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Abstract. We consider abelian CM extensions L/k of a totally
real field k, and we essentially determine the Fitting ideal of the
dualized Iwasawa module studied by the second author [Ku3] in the
case that only places above p ramify. In doing so we recover and
generalise results of loc. cit. Remarkably, our explicit description
of the Fitting ideal, apart from the contribution of the usual Stick-
elberger element Θ̇ at infinity, only depends on the group structure
of the Galois group Gal(L/k) and not on the specific extension L.

From our computation it is then easy to deduce that Ṫ Θ̇ is not in
the Fitting ideal, as soon as the p-part of Gal(L/k) is not cyclic.
We need a lot of technical preparations: resolutions of the trivial
module Z over a group ring, discussion of the minors of certain big
matrices that arise in this context, and auxiliary results about the
behaviour of Fitting ideals in short exact sequences.

Introduction

0.1. As a refinement of the main conjecture in Iwasawa theory for ideal
class groups, we can describe in certain cases the Fitting ideals of class
groups as Galois modules (algebraic objects) by using the Stickelberger
elements (analytic objects). But in general, the usual class group does
not fit well with (étale) cohomology theory, and certain modified class
groups are used in the theory of the leading terms of L-functions (for
example, the (S, T )-modified class group can be used in the theory of
Stark’s conjecture where S contains the ramified places and T is used
to get a torsion-free subgroup of the unit group). In order to treat the
class group in the usual non-modified sense, we need several devices.
In this paper, we study these non-modified class groups and determine
the Fitting ideals of modules which are related to them, in several new
cases.

We consider finite abelian extensions L/k where L is a CM-field and
k is totally real. Let G = Gal(L/k), p be a fixed odd prime number,
and let AL be the minus part of the p-part of the classical ideal class
group cl(L). For example, if k = Q, the second author showed with
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T. Miura in [KM1] that the Fitting ideal of AL over Zp[G] equals the
“Stickelberger ideal” (tensored with Zp). For general k, we know from
earlier work (see [Gr2], [Ku2]) that the Pontrjagin dual of the class
group (in the usual sense) works better than the class group itself, and
the first author proved in [Gr2] that the Fitting ideal of the Pontrjagin
dual A∨L over Zp[G] equals the “Stickelberger ideal” (tensored with Zp),
assuming the equivariant Tamagawa number conjecture and that the
group µp∞(L) of the roots of unity in L with p-power order is cohomo-
logically trivial. If the group µp of the p-th roots of unity in an algebraic
closure of L is in L, the group µp∞(L) is rarely cohomologically trivial,
so the problem lies in the case that L contains µp.

Let k∞/k be the cyclotomic Zp-extension. In the following, we as-
sume that L ∩ k∞ = k. If L contains a primitive p-th root of unity,
then we encounter a totally different phenomenon on the Fitting ideal
of A∨L, namely the Fitting ideal of A∨L cannot equal the Stickelberger
ideal, in general. In fact, if L contains µp and G(p) = G ⊗ Zp is not
cyclic, one knows, for example by Theorem 1.2 in [KM2], that

Ann(µp∞(L))θL/k 6⊂ Fit(A∨L),

at least when the primes that split in L/L+ are unramified in L+k∞/k.
Here, Ann(µp∞(L)) is the annihilator ideal of µp∞(L) over Zp[G], θL/k =∑

σ∈Gal(L/k) ζk(σ, 0)σ−1 ∈ Q[G] is the usual Stickelberger element, and

Fit(A∨L) is the Fitting ideal of A∨L over Zp[G] with cogredient action of
G as in [GK].

In this paper, we assume that L/k is unramified outside p, and that
L contains µp. We decompose G = ∆ × G(p) where #∆ is prime to
p and G(p) is a p-group. For any Zp[G]-module M and a character
χ of ∆, we define the χ-component by Mχ = M ⊗Zp[∆] Oχ, where
Oχ = Zp[Im(χ)] is the Zp[∆]-module on which ∆ acts via χ. Since
M =

⊕
χMχ where χ runs over Qp-equivalence classes of characters

of ∆, knowing the structure of M as a Zp[G]-module is equivalent to
knowing the structure of Mχ as an Oχ[G(p)]-module for all χ. Let ω
be the Teichmüller character of ∆, which corresponds to the action of
∆ on µp. For any odd character χ with χ 6= ω, the Fitting ideal of
(A∨L)χ can be computed by the method of the first author in [Gr2] if
we assume the equivariant Tamagawa number conjecture. Therefore,
our interest is in (A∨L)ω, which is an Oω[G(p)] = Zp[G(p)]-module.

Though our principal theorem is on a certain Iwasawa module, let
us discuss some results for number fields (of finite degree over Q) that
follow from the main result, before we explain the main result itself.
We put s = dimFp G/G

p and pq = #µp∞(L). We define an ideal AG of
Zp[G][[T ]] in §1, which plays a very important role in this paper (see
also the next subsection §0.2). Let (A0

G)L be the image of the ideal
T 1−sAG ⊂ Zp[G][[T ]] under the ring homomorphism Zp[G][[T ]] −→



TATE SEQUENCES AND FITTING IDEALS 3

Zp[G] defined by T 7→ pq. This ideal (A0
G)L of Zp[G] is determined by

the group structure of G(p) and q.

Theorem 0.1. Suppose that L/k is unramified outside p, µp ⊂ L, no
prime above p splits completely in L/L+, and the Iwasawa µ-invariant
of the cyclotomic Zp-extension of L vanishes. Then we have

FitZp[G](A
∨
L) = (A0

G)LθL/k .

We give some corollaries which are obtained from Theorem 0.1 when
G has a simple structure. In these corollaries, we assume the same
conditions as in Theorem 0.1.

Corollary 0.2. Suppose also that G(p) is cyclic, i.e. s = 1. Then we
have

FitZp[G](A
∨
L) = AnnZp[G](µp∞(L))θL/k .

In fact, (A0
G)L = AnnZp[G](µp∞(L)) if G(p) is cyclic (see the computa-

tion before Corollary 3.4). But in general, (A0
G)L is much smaller than

AnnZp[G](µp∞(L)).

Corollary 0.3. Suppose that G(p) is elementary abelian and s ≤ 4. We
denote by Mω the maximal ideal of Zp[G] corresponding to the maximal
ideal of Oω[G(p)]. Then we have

FitZp[G](A
∨
L) = AnnZp[G](µp∞(L))Ms(s−1)/2

ω θL/k .

More generally, we have

Corollary 0.4. Assume that G(p) ' (Z/paZ)⊕s for some positive inte-
gers a and s ≤ 4.
(i) Suppose that µpa ⊂ L, that is, q = ordp(#µp∞(L)) ≥ a. Then we
have

FitZp[G](A
∨
L) = AnnZp[G](µp∞(L))(Iω,a)

s(s−1)/2θL/k,

where Iω,a is the ideal of Zp[G] whose ω-component is the ideal gen-
erated by the augmentation ideal of Oω[G(p)] and pa, and whose other
components are the ideals generated by 1.
(ii) Suppose next that q ≤ a. Then we have

FitZp[G](A
∨
L) = AnnZp[G](µp∞(L))(s2−s+2)/2θL/k .

We note that the statements of Theorem 0.1 and of Corollaries 0.2,
0.3, 0.4 are all equalities, which give an exact relationship between
the Fitting ideal and the Stickelberger element. These statements give
more precise information than deciding whether AnnZp[G](µp∞(L))θL/k
is contained in FitZp[G](A

∨
L) or not. We also note that under the condi-

tions of Theorem 0.1 we can get AnnZp[G](µp∞(L))θL/k 6⊂ FitZp[G](A
∨
L) if

s ≥ 2 (in the setting of Corollaries 0.3 and 0.4, this fact can be clearly
seen from the above formulae).
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The numerical example in [KM2] §2 satisfies all the conditions of
Corollary 0.3 with s = 2, and Corollary 0.4 with s = 2, a = 1, q = 1.
In §4 we will discuss this numerical example in detail.

We assume in Theorem 0.1 that no so-called trivial zeros occur. In §4
we compute the Fitting ideal of a certain Galois group over L+ without
assuming the “no trivial zero” condition.

0.2. Our main theorem is on “the dualized Iwasawa module”. Let
L∞/L be the cyclotomic Zp-extension, Ln the n-th layer, and AL∞ =
ind.limALn where ALn is the minus part of the p-part of the class group
cl(Ln). Our goal is to calculate the Fitting ideal of the Pontrjagin dual
A∨L∞ , which is a module over the Iwasawa algebra Zp[[Gal(L∞/k)]], and
is called the dualized Iwasawa module. We put Λ = Zp[[Gal(L∞/L)]],
so Zp[[Gal(L∞/k)]] = Λ[G]. As usual, we choose a generator γ of the
Galois group Gal(L∞/L) and identify Λ with Zp[[T ]] where T = γ − 1.

The Fitting ideal of A∨L∞ is determined in [Ku3] when G(p) is of order
p. There exist at least two other Iwasawa modules, which are closely
related but in general not isomorphic to A∨L∞ : the “standard Iwasawa
module” Xstd = proj.limAn, and another module Xdu considered in
[Gr1]; the latter module is actually isomorphic to the Iwasawa adjoint
of A∨L∞ . The Fitting ideal of Xstd was determined for k = Q by the
second author in [Ku1], and the Fitting ideal of both Xstd and Xdu was
calculated outside the Teichmüller component by the first author in
[Gr1]. Neither Xstd nor Xdu will play a role in the present paper, which
focusses on proving a generalisation of the results of [Ku3]. Basically,
that paper did the case where the p-part of G is cyclic. Both [Ku3] and
the present paper need to assume that µ = 0 (which is conjecturally
always the case) and that only places above p are ramified in L/k. The
main novelty in our approach is the systematic use of the theory of
Tate sequences. Our main result is Thm. 3.3. Let us state its second
half here.

Theorem 0.5. Suppose that L/k is unramified outside p, µp ⊂ L, and
the Iwasawa µ-invariant of L∞/L vanishes. Then we have

FitΛ[G](A
∨
L∞) = Ṫ 1−sȦGΘ̇ .

