)

expr(2). (6.4.4)

(See also [25, (6)].) The claim follows by noting

log, (9r)

— P . (y—1) in Q,®z, I/I*. O
10g,, Xeye(7) =1 P /

1 —recy(gr) =

Let U} be the group of principal local units in Q. Let (d,), € l&nn U} be the
system constructed by Kobayashi in [25, Section 2]. This system is related to our (d,)n
defined in (6.3.1) by

Op = logp(dn) v in Qup ®q, Derys(V)-
Since do = 1, Hilbert’s theorem 90 implies that there exists x, € Q}; , such that

Y Tn
T

dn

We regard x,, € H'(Qy p,Zy(1)) via the Kummer map. The element Corg, /g, (#n) is
well-defined in H'(Q,,Z/p"(1)), i.e., independent of the choice of z,,. We define

d' = (Corg, , /g, (xn))n € Um H (Qy, Z/p" (1)) =~ H'(Qp, Zy(1)).

For each field Q,, , with n > 0 we also write
(= =)em + H (Qup, Zy(1)) x H'(Qup, Zp) = H*(Qup, Zp(1)) = Zy (6.4.5)
for the pairing defined by the cup product. Let
T Hy = H (Oqg,.5,T) = H' (Qup, T) = H' (Qunp, Zy)

be the map induced by the surjection T — Z,, in (6.4.3).

We define
Coll, : H} — 7Z./p"[G,]
by
Col!, (2) := Z (0%n, mp(2))G,, 0
o€Gnp
and set
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LEMMA 6.18.
(i) The Coleman map Col : H' — A coincides with (y~! —1) - Col’.

(ii) Lety € H'. Then we have
Col'(y) eI
and
Col'(y) = (d',D(y))s,, in Qp®z, I/1°,
where
(= e, HY(Qp, Qp(1)) x (H'(Qy, Qp) ®2, 1/1%) = Qp ®2, 1/
is induced by (6.4.5).

ProOOF. Claim (i) follows directly from construction. (See also Kobayashi’s com-
putation of Col,(z) in [25, p. 573].)

Claim (ii) is proved in the same way as Lemma 6.14 and so, for brevity, we omit the
proof. O

6.4.4. Proof of Theorem 6.2(ii). Let w € H' be the element in Lemma 6.12.
We compute

ted - Lsp = Col((c,a2n)n) (by Theorem 6.10)
= Col(w) - (y —1)""!  (by Lemma 6.12)
= Col'(w)- (v * =1)(y —=1)""' (by Lemma 6.18(i))
€ I (by Lemma 6.18(ii)).

Thus, in 1" /1"T2 = Q"+, we further compute

toa LG5 = —Col (w) - (y—1)"
= —(d',D(w))g,, - (y—1)" (by Lemma 6.18(ii)).

Since
-1
(@ D(w))e, = (1 - ;) (1og, xeye(1)) (. D(w))e,,

(see Kobayashi [25, p. 574, line 2], note that ‘Nx,, in [25] is congruent to d’ modulo p"),
Lemma 6.17 implies that

1

m(l - reCP(QE)) . (fy — 1)7”—1.

(D)), - (v~ 1) = (1 - ;) exp (D(w)
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Note that, for any z € F(Q) and y € H(Q,, V), we have

log,, (%) expy,(y) = (z,9)p-

Hence we have

1 r
(1 — p> log,, (z)tc.q - ﬁg;l)

= (z,D(w))p - ordpl(qE)(l —recy(gg)) - (v —1)"*
= (@ Dlearoe))y - g (1 = recy(4)

1
Sch
= (x, cqk -—— (1 —rec by Corollary 6.16).
( c,d 00>p Ordp(qE)( p(qE)) (by Yy )

Upon multiplying both sides by t;cll we obtain the desired formula.
This thereby completes the proof of Theorem 6.2.

7. The Iwasawa main conjecture and descent theory.

The aim of this section is to directly relate Conjectures 4.8 and 4.15 with a natural
main conjecture of Iwasawa theory. The main results in this section are Theorems 7.3
and 7.6.

As before, we always assume that p is odd and that H'(Zg,T) is Z,-free.

