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0. Introduction

Let E be an elliptic curve defined over Q. If E has good ordinary reduction
at a prime p, the growth of Tate-Shafarevich groups (and Selmer groups) of E
in a Zp-extension can be understood by usual Iwasawa theory. But if E has
supersingular reduction at p, the growth of Selmer and Tate-Shafarevich groups
is more complicated. For an odd prime p, the most basic case was dealt with in [6]
where the main assumption was that p does not divide the L-value L(E, 1)/ΩE

(where ΩE is the Néron period). The aim of this paper is to study the case p = 2
under the same assumption on the L-value, namely 2 6 | L(E, 1)/ΩE .

For a prime number p, we consider the cyclotomic Zp-extension Q∞/Q whose
n-th layer we denote by Qn, namely Qn is the intermediate field with [Qn : Q] =
pn. For an odd p, the condition p 6 | L(E, 1)/ΩE implies rank E(Q∞) = 0 (see
[6]), but for p = 2 this does not hold. We will see that for p = 2 the condition
p = 2 6 | L(E, 1)/ΩE would imply that the Selmer groups over Qn always have
positive corank for n ≥ 1, hence would imply rankE(Qn) > 0 if we assume the
Birch and Swinnerton-Dyer conjecture (see Corollary 1.2). So the situation is
different.

As usual, put ap = p + 1 − #E(Fp). In the following, we suppose p = 2
and E has good supersingular reduction at 2. When a2 = 0, we have two nice
Iwasawa functions which describe the p-adic L-function of E by Pollack [11],
and we can define ± Selmer groups as in Kobayashi [5], and can study them by
the same method as for p > 2. In this paper, we consider the case a2 6= 0 (so
a2 = ±2). Let Sel(E/Qn) be the Selmer group of E over Qn of E[2∞] (cf. 2.1).
We will determine the Galois module structure (and the structure as an abelian
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group) of Sel(E/Qn) completely in the case a2 = ±2 under the assumption
2 6 | L(E, 1)/ΩE , in particular Sel(E/Qn) is of corank 1. (When a2 = 0, the
condition 2 6 | L(E, 1)/ΩE does not determine the structure of Sel(E/Qn) as an
abelian group (see Remark 0.2 (3)).)

Our main assumption is just 2 6 | L(E, 1)/ΩE . If the Birch and Swinnerton-
Dyer conjecture is true, this would imply that 2 does not divide the Tamagawa
factor Tam(E) = Πc` = Π(E(Q`) : E0(Q`)) (where E0(Q`) is the subgroup
consisting of points whose images in E(F`) are nonsingular.) We will prove

Theorem 0.1. Let E be an elliptic curve defined over Q with supersingular
reduction at 2, and L(E, s) be the L-function of E. We assume that a2 6= 0,
namely a2 = ±2, and

ord2(L(E, 1)/ΩE) = ord2(Tam(E)) = 0

where ord2 : Q× −→ Z is the normalized additive valuation at 2. Then,

(1) For any n ≥ 0, let θQn be the modular element of Mazur and Tate (see §1, 1.2
for the definition). Suppose n ≥ 1. Let ν : Z2[Gal(Qn−1/Q)] −→ Z2[Gal(Qn/Q)]
denote the Z2-homomorphism defined by σ 7→ Στ for σ ∈ Gal(Qn−1/Q) where
τ ranges over all elements of Gal(Qn/Q) projecting to σ. Then, the Pontrjagin
dual Sel(E/Qn)∨ of the Selmer group over Qn of E[2∞] is isomorphic to

Z2[Gal(Qn/Q)]/(θQn , ν(θQn−1))

as a Z2[Gal(Qn/Q)]-module.

(2) For n ≥ 2, put

qn =
n−1∑

k=0

(−1)k2n−1−k.

Then, we have Sel(E/Q) = 0, Sel(E/Qn) ' Q2/Z2 for n = 1, 2 as an abelian
group, and

Sel(E/Qn)'Q2/Z2 ⊕ (Z/2n−2Z)q3−q2 ⊕ (Z/2n−3Z)q4−q3

⊕...⊕ (Z/2Z)qn−qn−1

for all n ≥ 3. Hence, if we assume the finiteness of the 2-primary component
X(E/Q1){2} of the Tate-Shafarevich group of E/Q1, we have

rankE(Qn) = 1 for all n ≥ 1,

X(E/Q1){2} = X(E/Q2){2} = 0, and

X(E/Qn){2} ' (Z/2n−2Z)q3−q2 ⊕ ...⊕ (Z/2Z)qn−qn−1

for all n ≥ 3.

(3) Sel(E/Q∞)∨ ' Z2[[Gal(Q∞/Q)]].

Remark 0.2. (1) There are many examples satisfying the conditions of Theorem
0.1. For example, E = X0(11) gives a typical example where a2 = −2. Other
examples are 67A, 75A, 75C, 99D, 115A, 141E, 147B, 147C, 179A, 187B, 189D,
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195B, 195C, 195D,... in the notation of Cremona [3]. It is interesting that the
simple conditions in Theorem 0.1 determine the structure of Sel(E/Qn).

(2) Theorem 0.1 corresponds to Theorem 0.1 and Theorem 7.4 in [6].