We explain the notation: s is the minimal number of generators of
the p-part of G as in the previous subsection; Θ̇ is the equivariant
Stickelberger element at infinity, namely the projective limit of θLn/k

for n � 0; the dot denotes taking the mirror image as customary in
cyclotomic Iwasawa theory; and most importantly, the ideal AG ⊂ Λ[G]
is a purely algebraic invariant that depends only on the group G, not
on the particular fields L and k. The ideal Ṫ 1−sȦG of Λ[G] is of finite
index in the ideal generated by Ṫ and the augmentation ideal of Zp[G].
The definition of AG in general is complicated, and we have to refer
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the reader to the relevant sections of the paper, in particular §1. (For
s ≤ 4 we give a complete list of generators.) But in a sense all the
complications are in the Teichmüller part. If χ is a character of ∆
(the non-p-part of G) different from the Teichmüller character ω, then

(ȦG)χ = (Ṫ s−1). This part of the theorem had been known, see (2.3.2)
in [Ku3].

The main ingredients in determining the Fitting ideal of an Iwasawa
module are usually twofold: firstly the Main Conjecture, and secondly
techniques from algebra. These techniques often use, more or less ex-
plicitly, cohomologically trivial and projective modules. This is what
happens in the present paper as well. The algebraic part of our ar-
guments will be driven by the theory of Tate sequences. If we take
the Iwasawa module X to be the mirror image of A∨L∞ , then there is a
four-term sequence

0→ X → P → B → Zp → 0

of Λ[Gal(L+/k)]-modules, where B and P have projective dimension
at most 1. Our idea is now, very roughly, to take an explicit resolution
of Zp via modules of projective dimension ≤ 1, let Ω2 be the second
kernel in this resolution (so we get a similar 4-sequence with rightmost
term Zp, this time with leftmost term Ω2), calculate the Fitting ideal
of Ω2 by brute force, and finally establish a link between this Fitting
ideal and the Fitting ideal of X, the object of our quest.

To implement this idea requires a fair amount of technical work.
Before we give a short description of this, let us give two instances of
the main result, which are relatively easy to state, so as not to overtax
the reader’s patience. Remember ∆ is the non-p-part of G and G(p)

denotes the p-part. Note that the Teichmüller character ω is Zp-valued,
so that the ω-component of every Λ[G]-module is naturally a Λ[G(p)]-
module.

(I) Assume G(p) is the direct product of two cyclic subgroups 〈σ1〉 and

〈σ2〉. Let νi =
∑o(σi)−1

t=0 σti be the corresponding norm elements, and let
τi = σi − 1 for i = 1, 2. Then

FitΛ[G(p)]((A
∨
L∞)ω) =

(
τ 2

1 , τ1τ2, τ
2
2 , τ1ν2, τ2ν1, (τ1, τ2, ν1, ν2)Ṫ , Ṫ 2

)
Θ̇.

This result will be shown just before Corollary 3.5.

(II) Assume that the group G(p) is p-elementary of rank s ≤ 4 with
generators σ1, . . . , σs. Define τi and νi analogously as in (I). Let H
be the augmentation ideal of Zp[G(p)], J the ideal in this group ring
generated by H and all νi, and M the maximal ideal of Λ[G(p)]. (Note

that M is generated by p, H, and either one of T or Ṫ .) Then

FitΛ[G(p)]((A
∨
L∞)ω) =

(
H Js(s−1)/2 + Ṫ Ms(s−1)/2

)
Θ̇.
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This result will be established at the end of the paper.

Let us now explain the technical parts of the paper. We write down
an explicit resolution and describe Ω2 by generators and relations.
Then we have to deal with the minors of the relation matrix, in or-
der to understand the Fitting ideal of Ω2. All this is explained in §1,
which in fact begins with some abstract calculations of matrix minors.
The central issue in the main part §3 of the paper is the transition
from Ω2 to X. There does not seem to be a K-group suitable for our
calculations, so we have to work from scratch. In doing so we need
certain results on multiplicativity of Fitting ideals in short exact se-
quences, which cannot be extracted from the literature. We state and
prove what we need in §2; the reader is advised to just have a quick
glance at the results on a first reading. The main arithmetical argu-
ments then follow in §3. As a corollary of our main result, we recover
a negative result of the second author: If the p-part of G is not cyclic
and IL∞ denotes the annihilator of Zp(1) over Λ[G], then IL∞ times
the Stickelberger element is not contained in the Fitting ideal of A∨L∞ .
We explain the consequences over number fields of finite degree in §4.
As an appendix we give in §5 a simplified description of the ideal AG

under some assumptions.

Further research might go in two directions. First, we would very
much like to also deal with extensions L/k which have ramification at
places not above p; the paper [Ku3] has some results in this direction
already. Second, it would be interesting to have general results at finite
level as well.

Acknowledgment: The first author would like to thank the second
author for making possible a very enjoyable visit at Keio University in
March 2013. The second author expresses his sincere gratitude to the
first author for arranging his visit to Munich in September 2013, which
led to further fruitful discussions on the subject of this paper. Both
authors would like to thank Sören Kleine for his careful reading of our
draft and for pointing out several errors.

1. Matrices, minors and resolutions

1.1. The matrix Ms and its minors. Fix a positive integer s and
consider the set I = {1, . . . , s}. We are going to construct a very large
sparse matrix Ms. Its entries are taken from the list ν1, . . . , νs, where
for the time being all νi are just variables. The column indices are
“doubletons” in I, that is, two-element subsets of I. It is convenient to
picture these indices as squarefree monomials of degree 2 in the formal
variables x1, . . . , xn. The row indices are degree 3 monomials; but we
only take those in which exactly two xi occur, that is, which are of the
form x2

ixj. At the intersection of row x2
ixj with column xixj we put
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the entry νi, for all i 6= j, i, j ∈ I. All other entries are zero. The
relevance of this matrix and the origin of the row and column indices
will be explained in the next subsection; for the moment we ask the
reader to accept these data as they are. Example for s = 3: M3 is the
matrix 

ν1 0 0
ν2 0 0
0 ν2 0
0 ν3 0
0 0 ν1

0 0 ν3

 ,

where the row indices are x2
1x2, x1x

2
2, x

2
2x3, . . . and the column indices

are x1x2, x2x3, x1x3 in this exact order.

For later use, we are interested in minors of Ms. To get the flavour
of the question, let us look at the 3-minors of the above matrix. One
has to pick exactly one of rows 1 and 2; similarly for the two following
pairs of rows. Every 3-minor is a cubic monomial in ν1, ν2, ν3 (let us
neglect the sign right now). Since each νi occurs just twice in the
matrix, it is plain that no minor can be ν3

i . It is almost as easy as this
to see that all other cubic monomials do occur. We want to see what
happens for general s. The case s = 1 is trivial and the case s = 2 is
clear: the maximal minors of the 2 × 1-matrix M2 are just ν1 and ν2.
For the generalization we need some notation and some combinatorial
arguments.

Let D denote the set of all doubletons in I, so #D = s(s − 1)/2.
Picking a nonsingular square submatrix M of Ms of maximal size
(which is s(s− 1)/2× s(s− 1)/2) amounts to the following: For each
D = {i, j} ∈ D, select either i or j. In other words, select either the
row labeled x2

ixj or the row labeled xix
2
j . This contributes a factor of

either νi or νj towards the determinant of M (recall that we are ignor-
ing all signs). The question is which monomials of degree s(s − 1)/2
in ν1, . . . , νs will arise in this way. Let us formalize this. A selector or
selection map is a map ϕ : D → I such that ϕ(D) is an element of the
doubleton D, for all D ∈ D. Every selector corresponds to just one
complete choice of s(s − 1)/2 rows among all rows of Ms as just de-
scribed. The monomial ν(ϕ) attached to ϕ is defined to be

∏
D∈D νϕ(D).

This is up to sign the minor (determinant of the submatrix) arising from

the selector ϕ. We can write ν(ϕ) =
∏

i ν
ei(ϕ)
i ; this defines an s-vector

e(ϕ) = (e1(ϕ), . . . , es(ϕ)). We are now going to describe a condition on
s-vectors of non-negative integers which will be easily seen to hold for
all vectors e(ϕ) coming from selectors; the point will be to show that
this condition on a vector e conversely implies that e comes from a se-
lector. We will assume for the moment that e1 + . . .+ es = s(s− 1)/2.
This certainly holds for e = e(ϕ).
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Let e = (e1, . . . , es) ∈ Ns. We define a reference vector r = (s−1, s−
2, . . . , 1, 0). For each s-vector e let Σe = (e1, e1 + e2, e1 + e2 + e3, . . .).
Then Σr = (s− 1, 2s− 3, 3s− 6, . . . , s(s− 1)/2, s(s− 1)/2). A vector e
will be called admissible, if Σe ≤ Σr (the relation ≤ being understood
in every component).

Example s = 3: here Σr = (2, 3, 3). Then Σe ≤ Σr just means
e1 ≤ 2, since we are assuming e1 + e2 + e3 = 3. Can this now be
the precise criterion for νe = νe11 ν

e2
2 ν

e3
3 to occur as a 3-minor of M3?

Obviously not, since the condition is not symmetric in the indices.
(Or differently put: e = (0, 3, 0) satisfies the criterion but ν3

2 is not a
minor.) Something is missing, and this has to do with the ordering of
the vector. We call e ordered if e1 ≥ e2 ≥ . . . ≥ es, and for every e we
write ẽ for the ordered vector arising from e by suitably permuting the
entries. (The ordered vector is unique, the permutation isn’t always.)
Obviously, e arises from a selection map if and only if ẽ does, so we
may restrict our attention to ordered vectors. For s = 3, the ordered
admissible vectors are: (2, 1, 0) and (1, 1, 1). These are exactly the
ordered vectors e such that νe is a minor, see above.

Lemma 1.1. For every selector ϕ, the vector e(ϕ) is admissible.