7.1. Review of the Iwasawa main conjecture.
We use the notations in Section 4.2.
We set

C,, :== RHomy, (R['.(Oq,.s,T*(1)), Zy[—2])
and Cy = %inn C,,. Then we have a canonical isomorphism
HY(Coo) ~ H!
and an exact sequence
0= H2 = H'(Coo) L Ay, T*(1)H* = 0. (7.1.1)
(See (4.1.1) and (4.1.2).) Let Q(A) denote the quotient field of A. Kato proved that

~Q(A) if i=1,

Q) @ H {:0 if =2

(See [23, Theorem 12.4].) Hence, we have a canonical isomorphism

Q(A) @4 deta (Coo) = Q(A) @4 (H' ®z, T*(1)™). (7.1.2)
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We set

: 1 1
c,dRoo0 = (c,dzn)n € h£1H7 =H
n

and
Zoo 1=t g cdZoo € Q(A) @4 H,
where t. 4 € A is as in (6.3.3). We then define
300 € Q(A) ®5 dety (Coo)
to be the element corresponding to
zoo ®eT6(€) € Q(A) @y (H' @z, T*(1)T)
under the isomorphism (7.1.2), where §(¢) € Z, ®z 5 ~ T*(1) is defined in Section 2.1.

CONJECTURE 7.1 (Iwasawa main conjecture). We have

<$oo>A = detA(Coo>.

REMARK 7.2. Since A is a regular local ring, we see by [22, Chapter I, Proposi-
tion 2.1.5] that Conjecture 7.1 is equivalent to

Zoo € H' and chary (H'/(z5)a) = chary (H?).

Thus Conjecture 7.1 is equivalent to [23, Conjecture 12.10] (by letting f in loc. cit. be
the normalized newform corresponding to E). We prefer the formulation as in Conjec-
ture 7.1 to the classical one using characteristic ideals as above, since one can formulate
an equivariant Iwasawa main conjecture as a direct generalization of Conjecture 7.1. (See
[7, Conjecture 3.1] in the case of Tate motives.)

7.2. Consequences of the Iwasawa main conjecture.
We now state main results of this section.

THEOREM 7.3. Assume Hypothesis 2.2. Then Conjecture 7.1 (Iwasawa main
conjecture) implies Conjecture 4.15 up to Z, i.e., there exists u € Z,; such that

[ | #U0EQ Tun)

0 #E(Q)fms . REOC m (Qp ®z E(Q)) ®1z, Qr71.

Koo = U - Vg
LeS\{oo}

Combining this theorem with Corollary 6.6, we immediately obtain the following.

COROLLARY T7.4. Assume Hypothesis 2.2. Then Conjecture 7.1 (Iwasawa main
conjecture) implies the p-adic Birch and Swinnerton-Dyer formula up to Ly, i.e., there
exists u € Z, such that
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AN e #11(E/Q) - Tam(E)
(1-2) (1-5) = B R T

if p is good or non-split multiplicative, and

T , HI11(E/Q) - Tam(E)
coty b : L e
6 = ey (L ecslae)) - ZESE{CM ‘ FEQL,,

if p is split multiplicative.

REMARK 7.5. Corollary 7.4 improves upon results of Schneider [41, Theorem 5]
(good ordinary case), Jones [21, Theorem 3.1] (multiplicative case) and Perrin-Riou [34,
Proposition 3.4.6] (good supersingular case) in which it is shown that the Iwasawa main
conjecture and non-degeneracy of the p-adic height pairing together imply the p-adic
Birch and Swinnerton-Dyer formula up to Z, .

THEOREM 7.6.  Assume Hypothesis 2.2. Assume also that
o Conjecture 7.1 (Iwasawa main conjecture) is valid,

o Conjecture 4.8 (Generalized Perrin-Riou Conjecture at infinite level) is valid, and
e the Bockstein regulator R2°° in Definition 4.10 does not vanish.

Then the p-part of the Birch and Swinnerton-Dyer formula is valid so that there is an
equality

L*(E,1) - Zy = (#UL(E/Q)[p™] - Tam(E) - #E(Q)iors - 07 - Roc) - Zp
of Zy-sublattices of C,.