Proof: Take 1 ≤ i ≤ s. Then e1(ϕ) + . . . + ei(ϕ) is the number of
doubletons D such that ϕ(D) ≤ i. Since ϕ(D) ∈ D, this number is
at most the number of doubletons which contain some j between 1
and i (inclusive). It is easy to count these doubletons: there are s− 1
which contain 1; then there are s− 2 doubletons containing 2, not yet
counted; s− 3 containing 3 and not yet counted, and so on. Summing
from 1 to i gives exactly the i-th entry of Σr. QED

We want to prove: If e is ordered and admissible, then there exists
a selector ϕ with e = e(ϕ). Let us rephrase this in graph-theoretical
terms. A selector is simply a way of turning the complete non-oriented
graph on s vertices into an oriented graph: if ϕ({i, j}) = i, let the
arrow point from j to i. The vector e(ϕ) is just the vector of in-degrees
of the s vertices in the resulting oriented graph. Thus, we have to show:
any preselected in-degree vector which is ordered and admissible can
be realized by “orienting” the complete non-oriented graph on the set
I. More formally:

Proposition 1.2. With notation s and I as above, every ordered ad-
missible vector c is of the form e(ϕ) for some selection map ϕ.

Proof: This is done by induction on s; s = 1 and s = 2 being clear. So
fix s ≥ 3 and let c be an ordered and admissible s-vector of nonnegative
integers. Write Σr = (q1, . . . , qs), so qt = ts−(t+1)t/2 for t = 1, . . . , s.
We call t ≤ s critical for c if c1 + . . .+ ct = qt but for all i < t we have
c1 + . . .+ ci < qi. (Recall: admissibility just says c1 + . . .+ ci ≤ qi for
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all i). Since c1 + . . .+ cs = qs, there is exactly one critical index t. We
call the vector c critical if its critical index is different from s.

We first treat the case of a critical vector c. So t < s; we have
c1+. . .+ct−1 < qt−1 and c1+. . .+ct = qt, so ct > qt−qt−1 = s−t. Hence
ci > s−t for all i = 1, . . . , t. Now we can split I into I ′ = {1, . . . , t} and
I ′′ = I \I ′. Let c′ = (c1−(s−t), . . . , ct−(s−t)) and c′′ = (ct+1, . . . , cs).
Then both c′ and c′′ are ordered. An easy calculation shows that c′ is
admissible for I ′ (note the reference vector for I ′ is (t− 1, t− 2, . . . , 0)
and that the entries of c′ are positive). The fact that t is a critical index
implies, by another direct calculation, that c′′ is admissible for I ′′. (The
indexing now goes from t+ 1 to s, but the notion of admissibility stays
the same: ct+1 ≤ (s− t)− 1, ct+2 ≤ (s− t)− 1 + (s− t)− 2, and so on.)
We now find a selector ϕ (an orientation of the complete graph on I)
as follows: on I ′, draw arrows so as to obtain the in-degrees given by
c′; on I ′′, draw arrows so as to obtain c′′. Finally, draw an arrow from
every vertex in I ′′ to every vertex in I ′. This raises the in-degrees in
I ′ by s− t, so it turns the vector c′ back into the initial segment of c,
and all is well.

Next suppose c is not critical, so t = s. Then cs is positive, since
cs = 0 would imply c1 + . . .+ cs−1 = qt−1 (note qt−1 = qt = s(s− 1)/2),
and c would be critical. We now do the following modification: raise c1

by one and lower cs by one. Call the resulting vector c′. By assumption
all the inequalities c1 + . . . + ci ≤ qi with i = 1, . . . , s − 1 are sharp
(we are not concerned with i = s which always yields equality). This
shows that c′ is still admissible, and it is again ordered.

Case distinction: (1) The new vector c′ is critical. Let t′ < s be
its critical index. Then by the first part of the proof, there exists a
selector ϕ producing the vector c′ in which there is an arrow s→ i for
all i ≤ t′. We just reverse the arrow s→ 1, to change c′ back into c.

(2) The new vector c′ is not critical. Then we do a second modi-
fication: lower c′s = cs by 1 (again), raise c′2(= c2) by one. Call the
resulting vector c′′. It is again ordered. Its critical index t′′ cannot be
1, since c′′1 = c′1 does not equal q1. We again distinguish: if t′′ < s, we
realize c′′ as above; since t′′ ≥ 2, we can turn c′′ back into c again, by
reversing the two arrows s → 1, s → 2. If t′′ = s, we modify a third
time (this time moving one unit from cs to c3), and so forth.

Finally, since cs cannot be more than (s−1)/2, the process must stop
after at most that many steps, so we do not run out of possibilities to
do the modifications. We repeat: if cs = 0 then we are done. QED

We also will have to consider partial selectors ψ; this is, by definition,
a map from a subset Dψ ⊂ D to I, again satisfying the condition
ψ(D) ∈ D whenever ψ(D) is defined. One defines ν(ψ) and e(ψ) just
the same way as for total selectors. So one has in symbolic exponential
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notation: ν(ψ) = νe(ψ). The proof of the following result is easy and
we omit it.

Lemma 1.3. The following two statements are equivalent for a vector
c ∈ NI :

(i) There is a partial selector ψ with c = e(ψ).

(ii) There is a selector ϕ such that c ≤ e(ϕ). (In fact ϕ can be chosen
as an extension of ψ to the whole of D.)

In other words: The monomials ν(ψ) with ψ a partial selector are
precisely the divisors of the monomials ν(ϕ) with ϕ a (total) selector.

The preceding results allow us to describe all minors of Ms. As
already explained in the case of maximal minors, specifying a minor
amounts to the following: Among each pair of row indices (xix

2
j , x

2
ixj)

we must select at most one; this amounts to marking at most one
element of the doubleton {i, j}. Hence we have to specify a partial
selector function ψ, and the determinant of the square matrix that
arises from this selection of rows is (up to sign) exactly the monomial
νe(ψ). For any matrix A over a commutative ring R and any j ≥ 0,
let Minj(A) be the R-ideal generated by the minors of size j of A. By
convention Min0(A) is the unit ideal. Now from the preceding lemma
and proposition we obtain:

Proposition 1.4. For any j ≥ 0, the ideal Minj(Ms) is generated by
all monomials ν(ψ), where ψ ranges over all partial selectors whose
domain of definition Dψ has j elements. Equivalently, Minj(Ms) is
generated by all monomials of degree j which divide some ν(ϕ) where
ϕ is a (total) selector.

Lemma 1.1, Prop. 1.2 and Lemma 1.3 allow us to enumerate all the
relevant monomials ν(ψ) of degree j: find all ordered admissible vectors
c, take all degree j divisors of the monomials νc, and also take all ν-
monomials obtained from what we already have by permuting the νi.
For very small values of j it is faster to proceed directly. The special
case j = s(s − 1)/2 corresponds to maximal minors. There will be a
worked example near the end of this section; we defer this since the
matrix Ms is actually only a block in an even larger matrix M̃s, and
we also need to look at minors of M̃s.

We now put aside our matrices for a moment; we will come back to
them very soon.

1.2. Complexes and resolutions, and the matrix M̃s. We will
consider rings of the type Z[T ]/(Tf) with f some monic polynomial,
and tensor products of finitely many of these rings. The images of T
and f in Z[T ]/(Tf) will be written τ and ν respectively. For every
cyclic group 〈σ〉, the group ring Z[〈σ〉] is of this type: if σ has order
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n, then Z[〈σ〉] = Z[s]/(sn − 1) = Z[T ]/((T + 1)n − 1), and we put
f = ((T + 1)n − 1)/T . Here we have τ = σ − 1 and ν = Nσ =
1 + σ + . . . + σn−1. In the sequel we will have to deal simultaneously
with s such rings Ri = Z[T ]/(Tfi). In fact, all Ri will be group rings
of nontrivial cyclic p-groups 〈σi〉. We write τi, νi for the image of σi
(resp. Nσi) in Ri. Everything we do works also over Zp instead of Z;
but let us stick with Z now and switch to Zp later.

Let us look for a moment at one ring Ri and the trivial module Z =
Ri/τiRi over it. We then have a very well-known periodic resolution:

. . .
·τi−−−→ Ri

·νi−−−→ Ri
·τi−−−→ Ri −−−→ Z −−−→ 0.

Let C•(Ri) denote the complex given by this infinite exact sequence,
with the term Z deleted; so the rightmost Ri is in degree 0.

We now take rings R1, . . . , Rs of this type and tensor together the
resolutions C•(Ri), the tensor product being taken over Z. Let us
point out that in our applications, all Ri will be cyclic group rings. It
is known that the resulting complex

C•(R1, . . . , Rs) := C•(R1)⊗ . . .⊗ C•(Rs)

then defines a resolution of Z⊗ . . .⊗Z = Z over the tensor product of
rings R := R1⊗ . . .⊗Rs. The main technical problem in working with
this complex will be to manage the indices that occur when describing
the terms of degree 1, 2 and 3. The degree 0 term of the complex is
easy: this is just R. Note that R can be identified with the group
ring Z[Γ] where Γ is defined to be G1 × . . . × Gs and Gi is the cyclic
p-group generated by σi. (Note: The letter Γ without subscript will
never denote a Galois group isomorphic to Zp in this paper.)

To continue, we need to set up more notation. Let M q
i denote the de-

gree q term of the complex C•(Ri). For any multidegree e = (e1, . . . , es)
let M e = M e1

1 ⊗ . . .⊗M es
s . All these modules are free of rank one over

R, with a canonical basis element that we call be. The weight |e| of the
multidegree e is just the sum e1 + . . .+ es. Then we have

Cq(R1, . . . , Rs) =
⊕
|e|=q

M e.

The set of multidegrees e with weight q can also be identified with the
set of degree q monomials in the variables x1, . . . , xs.

We will mostly be concerned with Ω2, which is defined as the cok-
ernel of C3(R1, . . . , Rs) → C2(R1, . . . , Rs). So we have the four-term
sequence

0→ Ω2 → C1(R1, . . . , Rs)→ C0(R1, . . . , Rs)→ Z→ 0,

where the two modules in the middle are R-free of ranks s and 1 re-
spectively. Quite generally, the R-rank of Cq(R1, . . . , Rs) is

(
s+q−1
q

)
; for

q = 2 this gives s(s + 1)/2 and for q = 3 this gives s(s + 1)(s + 2)/6.
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We repeat that the canonical basis for the degree q term is indexed by
the degree q monomials in x1, . . . , xs; however, these monomials are a
mere bookkeeping device.

The main point is to calculate the differentials. Let ∂ for short be
the differential in C•(R1, . . . , Rs) from degree 3 to degree 2. Then ∂ is
given by a matrix M̃s whose rows (columns) are indexed by the cubic
(respectively quadratic) monomials in the xi. If y is a cubic monomial
and z a quadratic monomial, the (y, z)-entry is determined as follows:

— if z does not divide y, the entry is zero;

— if z divides y, then y/z = xi for exactly one i, and we declare the
entry to be ±τi if the degree of xi in y is odd, and ±νi if the degree of
xi in y is even. The sign is (−1)n where n is the sum of the degrees of
the xj in y with index j < i.

Let us describe some rows explicitly. First, take the row index x3
i .

Then plainly, the row has τi in position x2
i , and zeros everywhere else.

Second, take the row index x1x
2
2. Then we get −ν2 in position x1x2 and

τ1 in position x2
2. Third and last, take the row index x1x2x3. Then we

have τ1 in position x2x3, −τ2 in position x1x3 and τ3 in position x1x2.

In full generality the matrix M̃s can be written as a block matrix

 A 0
B Ms

0 C



according to the following subdivision of indices: For the rows, first
come the pure cubes x3

i ; then the cubic monomials involving exactly
two of the xi; and finally the products of three different xi. For the
columns, we first have the pure cubes x2

i , and then the products xixj
with i < j. Please note at this point that the matrix written Ms here
does coincide (up to some minus signs which were neglected previously)
with the matrix given that name in the previous subsection.

The matrix A is diagonal of format s× s with entries τi. The matrix
B is of format s(s− 1)× s; each of its rows has exactly one entry, and
it is always of the form ±τi. The matrix C is less easily described. Let
us just say that for s = 3 we already calculated it a few paragraphs
ago: it is (with appropriate indexing) the row (τ3 τ1 −τ2). Let us, for
the sake of clarity, write down the entire matrix M̃s for s = 3, with
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indices written out in the leftmost column and the top row:

x2
1 x2

2 x2
3 x1x2 x2x3 x1x3

x3
1 τ1

x3
2 τ2

x3
3 τ3

x2
1x2 τ2 ν1

x1x
2
2 τ1 −ν2

x2
2x3 τ3 ν2

x2x
2
3 τ2 −ν3

x2
1x3 τ3 ν1

x1x
2
3 τ1 −ν3

x1x2x3 τ3 τ1 −τ2

Let us now go back to the general case. In the compound matrix(
A
B

)
, every column contains each τi (there happen to be no minus signs)

exactly once, and the other entries are zero. This implies: Every mono-
mial of degree s in τ1, . . . , τs arises as an s-minor of

(
A
B

)
.

Let us introduce a little ad-hoc terminology. A ν-monomial is a
product of terms νi, and a τ -monomial is a product of terms τi. Every
monomial is uniquely a product of a ν-monomial (its ν-part, we will
say) and a τ -monomial.

In Prop. 1.4 we already computed the minors of Ms in terms of
selector functions: Every minor is of the form (plus or minus) νe(ψ) for
a partial selection function ψ. It is easy to see that the same holds for
the ν-part of any monomial that occurs as a summand of a minor of
the entire matrix M̃s. A ν-monomial will be called admissible if it is
of the form ν(ψ) with a partial selector ψ.

The R-Fitting ideal of Ω2 is generated by the maximal minors of M̃s.
We can say a little about this ideal without calculating it exactly. Let
J ⊂ R be generated by all τi and all νi. We can then say at once that
FitR(Ω2) ⊂ Js(s+1)/2.

Any minor of M̃s is a sum of (signed) monomials of the same degree.
As seen above, the ν-part of any such monomial is admissible. Let H
denote the ideal generated by τ1, . . . , τs, let nj be the ideal generated
by all admissible ν-monomials of degree j, and let H(j) be the ideal
generated by all square-free monomials in the τi of degree j. (Note
that H(j) = 0 for j > s. Note also that the notation Hj will mean the
usual j-th power of the ideal H.) We put c = s(s + 1)/2 and look at
the t-minors of M̃s for t = c, c− 1, . . . , 0.

Proposition 1.5. (a) For c ≥ t > s(s − 1)/2 + 1 the ideal Mint(M̃s)
is zero.
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(b) For s(s− 1)/2 + 1 ≥ t ≥ 0 we have inclusions

t∑
d=0

H(t−d)nd ⊂ Mint(M̃s) ⊂
t∑

d=0

H t−dnd.

Proof: (a) The ideal Mint(M̃s) is the c− t-th Fitting ideal of Ω2. This
latter module has locally everywhere rank at least s − 1, as is clear
from the four-term sequence defining it. Hence the Fitting ideals with
indices 0, 1, . . . , s − 2 are all zero, and c − t ≤ s − 2 is equivalent to
t > s(s− 1)/2 + 1.

(b) Let us look at a minor of M̃s. As a determinant it is a sum of
signed monomials x, each of degree t. We already mentioned that the
ν-part xν of every such monomial x must be admissible. Let d be its
degree; then x = xτxν where xτ is a τ -monomial of complementary
degree t− d. This proves the second inclusion.

We now show the first inclusion. Given d so that t − d ≤ s and
any square-free τ -monomial y of degree t − d, we can realise y as a
(t− d)-minor of the square matrix A. Any z ∈ nd can be realised as a
d-minor of Ms. Hence we can obtain yz as a t-minor of M̃s. QED

Remark: We conjecture that the second inclusion in this proposition
is actually an equality.

Starting from now, we replace the base ring Z by Zp consistently.
Also, we take Γ = G1× . . .×Gs which is a product of s cyclic nontrivial
p-groups, R now means Zp[Γ] instead of Z[Γ] and we make R and Ω2

into modules over Λ[Γ] with Λ = Zp[[T ]], just by letting T act trivially.
We are interested in the ideal

A := FitΛ[Γ](Ω
2).

We get a set of defining relations for Ω2 over Λ[Γ] by taking the defining
relations over R, and adjoining a relation Tb = 0 for each generator b.
From this we get the formula

A = Fit0
R(Ω2) + T · Fit1

R(Ω2) + T 2 · Fit2
R(Ω2) + . . .

where FitiR(Ω2) means the i-th higher Fitting ideal of Ω2. Of course
we have FittR(Ω2) = Minc−t(M̃s) for all t, where we recall that c =
s(s + 1)/2. For simplicity let us abbreviate Mint(M̃s) by mt. (Note
that this hides the dependence on s!) We already have shown that
mt = 0 for t > s(s − 1)/2 + 1 = c − s + 1. Summing up, we have
obtained:

Proposition 1.6.

A =
〈
T s−1mc−s+1, T

smc−s, . . . , T
c−1m1, T

cm0

〉
Λ[Γ]

.
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The terms mt = Mint(M̃s) were to some extent determined in Propo-
sition 1.5. Let us look at the case s = 3 in some detail. As said in
loc.cit., mt = 0 for t = 6 and t = 5. Before continuing we discuss what
the admissible ν-monomials are. In degree 0, 1 and 2, all ν-monomials
are admissible. In degree 3, a ν-monomial is admissible iff it is not a
pure cube ν3

i . (Reason: The ordered vectors (2, 1, 0) and (1, 1, 1) are
admissible, but (3, 0, 0) is not.) It can now be checked by hand that
the right-hand inclusion in Prop. 1.5. is an equality for s = 3 (see
comment below). This gives the following results: m0 = (1), m1 = J ,
and:

• m2 = J2.
• m3 is generated by all degree 3 monomials in τ1, τ2, τ3, ν1, ν2, ν3,

except the pure cubic monomials ν3
i , i = 1, 2, 3.

• m4 is generated by all degree 4 monomials in τ1, τ2, τ3, ν1, ν2, ν3,
except monomials consisting of ν-terms only, and monomials
that are divisible by some ν3

i .

Comment: (a) Take s = 3 (as before) and t = 4. Then the left-hand
inclusion in Prop. 1.5 gives us τ1τ2ν

2
3 ∈ m4 but not τ 2

1 ν
2
3 ∈ m4; to see

that this holds true too, one needs to have a direct look at the matrix.
(Take rows 1,5,7,9 and columns 1,2,5,6.) It is not clear how to proceed
for general s.

(b) For s = 4, a ν-monomial is admissible iff no variable νi has more
than degree 3 in it, and the joint degree of any two variables never
exceeds 5. We have verified that the right-hand inclusion of Prop. 1.5
is an equality for s = 4 as well. A more elegant argument that works
for all s would be preferable, but is not in sight.

As the reader can see, our determination of A is not quite complete,
at least for s ≥ 5. But the following information is very useful. Let
ε : Λ[Γ]→ Λ be the augmentation map. Then we obtain:

Proposition 1.7.

ε(A) ⊂ ps(s−1)/2T sΛ + ps(s−1)/2−1T s+1Λ + . . .+ T s(s+1)/2Λ,

with equality if Γ is of exponent p (in other words, elementary p-
abelian).

Proof: We apply ε to the right hand side in Prop. 1.6. Generally
ε(mt) is contained in ptΛ, since all τ -terms vanish under augmentation,
and all ν-terms go to multiples of p. On the other hand it is an easy
exercise to see that ε(nt) = ptΛ if G has exponent p. Now every
monomial generating mc−s+1 has at least one τ -factor, so disappears
under augmentation. Taking all this together, we obtain our result.
QED
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1.3. More general groups. We have explained the Fitting ideal of
a certain module Ω2 over the group ring R = Zp[Γ] (where Γ = G1 ×
. . . × Gs is a product of s cyclic nontrivial p-groups), and over Λ[Γ],
in terms of matrices and minors. Recall that Ω2 occurs in a four-term
sequence

0→ Ω2 → Rs → R→ Zp → 0. (1)

This is in fact a minimal projective 2-step resolution of Zp: the map
R → Zp is augmentation, and its kernel requires s generators. This
information already determines Ω2 up to R-isomorphism.