REMARK 7.7. Theorem 7.6 explains the precise link between the natural main
conjecture of Iwasawa theory and the classical Birch and Swinnerton-Dyer formula, even
in the case of additive reduction. We note also that this result is, in effect, an analogue
of the main result [7, Theorem 5.2] of the current authors, where, roughly speaking, the
following result is proved in the setting of the multiplicative group: if one assumes the
validity of

o the Iwasawa main conjecture for G,, (cf. [7, Conjecture 3.1]),
e the Iwasawa—Mazur—Rubin—Sano conjecture for G,, (cf. [7, Conjecture 4.2]), and

e the injectivity of a certain Bockstein homomorphism (which is implied by the con-
dition ‘(F)’ in [7, Theorem 5.2]: see [7, Proposition 5.16]),

then the equivariant Tamagawa number conjecture for G,, is also valid.

7.3. The descent argument.
In the following, we assume both Hypothesis 2.2 and the validity of Conjecture 7.1.
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7.3.1. A key commutative diagram. We shall first give quick proofs of
Theorems 7.3 and 7.6 by using the following key result.

THEOREM 7.8. Let x be a Z,-basis of /\ZlHQ(ZS,T)tf. Then there is a commu-
tative diagram

detr (Coo) 22> [7=1 . !

Neo Hj @z, Q"1 (7.3.1)

detzp (C()) Tm> /\EPH&

with the following properties:
(a) Moo (300) = Zo0;
(b) Noo(200) = Fioe;
(c) (nE™9)z, = #HA(Zs, Thiors - Ny, H3., where 752 := Ty (Noo 320));
(d) (Bocow o (™), = Zo v (TTycsy ooy Le) #II(E/Q) [ Tam(E)#E(Q); .2, - RE*.
Admitting this, we give proofs of Theorems 7.3 and 7.6.
Proor or THEOREM 7.3. It is sufficient to show that
(Roo)z, =Zp-ve | [ Le | #1(E/Q)[p™) Tam(E)#E(Q) s - B
£eS\{oo}
By the commutativity of (7.3.1) and properties (a) and (b), we have
Koo = BOCoo & (775‘“0). (7.3.2)
Hence the claim follows from the property (d). O

PROOF OF THEOREM 7.6. We assume Conjecture 4.8 and RE°¢ # 0, in addition
to Hypothesis 2.2 and Conjecture 7.1. Recall that Conjecture 4.8 asserts the equality

Koo = BoCoo (nESD).

Combining this with (7.3.2), we have

Bocoo,z (nE’SD) = BoCoo 2 (775‘“0).

Since the non-vanishing of RE°° is equivalent to the injectivity of Bocs & by construction,
we have
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BSD __ , Kato

By the property (c¢) in Theorem 7.8, we have
ZP : anSD = #H2(stT)tors : /\Z H(}

By Proposition 2.6, this is equivalent to the p-part of the Birch and Swinnerton-Dyer
formula, so we have completed the proof. a

The rest of this section is devoted to the proof of Theorem 7.8.

7.3.2. Definitions of maps. First, we give definitions of the maps I, Moo, Noo
and II, in the diagram (7.3.1).

e The map
My :dety(Coo) — 171 H!
is induced by

(7.1.2)

1.
~

Q(A) @4 deta(Coo) Q(A) ®a (H' @z, T*(1)") ~ Q(A) @4 H,

where the second isomorphism is induced by
T*(1)" ~Zp; et5(€) — 1.

By Remark 7.2, the image of dety (Cs) under this isomorphism is char (H?) - H*.

Since chary (H?) C 1", we see that the image of det (Cs) is contained in 1"~ 1-H*
and thus Il is defined. By this construction, it is obvious that s (3c0) = Zoo,
i.e., the property (a) of Theorem 7.8 holds.

e The construction of the map
Ne : "V H - HY @, Q71

is done in the same way as the construction of . jkeo from (¢ .qzn)n in Section 4.2.1.
See the discussion after Proposition 4.4. (In fact, Ny is defined to be the limit of
the Darmon norm Ny, /q.) It is obvious that N (2e0) = Koo, i-€., the property (b)
in Theorem 7.8 holds.

e The surjection
Noo @ detp(Coo) — detz, (Co)
is defined to be the augmentation map
detp(Coo) — detp(Coo) @n Zyp =~ detz, (Co),

where the last isomorphism follows from the fact C ®';\ Zy, ~ Cy.
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e The map
I, : detz, (Co) — /\;pHé
is induced by
Qp @z, detz, (Co) ~ Q, @3, (dets, (HO(Co)) @z, detz (H(Co))
=5, (N, H 02, N, HAHEs T, T
~ Q, ®z, /\;pHév

where the second isomorphism follows from (4.1.1) and (4.1.2), and the last iso-
morphism is induced by

r—1
/\Z H*(Zs, T)i @z, T* ()" ~ Zy; " @ eT6(¢) = 1.
P

Since the image of detz, (C) under this isomorphism is #H?(Zg, T )tors - /\;pHol,
the map I, is defined. This also shows that the property (c¢) in Theorem 7.8 holds.

7.3.3. The property (d). We have already seen that the properties (a), (b)
and (c) in Theorem 7.8 are satisfied.
We shall now verify property (d), i.e., that there is an equality of Z,-lattices

Zy - (Boca o (15%4%)) = Z, - i - B2,

where

cpi=ve- | [ Le | #1(E/Q)[p™] - Tam(E) - #E(Q)ors-

LeS\{oo}

One checks that the element Bocs 2 (n52%) is independent of the choice of a non-
zero element = € /\&;IHZ(ZS, V). (Note that both Bocs & and nXat are defined for
such x by linearity.) So we take @ to be as in Section 4.3.2, by fixing a basis {z1,..., 2.}

Of E(Q)tf
By the definition of RE°¢ (see Definition 4.10), it is sufficient to show that

x

<nKato>Zp — Zp cp -logw(m) N AWARRETAY 2 (733)

By the property (c) and (2.5.2), we have

Kat 1
(" O>Zp = <77;g>z,,'
(Here 18 is defined in Definition 2.17, where the finiteness of III1(E/Q) is assumed. But
we may define n28, replacing II1(E/Q) by II(E/Q)[p™] since we only consider the Z,-

modules here. Then we need only the finiteness of III(E/Q)[p>°].) On the other hand,
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one checks in the same way as (4.3.2) that

<77;1g>zp =Zy-cg-log,(x1) - x1 A Ay

From this, we obtain the desired equality (7.3.3). Hence we have proved that the property
(d) holds.

7.4. The proof of Theorem 7.8.

In this subsection, we prove the commutativity of the diagram (7.3.1) and thus
complete the proof of Theorem 7.8. Our argument is similar to [6, Lemma 5.22],
[7, Lemma 5.17] and [11, Theorem 4.21].

Fix a non-negative integer n. It is sufficient to show the commutativity of the
following ‘n-th layer version’ of (7.3.1):

dety, (G, (Cn) —> 171 H}

.

Nn H} ®z, r=1 (7.4.1)

%m:

detz, (Co) ——= Nz, Ho

We shall describe maps I, 1I,,, I, and Boc, , explicitly by choosing a useful
representative of the complex C. Then the commutativity of the diagram is checked
by an explicit computation.

7.4.1. Choice of the representative. ~We make a similar argument to [6, Sec-
tion 5.4] or [11, Proposition A.11].
One sees that the complex C, is represented by

PP,
where PP is a free A-module of rank, say, d. We have an exact sequence
0o H PSP HY(C) — 0. (7.4.2)

Also, setting P, := P ®, Z,[G),], we have an exact sequence

0— H: —» P, % P, ™ HY(C,) — 0. (7.4.3)

Let {b1,...,bq} be a basis of P. We denote the image of b; in P, by b;,,. We set
z; :=n(b;) € H'(Cy) and Tim =T (bin) € HY(C)).

By the argument of [11, Proposition A.11(i)], one may assume

(i) f(z1) =1®@e*6(£)*, where f: H (Coo) = A @z, T*(1)™* is as in (7.1.1);
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(ii) (z2,...,za)a = H? C HY(Cw);
(iii) {®2,0,..., 20} is a Zy-basis of H*(Zg,T)i C H(Cp).
We set
Y =blop:P— A
and
Vi 1= bl 0t P — Z[Gho].
Note that the property (iii) implies that
ime; , C I, for every 1 <i<r. (7.4.4)

7.4.2. Explicit descriptions of I, IT,, and IT,. With the above represen-
tative of C'ss, we have an identification

detn(Coc) = \\ B@n \\'| P*.