For later use, we need to allow somewhat more general groups. This
will require more and partly different notation, which we are going to
introduce now. In our arithmetical applications, Γ will always be the
p-part G(p) of an abelian group G, which is a Galois group Gal(L/k).
We will have G = G(p) × ∆ with a group ∆ whose order is prime to
p, and if we put G+ = Gal(L+/k) we similarly get G+ = G(p) × ∆+

(with the same group G(p)). Since we need several versions of Ω2, the
Ω2 in sequence (1) will be consistently written Ω2

G(p)
from now on, and

we will also write AG(p)
instead of A.

Since the kernel of augmentation Zp[G+] → Zp is again minimally
generated by s elements, there exists a projective 2-step resolution of
quite similar shape, with G(p) replaced by G+:

0→ Ω2
G+ → Zp[G+]s → Zp[G+]→ Zp → 0. (2)

If we take χ0-parts of this, where χ0 is the trivial character of ∆,
then we get back the previous sequence (1). If we take χ-parts for
any nontrivial character of ∆, then (Zp)χ vanishes and we obtain that
(Ω2

G+)χ = Zp[G+]s−1
χ .

Now we again consider all modules in the 4-sequence (2) as Λ-
modules, with T ∈ Λ operating as zero. We define an ideal of Λ[G+]
by

AG+ := FitΛ[G+](Ω
2
G+).

Then we have the following relations:

(AG+)χ0 = AG(p)
;

(AG+)χ = (T s−1) for all nontrivial characters χ of ∆.

The reader already sees that the main difficulty and interest is in the
χ0-part; we include the other χ-parts only to get a more rounded-off
result in the arithmetical setting.

2. Multiplicativity of Fitting ideals

In this section, which is again preparatory to the arithmetic matters
proper, R is an arbitrary commutative ring. (So the use of the letter
R in this section is not the same as in §1.) All modules will be finitely
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generated; by an R-torsion module we will always understand an R-
module annihilated by some nonzero-divisor in R.

The following is well known (for the local case see e.g. Lemma 3 of
[CG]): if 0 → A → B → C → 0 is a short exact sequence of modules
over R and C is an R-torsion-module of projective dimension at most
1 (equivalently, C can be written as the quotient of a projective R-
module by a projective submodule of the same rank), then FitR(B) =
FitR(A) FitR(C). We will use this later; but this property will not
suffice, since we will also encounter cases where it is A instead of C
which has pd = 1. Over some rings R one can use duality (see [GK])
to show that multiplicativity of Fitting ideals holds in that situation
as well, for instance R = Λ[G] with G cyclic, and all modules finitely
generated free over Zp. But again, this is not enough for us. In fact
we will not be able to show multiplicativity of the Fitting ideal in s.e.s.
with front term having pd ≤ 1 in general, but only in a special situation
which is fortunately sufficient for us.

Let P be a torsion module of pd ≤ 1 over R, which we assume
semilocal and connected, for simplicity. (The case pdR(P ) = 0 will
only occur if P = 0 in later applications, so for the time being one
should think of P as having pd = 1.) Then P can be written as the
cokernel of an injective R-linear endomorphism of some free module
Rn. We think of this endomorphism as given by a square matrix A
whose determinant is a nonzero-divisor. Now let u be a variable. The
canonical u-extension P (u) of P is defined as the cokernel of the matrix
uA on R[u]n. There is a short exact sequence

0→ R[u]n/uR[u]n → P (u)→ R[u]⊗R P → 0,

where the map P (u) → R[u] ⊗R P is canonical (stemming from iden-
tity on R[u]n), and the former map is induced by multiplication with
the matrix A. Exactness of the sequence is easy to check, using the
injectivity of multiplication by A. At least if we fix the number n, this
extension (up to isomorphism) only depends on P , not on the choice
of the matrix A. For instance if R is local, one can take n equal to the
minimal number of generators of P , and then P (u) is really unique in
a strong sense. But these uniqueness questions are not important for
us.
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We now consider an R-submodule X ⊂ P and we construct the
pullback X(u) as follows:

0 −−−→ R[u]n/uR[u]n
=−−−→ R[u]n/uR[u]ny y

0 −−−→ X(u) −−−→ P (u)y y
0 −−−→ R[u]⊗R X −−−→ R[u]⊗R P.

All horizontal maps are injective, and all columns are short exact se-
quences. Note that in the rightmost column all modules have pd ≤ 1
over R[u], whereas in the middle column we only know this about the
top module. Nevertheless we have:

Lemma 2.1. With the above notation, we have

FitR[u](X(u)) = FitR[u](R[u]⊗R X) FitR[u](R[u]n/uR[u]n).

Of course the first factor on the right is FitR(X)R[u], and the second
factor is unR[u].

Proof: We first remark that by a general property of Fitting ideals in
short exact sequences, the right hand side is always contained in the
left hand side. So we only have to show the inclusion from left to right.

Let M be a relation matrix for X over R, stemming from a set of
generators x1, . . . , xr of X. Each row in M represents a relation, so M
has r columns. Of course M is also a relation matrix for R[u]⊗RX =:
X[u] over R[u]. Let e1, . . . , en be the obvious system of generators of
R[u]n/uR[u]n coming from the standard basis. Then the corresponding
relation matrix for R[u]n/uR[u]n over R[u] is just u times In, the n×n
unit matrix. The module X(u) consists of all pairs (x, q) ∈ X[u]×P (u)
having the same image in R[u] ⊗R P =: P [u]. Let e′i be the image of
ei in P (u); then e′i goes to zero in P [u], so (0, e′i) ∈ X(u). We also lift
every generator xj ∈ X to some pair (xj, dj) ∈ X(u). It is easy to see
that e′1, . . . , e

′
n, x1, . . . , xr is a system of generators of X(u), and the

corresponding relation matrix has the form(
uIn 0
B M

)
,

for some matrix B over R[u]. The Fitting ideal of X(u) is generated
by all n + r-minors of this matrix, and in calculating this, we may
first apply elementary row operations to the matrix as we please. The
entries u in the first n rows are very convenient: we can use them to
reduce every entry of B to an element of R. (Write B = (bij) and
bij = cij + ud with cij ∈ R; subtract d times the j-th row of the total
matrix from the n + i-th row of the total matrix. This eliminates the
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term ud.) So we may suppose that B has all entries in R; we also recall
that M has entries in R.

Now let t ∈ R be a nonzero-divisor such that tX = 0. We base-
change all our modules from R to R[1/t]. Then X becomes 0, and

FitR[1/t][u](X(u)[1/t]) = (un).

Hence the R[u]-ideal FitR[u](X(u)) is a subset of unR[1/t][u]. Recall
that we have to show that the latter Fitting ideal lies in un FitR(X)R[u].

Let us discuss the minors that generate the Fitting ideal. They arise
from picking a rows of the upper region (uIn 0) of the matrix, and n+
r−a rows of its lower region (B M), and taking the determinant of the
resulting matrix. If a = n, then the determinant that we get is simply
un times some r-minor of M , and this is indeed in un FitR(X). So
suppose a < n. Then the resulting determinant has the form uaρ, where
ρ is an element of R. So by the previous paragraph this determinant
is in the set

uaR ∩ unR[1/t][u].

By comparing coefficients of polynomials in the variable u and recalling
that R→ R[1/t] is injective, we see that this intersection only contains
the zero element. So all minors with a < n are zero. This shows the
desired inclusion. QED

In the next step we eliminate the formal variable u. Let g be
any nonzero-divisor of R. The base change from R[u]-modules to R-
modules induced by u 7→ g will just be written with a superscript
(. . . )u=g during the following argument. For any R-module N , the
module (R[u]⊗R N)u=g identifies canonically with N itself.

It is clear from the construction that P (u)u=g has a description quite
analogous to that of P (u): P (u)u=g is the cokernel of the injective map
Rn → Rn given by multiplication by gA. There is a similar s.e.s.
0 → Rn/gRn → P (u)u=g → P → 0. Given this, we will write P (g)
for P (u)u=g, hoping that the two constructions, the one involving the
polynomial ring R[u], the other performed over R, will not be confused;
and we will call P (g) a canonical g-extension of P .

We apply the downward basechange ()u=g to the entire pullback di-
agram above; X(g) will stand for X(u)u=g. We obtain:

0 −−−→ Rn/gRn −−−→ Rn/gRny y
? −−−→ X(g) −−−→ P (g)y y
0 −−−→ X −−−→ P.
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The upper righthand vertical map is monic; actually the right hand col-
umn is a s.e.s. that was mentioned a few lines ago. The top horizontal
map is an equality. Therefore the upper lefthand map is monic as well.
Hence the middle column is also a short exact sequence. This shows
that the middle horizontal map is monic (we can replace the question
mark by 0), and that the lower square is a pullback. Since Fitting ideals
commute with base change, we know that FitR(X(g)) = gn FitR(X).
We formulate what we have proved, recapitulating most hypotheses.

Proposition 2.2. Let R be a semilocal commutative ring, P a torsion
module of pd ≤ 1 over R, X ⊂ P a submodule, and g ∈ R a nonzero-
divisor. Let P (g) be a canonical g-extension of P . (This involves the
choice of a presentation of P .) Finally, let X(g) be the pullback of X
and P (g) over P . Then

FitR(X(g)) = FitR(Rn/gRn) · FitR(X) = gn FitR(X).

We now show that this result continues to hold for a somewhat wider
class of extensions.

Proposition 2.3. Take any short exact sequence of torsion R-modules

0→ Q→ P̃ → P → 0

in which P̃ and P have projective dimension at most one over R, and
let X be any R-submodule of P . Define X̃ to be the pullback of X and
P̃ over P , so there is another s.e.s.

0→ Q→ X̃ → X → 0.

Then
FitR(X̃) = FitR(Q) FitR(X).

Proof: Since Fitting ideals commute with localization, we may and
will assume that R is local. We may therefore suppose that there
are free rank n submodules F̃ ⊂ F ⊂ Rn such that P = Rn/F and
P̃ = Rn/F̃ , the map P̃ → P being the canonical one. Let A be a square
matrix that expresses a basis of F in terms of the standard basis of Rn,
and let B be a matrix that expresses a basis of F̃ in terms of a basis
of F . Then P is the cokernel of A, and P̃ is the cokernel of AB. The
determinants of A and B are nonzerodivisors; write g = det(B). Then
gIn = BB′ where B′ is the adjoint matrix of B.

Let P ′ be the cokernel of gA = ABB′. Then there are surjections
P ′ → P̃ → P of torsion modules having pd ≤ 1. Moreover P ′ is
a canonical g-extension of P . Recall X̃ is the pullback of X along
P̃ → P and let X ′ be the pullback of X along P ′ → P . Then X ′ → X̃
is onto with kernel isomorphic to ker(P ′ → P̃ ). The Fitting ideal of
the latter module is principal and generated by det(B′). Similarly, the
surjection X̃ → X has kernel ker(P̃ → P ) = Q, and the Fitting ideal
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of this is principal generated by det(B). Finally, the kernel of X ′ →
X is ker(P ′ → P ), whose Fitting ideal is generated by det(BB′) =
det(gIn) = gn. Thus:

FitR(X ′) ⊃ det(B′) FitR(X̃).

By the general inclusion formula for Fitting ideals in s.e.s., the right
hand side contains det(B) det(B′) FitR(X). By Prop. 2.2, the left hand
side equals det(B) det(B′) FitR(X). We thus obtain

det(B) det(B′) FitR(X) ⊃ det(B′) FitR(X̃) ⊃ det(B) det(B′) FitR(X).

We see that both inclusions are equalities. Since det(B′) is a nonzero-
divisor, we can simplify by it in the first equality, and we obtain the
desired result (recall Q = ker(P̃ → P )). QED

These results will be applied for the ring R = Λ[G(p)], where G(p) is
the p-part of a finite abelian group G.

3. Arithmetical modules

The field-theoretical setup will be as follows: p > 2, k is a totally
real number field, L/k is an abelian CM extension, and ζp ∈ L. Let
G = Gal(L/k) and G+ = Gal(L+/k). Then of course G+ = G/〈j〉,
where j means complex conjugation in G. We write G = G(p)×∆, with
a p-group G(p) and a group ∆ whose order is prime to p. Note that we
then also have G+ = G(p)×∆+, where ∆+ = ∆/〈j〉. We also make the
simplifying assumption that k∞ and L are linearly disjoint over k. By
Λ we denote the usual Iwasawa algebra Zp[[Gal(k∞/k)]] ∼= Zp[[T ]].

We assume that only places above p are ramified in L/k. (This is a
serious restriction.) Finally, we assume µ = 0 throughout.

We are interested in the “dual” Iwasawa module A∨L∞ , where L∞ =⋃
n Ln is the cyclotomic p-Iwasawa tower over L and AL∞ = lim

→
ALn

with ALn the p-part of the minus part of the class group of Ln as
usual. This module is by Kummer duality isomorphic to X#(1), where
X = XSp,L

+
∞/k

is the standard Iwasawa module on the plus side, the

exponent # means that the Galois group acts via inverses, and (1) is
the Tate twist. More precisely, X is the Galois group of the maximal p-
abelian p-ramified extension of L+

∞. Note that the moduleX is identical
to its plus part. So we may also consider it as a G+-module.

Now Sp contains by assumption the set S of finite places that ramify
in L+/k, so as shown by Ritter and Weiss we can involve X in a
four-term sequence of Λ[G+]-modules with middle terms of projective
dimension (pd) at most one, which is an analog of the Tate sequence at
infinite level. Let us agree that all occurring modules are assumed to
be finitely generated. Then the “Tate sequence at infinite level” looks
as follows.
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Proposition 3.1. There is an exact sequence of Λ[G+]-modules

(1) 0→ X → P → B → Zp → 0,

where both P and B are Λ-torsion and of projective dimension at most
one over Λ[G+]. (Note for further use that every module that has pd at
most one over Λ[G+] automatically has pd at most one when considered
as a Λ[G]-module, since the kernel of G→ G+ is of order 2, hence has
order prime to p.) One can actually assume that B = Λ[G+]/(T ) and
that the map B → Zp is induced by augmentation.

Proof: This is formula (3) on p.740 of [Gr1]. From that formula we
also see that one may take B = e+Zp[G] = Λ[G+]/(T ) (the idempotent
e+ is defined as (1+ j)/2 as usual), and the map B = Λ[G+]/(T )→ Zp
to be the augmentation map. QED

As our next step we will modify this four-term sequence so as to
make the two middle terms identical. We start with an easy technical
result.

Lemma 3.2. Let R be a commutative ring, and M be a torsion R-
module of pd 1, with Fitting ideal generated by the nonzero-divisor h ∈
R. Let M be generated by n elements. Then for any nonzero-divisor
f ∈ R which is divisible by h, one can construct short exact sequences

0→M → (R/fR)n →M ′′ → 0

and

0→M ′ → (R/fR)n →M → 0,

in which M ′ and M ′′ are again of pd ≤ 1.

Proof: This is very similar to a construction we saw in Section 2. We
can write M as the cokernel of a matrix A ∈ Rn×n with determinant
h. Then there is a matrix B such that AB = fIn. Multiplication with
B defines an injection M → (R/fR)n with cokernel M ′′ = Rn/im(B).
Similarly, if we put M ′ = Rn/im(B), then multiplication with A defines
an injection M ′ → Rn/fRn with cokernel M . (In checking injectivity
one uses that the determinant of all occurring matrices is a nonzero-
divisor.) QED

Now we take the exact sequence (1), assuming as we may that B has
the special form Λ[G+]/(T ). Choose an integer n ≥ 1 such that P is
n-generated, and a distinguished polynomial f ∈ Λ which is a multiple
of both FitΛ[G](P ) and FitΛ[G](B). (These two Fitting ideals have gen-
erators that are nonzero-divisors in Λ[G], with µ-invariant zero because
B and X both have µ-invariant zero. Hence it is indeed possible, by
taking the norm from Λ[G] to Λ, to find a distinguished polynomial
in Λ which is a common multiple of both generators.) Note that f
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is divisible by T by our assumption on B. By the preceding lemma
applied to Λ[G+], we get short exact sequences

(2) 0→ B → (Λ[G+]/(f))n → B′′ → 0

and

(3) 0→ P ′ → (Λ[G+]/(f))n → P → 0.

Now the s.e.s. (2) is used to modify the 4-sequence (1) on the right
(pushout), and the s.e.s. (3) is used to modify the resulting 4-sequence
on the left (pullback). These two processes commute with each other,
and they simply reflect the functoriality of Ext2 in both arguments.
But in order to be quite clear, we visualise these modifications in a big
diagram. The point is to obtain two equal terms in the middle of the
bottom four-term sequence, and to know them explicitly.

0 −−−→ X −−−→ P −−−→ B −−−→ Zp −−−→ 0

=

y =

y y y
0 −−−→ X −−−→ P −−−→ (Λ[G+]/(f))n −−−→ Z ′′ −−−→ 0x x =

x =

x
0 −−−→ X ′ −−−→ (Λ[G+]/(f))n −−−→ (Λ[G+]/(f))n −−−→ Z ′′ −−−→ 0

In this diagram, the upper right-hand square is a pushout, and the
lower left-hand square is a pullback. Moreover, the surjections X ′ →
X and (Λ[G+]/(f))n → P both have kernel P ′, and the injections
B → (Λ[G+]/(f))n and Zp → Z ′′ both have cokernel B′′.

We now go back to the general constructions of Section 1. Let s be
the minimal number of generators of the p-part G(p) of G. We recall
that there is a 4-term sequence

(4) 0→ Ω2
G+ → Zp[G+]s → Zp[G+]→ Zp → 0.

This can also be viewed as a sequence of Λ[G+]-modules, with T act-
ing as zero. Note that the module Zp[G+] can be identified with B
above, and also that the map Zp[G+]→ Zp is the same as above (aug-
mentation). We now subject the four-term sequence (4) to the same
modifications as the former four-term sequence (1). The outcome is
(this time we only write the bottom row):

(5) 0→ Ω̃→ (Λ[G+]/(f))n → (Λ[G+]/(f))n → Z ′′ → 0.

The module Z ′′ is indeed the same as before. We need to assume that
n was chosen ≥ s, which is no problem. We also need to use that T
divides f . The surjection Ω̃ → Ω2

G+ has kernel Q which is of pd ≤ 1
and whose Fitting ideal is generated by fn/T s ∈ Λ[G+].
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The almost final step is now to invoke the theory of syzygies over the
semilocal ring Λ[G+]/(f) = (Λ/(f))[G+]. We have found two second
syzygies Ω̃ and X ′ of the module Z ′′: the former syzygy in (5) and
the latter in the bottom row of the big diagram above. Hence, by
Schanuel’s lemma, there are free Λ[G+]/(f)-modules F1, F2 such that
Ω̃ ⊕ F1

∼= X ′ ⊕ F2. In particular, the Fitting ideals of F1 and F2 over
Λ[G+] are principal.

We now call two Λ[G+]-torsion modules Y1 and Y2 pf-equivalent (in
symbols Y1 ∼pf Y2; pf stands for principal-Fitting) if there are nonzero-
divisors f1, f2 ∈ Λ[G+] both having µ-invariant zero (i.e. invertible
after localising at (p)) and such that f1 FitΛ[G+](Y1) = f2 FitΛ[G+](Y2).
This is indeed an equivalence relation. From the preceding paragraph
we get Ω̃ ∼pf X ′.

Now from Prop. 2.3 we obtain that Ω̃ ∼pf Ω2
G+ and X ′ ∼pf X.

Taking all this together we get X ∼pf Ω2
G+ .

Let Θ = ΘL+
∞/k

be the Stickelberger element at infinity on the plus

side. It lies in T−1Λ[G+], and it is the mirror image of the more usual
Stickelberger element on the minus side, written θL∞/k in [Ku3] (the
projective limit of θLn/k). (We recall: Taking the mirror image means
that we invert the Galois action and then take the first Tate twist.
Taking the mirror image twice gives back the original object.) Now
we need to use an argument (Lemma 2 in [Gr1]) that has gained some
popularity. For all characters χ of G+, let the subscript χ denote
just for this proof: tensor with Qp over Zp and then take χ-parts.
(Warning: Previously, χ denoted characters of ∆, not of G+.) Then
we know (loc.cit.): For any two principal ideals I and J of Λ[G] with
µ-invariant zero, the equality Iχ = Jχ for all χ forces I = J .