We define a map

M : /\dAP®A /\Z]P’* - P
by

a® (bi A AbY) > (—1)81 (/\ wi) (a). (7.4.5)

1<i<d

(See [6, Section 4.1] for the construction of the map A;_;.,v:.) We denote this map

by I, since it coincides with II,, defined in Section 7.3.2 (see [6, Lemma 4.3]). In

particular, its image is contained in I"~! - H!. (We regard H' C P via (7.4.2).)
Similarly, we have an identification

d d
detz, 1 (Cn) = /\Zp[Gn]P" ®2,(Gn] /\ZP[Gn]P"

and we define a map

d d
Hn : /\Zp [G"]Pn ®Zp[Gn] /\ZP [G”]Pn — P’ﬂ

by

@@ (B0 A AbEL) o (D (A i) (@), (7.4.6)

1<i<d

It is clear by construction that the inverse limit @n II,, coincides with II.,. Since the
image of I, is contained in I"~' - H!, we see that the image of II, is contained in
Ir=1.H}.
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Finally, we give an explicit description of II,. Here we take
T = T20 VANERRIWAN Tr,0-

We have an identification
d d .
detzp (C()) = /\Z Po ®Zp /\Z PO .

We define a map

I, : /\ZPP0 ®z, /\prg - /\;pP0

a® (B A+ Abg) = (—1)7@") ( A zpw) (a). (7.4.7)

r<i<d

This map coincides with II, defined in Section 7.3.2 (by [6, Lemma 4.3]). In particular,
its image is contained in A\; Hg.

7.4.3. Explicit Bockstein maps. We shall describe the Bockstein regulator
map Boc,, 5 explicitly.
For an integer ¢ with 1 < i <r, we define a map

Bim : Py — I,/12
by
Bin(a) := s n(a) (mod I2),

where for a € Py we take an element a € P, such that ) ., o(a) = a (we regard
Py C P, by identifying Py with PS). Note that 1; (@) € I,, by (7.4.4) and its image
in I,,/12 is independent of the choice of a. Hence the map f; ,, is well-defined.

Let Bq, : Hy — H*(Zs,T)y @z, I,/I; be the Bockstein map defined in (2.3.2).
One checks by the definition of the connecting homomorphism that

751'7” = ‘T;‘,O o 5(@"’ on H&

From this, we see that the map
— r—1 . r r—1
Bocp g := (—1) /\1<z‘§r Bin /\pro — Py ®z, Q) (7.4.8)

coincides with Boc,, » = Bocg,, » defined in Section 2.3 on /\2,, Hg.

7.4.4. Completion of the proof. We prove the commutativity of (7.4.1). We
may assume & = oo A -+ A Tpg.

In view of the explicit descriptions (7.4.6), (7.4.7) and (7.4.8), it is sufficient to prove
that
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(_]—)d_an o </\1<i§d wzn) (bl,n JARERIAN bd,n)
= () (A Bin) o (A, Ly i0) oA Abag). (TA9)

By computation, we have

k+1 det % n( jﬂ))]#k bkn

M&

(/\mgd ‘/)m) (b1 A+ Abay)

k:l

(see [6, Proposition 4.1]) and so
Nn © (/\1<i§d %,n) (bl,n ZANRERA bd,n)

(=1)5 by 0 @ det (s 5 (b)) jer in Po ®z, QN "

I
M=~

el
I

1

By noting
Yin(bjn) = ¥i0(bj0) (mod I,) for every r < i <d,

we compute

</\1<i§r ﬂi’") ° </\r<'<d %,o) (bro A+ Abao)
d

= (=)UDEI N (1) by @ det (i (bjn))jzk i Po @z, Q.
k=1

Since we have

(_1)r71+r(d7r)+(r71)(d77") — (_1)(1717

we therefore obtain the desired equality (7.4.9).
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