Let AG+ = FitΛ[G+](Ω
2
G+). For every nontrivial character χ of G+,

the defining 4-sequence for Ω2
G+ becomes

0→ (Ω2
G+)χ → Qp(χ)s → Qp(χ)→ 0,

with T acting trivially. Hence (AG+)χ = (T s−1). For the trivial char-
acter χ0 of G+, the Zp term at the end does not vanish and we get

0→ (Ω2
G+)χ0 → Qs

p → Qp → Qp → 0,

so (AG+)χ0 = (T s). This particular behaviour of the trivial character
is important to make all things fit together in the end.

For the final calculation, we recall that by the Main Conjecture (see
[MW] for the absolutely abelian case, where by the way µ = 0 is known
to hold, and [Wi] for the general abelian CM case), the characteristic
series of Xχ is χ(Θ) for nontrivial χ, and Tχ0(Θ) for χ = χ0. Note that
the characteristic series generates the Fitting ideal of Xχ over QpΛ(χ).
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From the pf-equivalence X ∼pf Ω2
G+ shown above, we know that there

are two principal ideals I and J in Λ[G+] such that

I · AG+ = J · FitΛ[G+](X).

For nontrivial characters χ, this entails IχT
s−1 = Jχχ(Θ). For the

trivial character we get Iχ0T
s = Jχ0Tχ0(Θ). Thus for all χ we have

(T s · I)χ = (T ·ΘJ)χ,

and TΘ is integral. Hence by the “popular argument” that was recalled
just above, we have an equality of principal ideals

T sI = TΘ · J,
rewritten in terms of fractional ideals: I = T 1−sΘJ . Therefore

FitΛ[G+](X) = IJ−1AG+ = T 1−sAG+Θ.

This proves the first half of our main result. Before we state it, let
us define AG to be the ideal which is AG+ in the plus part and the unit
ideal in the minus part.

Theorem 3.3. (a) Let L+/k be a Galois extension of totally real num-
ber fields with Galois group G+ which is a product of s cyclic groups of
p-power order (p > 2 prime). Assume µ = 0, L/k unramified outside
p, and k∞ linearly disjoint with L over k. Then the Λ[G+]-Fitting ideal
of the “p-ramified Iwasawa module” X (explained at the beginning of
the section) is given by

FitΛ[G+](X) = T 1−sAG+Θ,

where the ideal AG+ is defined, and in some cases determined, in Sec-
tion 1.

(b) Let k be totally real and L/k be an abelian CM extension with
group G such that L+/k satisfies the hypotheses of (a), and in addition
suppose that L = L+(ζp). Then the Λ[G]- Fitting ideal of A∨L∞ is given
by the mirror of the ideal given in (a), which is

Ṫ 1−sȦG+Θ̇

in the minus part, and the unit ideal in the plus part. The element Θ̇
is the usual Stickelberger element at infinity in the minus part.

Proof: There is nothing more to say about (a). Part (b) follows by
noting that A∨L∞ lives in the minus part, so the plus part of its Fitting
ideal is the unit ideal and the minus part of its Fitting ideal is the
mirror of the Fitting ideal of X, because of the mirror relation between
X and A∨L∞ . QED

Note: In this note and the sequel, χ will again denote characters of ∆,
the non-p-part of G. Taking χ-parts is again meant in the usual sense,
without tensoring by Qp. From §1 we then know:
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(i) For every nontrivial even character χ of ∆, (AG)χ = T s−1. Hence:

FitΛ(χ)[G(p)](Xχ) = (Θ).

This implies that for every odd character ψ of ∆ distinct from the
Teichmüller character ω, we have

FitΛ(ψ)[G(p)](A
∨
L∞)ψ = (Θ̇).

(ii) For the trivial character χ0 of ∆ we have (AG)χ0 = AG(p)
(recall

G(p) is the p-part of G, and of G+). Hence

FitΛ[G(p)](Xχ0) = T 1−sAG(p)
Θ.

The ideal AG(p)
was discussed at length in §1. Its generators were

described in terms of T and certain simple elements τi and νi of Z[G(p)].
As a consequence,

FitΛ[G(p)](A
∨
L∞)ω = Ṫ 1−sΘ̇ȦG(p)

.

(iii) In the last formula, taking the mirror of the ideal AG(p)
only

affects the terms T involved in the generators of A, not the terms τi
and νi that come from the group G(p). More precisely, νi is its own
mirror image, and τi is associated to its mirror image. Note in this
context that Ṫ annihilates the projective limit of the roots of unity.
(The Fitting ideal of that module is generated by Ṫ and all τi.)

Remark: If we do not make the assumption that L/K is unramified
outside p, then a version of part (a) of the theorem holds, in which X
is replaced by the Iwasawa module XS,L+

∞
, where S is the set of finite

places that ramify in L+
∞/k. But the mirror of this is not the dualized

Iwasawa module but something larger. We hope to be able to come
back to this problem in the future.

To illustrate the theorem, let us repeat some information about the
ideal A (short for AG(p)

). As shown in Prop. 1.6, we have

A = m s(s−1)
2

+1
T s−1 + m s(s−1)

2

T s + . . .+ m1T
s(s+1)

2
−1 + (T s(s+1)/2),

where mt ⊂ Zp[G(p)] is the ideal generated by the t-minors of a very

large matrix M̃s that was given explicitly. The sequence of ideals mt is
decreasing; m1 is the ideal J generated by all τi and νi, and m0 is the
unit ideal. The ideal ms(s−1)/2+1 is contained in the kernel of augmen-
tation since every generating monomial has at least one τ -factor, and
one can show that all other mi are of finite index in Zp[G(p)].

At the end of Section 1, we discussed the case s = 3 in detail. Let
us do the cases s = 1 and s = 2 now.

Explicit description for s = 1:
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Here M̃s = (τ1), a one-by-one matrix, and A = m1 +m0T . Hence m1

and m0 are generated by τ1 and 1 respectively, and we find A = (τ1, T ).

Actually this shows that Ȧ is the annihilator of Zp(1). From part (b)
of the theorem we therefore obtain the following result:

Corollary 3.4. If the p-part of G is cyclic, then

FitΛ[G](A
∨
L∞) = AnnΛ[G](Zp(1)) · Θ̇.

Note that this formula generalises a result of the second author: in
Theorem 0.1 (2) of [Ku3], it was shown for the case that the p-part
G(p) is (cyclic) of order p.

We now give the explicit description for s = 2; we will be more brief,
just giving generators for the ideals mi and leaving the easy verifications
to the reader.

• m2 is generated by the monomials τ 2
1 , τ1τ2, τ

2
2 , τ1ν2, τ2ν1;

• m1 is generated by τ1, τ2, ν1, ν2, in other words m1 = J ;
• m0 is the unit ideal.

Taking into account the factor T 1−s in Thm. 3.3 and passing to mirror
images, we get the result labeled (I) in the introduction.

We finish up by reproving another result of the second author (The-
orem 0.3 in [Ku3]):

Corollary 3.5. Assume the conditions of Thm. 3.3, and s ≥ 2. Then
Ṫ Θ̇ is not in the Fitting ideal of the dualized Iwasawa module.

Proof: It suffices of course to show that TΘ is not in the Fitting
ideal FitΛ[G+](X). Let ε+ : Λ[G+] → Λ and εp : Λ[G(p)] → Λ be the
augmentation maps. Then

ε+(T−sAG+) = εp(T
−sAG(p)

),

and we showed in Prop. 1.7 that this is a subset of

ps(s−1)/2Λ + ps(s−1)/2−1TΛ + . . .+ T s(s−1)/2Λ.

Now if we had TΘ ∈ FitΛ[G+](X), then via division by the nonzerodi-
visor TΘ we would obtain that 1 lies in the fractional ideal T−sAG+ .
Hence 1 would also have to lie in the ideal ε+(T−sAG+) = εp(T

−sAG(p)
);

from the description of the latter ideal we just recalled, we see plainly
that this fails to hold for s > 1. QED

Let us conclude by mentioning that we hope to obtain some results
also in the case where some non-p-adic primes are ramified, in upcoming
work. We already hinted at this in the last remark.
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4. Consequences at finite level

In this section, we first prove Theorem 0.1 in the introduction. It is
well-known that H i(Ln/L,ELn)− = H i(Ln/L, µLn) = 0 for all i > 0.
This fact together with our assumption that there is no p-adic prime

which splits in L/L+ implies that the natural map AL
'−→ A

Gal(Ln/L)
Ln

is bijective. Therefore, we have an isomorphism

(6) AL
'−→ AΓ∞

L∞

where Γ∞ = Gal(L∞/L). By duality, the module of Γ∞-coinvariants of
A∨L∞ is then isomorphic to A∨L.

Let κ : Γ∞ −→ Z×p be the cyclotomic character. Since µΓ∞
p∞ =

µp∞(L), we get q = ordp(#µp∞(L)) = ordp(κ(γ) − 1) for a generator

γ of Γ∞. Therefore, the image of the ideal Ṫ 1−sȦG under the natu-
ral homomorphism Λ[G] −→ Zp[G] is the ideal (A0

G)L described in the
Introduction. Thus Theorem 3.3 (b) implies Theorem 0.1.

Next, in order to prove Corollaries 0.2, 0.3, 0.4, using the above
isomorphism (6), we have only to compute the image of Ṫ 1−sȦG under
the canonical homomorphism π : Λ[G] −→ Zp[G]. In the case s = 1,
by the computation before Corollary 3.4 we know that AG(p)

= (τ1, T ).

Therefore, the Teichmüller component of π(ȦG) is π(ȦG(p)
) = (τ1, p

q),

and the other components are generated by 1. Therefore, π(ȦG) is
nothing but AnnZp[G](µp∞(L)).

To prove Corollaries 0.3, 0.4, we need Theorem 5.4 below. Since
Corollary 0.4 (i) is a generalization of Corollary 0.3, we have only to
prove Corollary 0.4. In the following, we consider only the Teichmüller
component, and work over Λ[G(p)] and Zp[G(p)]. Let M, J , H be the
ideals of Λ[G(p)] defined in the Appendix and used in Theorem 5.4.

Let HT be the ideal generated by H and T . Then it is easy to check
that π(ḢT ) = (π(H), pq) = AnnZp[G](µp∞(L)). Suppose at first q ≥ a.
We have

π(Ṁ) = (π(H), pa, pq) = (π(H), pa) = π(J̇) = Iω,a.

Therefore, we have (A0
G)L = π(ḢT )π(J̇)s(s−1)/2 = AnnZp[G](µp∞(L))I

s(s−1)/2
ω,a

by Theorem 5.4. If q ≤ a, we have π(Ṁ) = (π(H), pq) = π(ḢT ) =
AnnZp[G](µp∞(L)). Now Theorem 5.4 implies

(A0
G)L = π(H)(π(H), pa)s(s−1)/2 + pq(π(H), pq)s(s−1)/2

= π(H)(s2−s+2)/2 + pq(π(H), pq)s(s−1)/2

= (π(H), pq)(s2−s+2)/2

= AnnZp[G](µp∞(L))(s2−s+2)/2.

Therefore, Theorem 0.1 implies Corollary 0.4.
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Now we study the numerical example in [KM2] §2. Take p = 3,
k = Q(

√
1901) and L = k(

√
−3, α, β) where α3 − 84α − 191 = 0

and β3 − 57β − 68 = 0. Then G(p) = (Z/pZ)⊕2, so s = 2. We note
that AL coincides with its ω-component since p = 3. We regard AL
as a Zp[G]− = Zp[G(p)]-module. We take generators σ1, σ2 of G(p) =
Gal(k(α)/k)×Gal(k(β)/k) ' (Z/pZ)⊕2 such that σ1 is σ in [KM2] and
σ2 is τ in [KM2] (in particular, σ1 is a generator of Gal(k(α)/k) and
σ2 is a generator of Gal(k(β)/k)). Put τi = σi − 1 as before. Since
L does not contain a primitive p2-th root of unity, AnnZp[G(p)](µp∞(L))

coincides with the maximal ideal M = (τ1, τ2, p) of Zp[G(p)]. We regard
θL/k as an element of Zp[G(p)]. We can apply either of Corollary 0.3 or
Corollary 0.4 to get

FitZp[G(p)](A
∨
L) = M2θL/k .

On the other hand, the explicit long computation in [KM2] shows
that

FitZp[G(p)](A
∨
L) = (p4, p2τ1, p

2τ2, pτ
2
1 , pτ

2
2 , pτ1τ2)

(see the last line of page 425 of [KM2]). Let us check that these two
descriptions agree. First of all, we use two equations on page 420, line
18 and 20, in [KM2]:

τ1θL/k = 8pτ1(1 + τ1τ2 + τ 2
2 + τ1τ

2
2 );

τ2θL/k = 4pτ2(5 + pτ 2
1 + 2τ1τ2 + 2τ 2

1 τ2).

Since both (1+ τ1τ2 + τ 2
2 + τ1τ

2
2 ) and (5+pτ 2

1 +2τ1τ2 +2τ 2
1 τ2) are units,

we have
MθL/k = (τ1, τ2, p)θL/k = (pτ1, pτ2, pθL/k).

Therefore, we get

M2θL/k = (τ1, τ2, p)(pτ1, pτ2, pθL/k)

= (pτ 2
1 , pτ1τ2, pτ

2
2 , p

2τ1, p
2τ2, p

2θL/k).

Thus, using the formula

θL/k = 18−6τ1−2τ 2
1 −42τ2−18τ1τ2−14τ 2

1 τ2−14τ 2
2 −14τ1τ

2
2 −

38

3
τ 2

1 τ
2
2

on page 420 line 15 in [KM2], it is easy to check that

p2θL/k = 9θL/k ≡ 162 = 2p4 mod (p2τ1, p
2τ2, pτ

2
1 τ

2
2 ).

This shows that

M2θL/k = (p4, p2τ1, p
2τ2, pτ

2
1 , pτ

2
2 , pτ1τ2),

and we have checked that the two descriptions do indeed agree.

Finally, we determine the Fitting ideal of a certain Galois group.
Let M/L+ be the maximal abelian pro-p extension which is unramified
outside p. We note L+

∞ ⊂ M and consider Gal(M/L+
∞), which is a

Zp[G+]-module.
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Corollary 4.1. Suppose that L+/k is a finite abelian extension of to-
tally real fields which is unramified outside p, and assume µ = 0 for
L+. Then we have

FitZp[G+](Gal(M/L+
∞)) = (ms(s−1)/2+1 + Tms(s−1)/2)ΘL+ ,

where (ms(s−1)/2+1 + Tms(s−1)/2)ΘL+ is the image of

(ms(s−1)/2+1 + Tms(s−1)/2)Θ

under the canonical map Λ[G+] −→ Zp[G+], and ms(s−1)/2+1, ms(s−1)/2+1

are the ideals of Zp[G+] defined just before Proposition 1.6 (note that
the χ-components of ms(s−1)/2+1 and ms(s−1)/2+1 are both generated by
1 for every non-trivial character χ of ∆, and that Θ is not in Λ[G+],
in general).

Proof: Consider the exact sequence

0→ H1(L+
∞/L

+,Qp/Zp) → H1(M∞/L
+,Qp/Zp)

→ H1(M∞/L
+
∞,Qp/Zp)Gal(L+

∞/L+) → 0,

where M∞/L
+
∞ is the maximal abelian pro-p extension which is unram-

ified outside p. We know H1(M∞/L
+,Qp/Zp) = H1(M/L+,Qp/Zp)

and H1(M∞/L
+
∞,Qp/Zp) is the Pontrjagin dual of X in Theorem 3.3.

Taking the dual of the above exact sequence, we find that Gal(M/L+
∞)

equals the module of Gal(L+
∞/L

+)-coinvariants of X. Thus Theorem
3.3 implies this corollary. QED

5. Appendix: A calculation of the ideal A

Let us recall that G1, . . . , Gs are nontrivial cyclic p-groups. In this
appendix we make two extra assumptions:

(I) The right-hand inclusion in Prop. 1.5 is an equality. (True for
s ≤ 4.)

(II) The group Γ = G1 × . . .×Gs is homogeneous.

(The latter is to say that the groups Gi all have the same order q. Note
that all elementary abelian p-groups Γ are homogeneous.)

Under these assumptions we are able to derive a much simpler expres-
sion for A (notation of §1.2). We review notation from §1: τi = σi − 1
with Gi = 〈σi〉, and νi is the norm element of Z[Gi]. All ideals are
understood to be ideals of the ring Λ[Γ]. The ideals H and J are gen-
erated by τ1, . . . , τs and by τ1, . . . , τs, ν1, . . . , νs respectively. The ideal
n is spanned by all νi; nd is defined just prior to Prop. 1.5. Finally, mt is
short for Mint(M̃s). We will need three fairly simple lemmas, building
on each other.

Lemma 5.1. Let y be a monomial of degree d in the νi and let y1 be
obtained from y by replacing one factor νi by νj, where i, j ∈ {1, . . . , s}
are arbitrary indices. Then y − y1 ∈ Hnd−1.
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Proof: Write y = νiz, y1 = νjz with z ∈ nd−1. Then y−y1 = (νi−νj)z,
and our homogeneity assumption (II) implies that νi − νj has zero
augmentation and hence is in H. QED

Lemma 5.2. Fix some t ≤ s(s − 1)/2. Then for all d ≤ t we have
H t−dnd ⊂ mt.

Proof: Induction over d. The cases d = 0, d = 1 follow from our
assumption (I) above; note that n1 = n1. Let us assume the statement
holds for d−1 and pick a ν-monomial y of degree d. Since t ≤ s(s−1)/2,
there exists at least one degree d monomial y′ in nd. Then there is a
chain y0 = y, y1, . . . , yl = y′ such that for all h = 1, . . . , l, the monomial
yh is obtained from yh−1 by replacing one νi by some other νj, as in the
statement of the previous lemma. Let z ∈ H t−d be arbitrary. Then we
have the following congruences:

zy ≡ zy1 ≡ . . . ≡ zy′ mod H t−d+1nd−1,

by the previous lemma. We have zy′ ∈ H t−dnd ⊂ mt by Assumption
(I), and H t−d+1nd−1 ⊂ mt by inductive assumption. So we get zy ∈ mt

and are done. QED

Lemma 5.3. For t ≤ s(s − 1)/2 we have mt = J t, and ms(s−1)/2+1 =

HJs(s−1)/2.

Proof: We begin by showing the first equality, so assume t ≤ s(s −
1)/2. The inclusion⊂ is obvious. On the other hand, J t =

∑t
d=0H

t−dnd,
and by the last lemma this right hand side is contained in mt. Let us
now look at the second equality. We have ms(s−1)/2+1 = H · ms(s−1)/2

(recall the reason: there are no admissible ν-monomials of degree
s(s − 1)/2 + 1). From this and the case t = s(s − 1)/2, the second
equality follows at once. QED

If we take all this together, including Assumption (I), we obtain,
using again our shorthand c for s(s+ 1)/2 and c− s for s(s− 1)/2:

Theorem 5.4. Under the assumptions (I) and (II) above, we have

A = HJ c−sT s−1 + J c−sT s + J c−s−1T s+1 + . . .+ JT c−1 + (T c)

= HJ c−sT s−1 + T sMc−s,

where M is the ideal generated by J and T . (Note that this is the
maximal ideal of Λ[Γ] if all Gi are of order p.)

The result (II) given in the introduction follows from this: take Γ
to be p-elementary, take the factor T 1−s in Thm. 3.3 into account and
pass over to mirror images.

So we arrive at a much easier description of the ideal A governing the
algebraic structure of the Fitting ideal of the dualized Iwasawa module,
if we are willing to sacrifice a little precision: at least in the elementary
abelian case, A is fairly close to a high power of the maximal ideal.
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