(3) Suppose that a2 = 0. Then, by Pollack [11] Theorem 5.6 we know there are
two power series f(T ), g(T ) ∈ Z2[[T ]] such that

L2(E)α = f(T ) log−(T ) +
1
2
g(T ) log+(T )α

where L2(E)α is the p-adic L-function corresponding to α =
√−2 (for other

notations, see [11]). Since f(0) = L(E, 1)/ΩE and g(0) = 4L(E, 1)/ΩE , if we
assume 2 6 | L(E, 1)/ΩE , f(T ) is a unit. But the condition 2 6 | L(E, 1)/ΩE

is not sufficient to determine the ideal (g(T )) and to determine the structure of
Kobayashi’s Selmer group corresponding to g(T ). (We will see later (cf. Corollary
1.2) that T + 2 divides g(T ), but it is still insufficient because 2 divides the
constant term of g(T )/(T + 2).) For example, for E = X0(27) which satisfies
a2 = 0 and 2 6 | L(E, 1)/ΩE , g(T ) is (T + 2)((T + 1)4 + 1) modulo unit, so the
rank of E(Q∞) would be 5. But for E′ = X0(19) which also satisfies a2 = 0
and 2 6 | L(E, 1)/ΩE , we know rankE′(Q∞) = 1. So the structures of the Selmer
groups of E and E′ over Qn for n ≥ 3 are different.

(4) For a general E and for (mainly) odd p, the asymptotic formula of #X(E/Qn)
{p} as n →∞ was studied by Perrin-Riou [10], Kobayashi [5], Pollack [11] (ana-
lytic side) and the first author [7].

(5) The difference of the proof of Theorem 0.1 from the case for an odd p in [6]
is in that we have L(E/Qn, 1) = 0 for all n ≥ 1 in the case p = 2, and in the
conductor fn in the proof of Proposition 1.4. The rest of the proof is similar to
[6].

We would like to express our hearty admiration to John Coates for his en-
thusiasm for mathematics, especially to the arithmetic of elliptic curves. His
question to the first author on the behaviour of the Tate-Shafarevich groups in
the supersingular case was the starting point of this study. Discussions with him
on Iwasawa theory have always been encouraging. We would like to thank him
sincerely. We would like to thank K. Matsuno very much for communicating to
us Proposition 1.1 which plays an important role in this paper.

Notation
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For a group G and a G-module M , MG denotes the G-invariant part and MG

denotes the G-coinvariants. For a field F and a GF = Gal(F/F )-module M , the
Galois cohomology group Hq(GF ,M) is denoted by Hq(F, M).

1. Preliminaries

1.1. Conductor of an elliptic curve E with 2 6 | L(E, 1)/ΩE.

The following proposition was communicated to us by K. Matsuno.

Proposition 1.1. Suppose that E is an elliptic curve over Q, and has good
supersingular reduction at 2, and Tam(E) is odd. Then, the conductor N of E
satisfies

N ≡ 3, 5 (mod 8).

Proof. Let
y2 + α1xy + α3y = x3 + α2x

2 + α4x + α6

be the minimal Weierstrass equation of E over Z. If E is a supersingular elliptic
curve over F2, its j-invariant is 0, and it has a Weierstrass equation of the form
y2 + y = x3 + β4x + β6 (β4, β6 ∈ F2, cf. [14] p.325) . Hence, considering all
possible changes of variables of the Weierstrass equation, we know that α1 is even
and α3 is odd. This implies that the minimal discriminant ∆E = ∆E(α1, ..., α6)
satisfies ∆E ≡ 5 (mod 8).

On the other hand, suppose that ` is a bad reduction prime for E. Since
Tam(E) is odd, c` = (E(Q`) : E0(Q`)) is also odd, and the table by Néron and
Kodaira tells us that the number of irreducible components of the Néron model
of E over Z` is odd. It follows from Ogg’s formula that

ord`(N) ≡ ord`(∆E) (mod 2).

Hence, the absolute value of ∆E/N is a square. Thus, we have N ≡ 3, 5 (mod 8).

Corollary 1.2. Let E′ be the quadratic twist of E by the Dirichlet character
corresponding to Q(

√
2). If 2 is a supersingular prime for E, 2 6 | L(E, 1)/ΩE,

and 2 6 | Tam(E), then we have L(E′, 1) = 0.

Proof. By Proposition 1.1, the conductor N of E satisfies N ≡ 3, 5 (mod 8).
Hence, the sign of the functional equation of E′ is −1 (note that the sign of the
functional equation of E is 1 because L(E, 1) 6= 0). So we have L(E′, 1) = 0.

1.2. Modular elements of Mazur and Tate.

Let f(z) = Σan exp(2πinz) be the modular form corresponding to E. For a
rational number a/b, we define the modular symbol [a/b] by

[a/b] = Re(2πi

∫ i∞

a/b
f(z)dz)/ΩE
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where ΩE is the Néron period. (ΩE = 2min{Re ω > 0 | ω ∈ ΛE} where ΛE

is the period lattice in C corresponding to the elliptic curve E. In this paper,
we consider only real periods.) Then, we know [a/b] ∈ Q by Manin. For a
positive integer m > 0, we consider a cyclotomic field Q(µ2m). For k ∈ Z, the
element of Gal(Q(µ2m)/Q) corresponding to k mod 2m by the natural isomor-
phism Gal(Q(µ2m)/Q) ' (Z/2m)× is denoted by σk. The modular element for
2m is defined by

θ2m =
2m∑
k=1
2 6 |k

[k/2n]σk ∈ Q[Gal(Q(µ2m)/Q)].

Suppose that 2 is a good reduction prime. Then, for any m > 2 we have a
distribution relation

π(θ2m) = a2θ2m−1 − ν(θ2m−2)
where π : Q[Gal(Q(µ2m)/Q)] −→ Q[Gal(Q(µ2m−1)/Q)] is the natural projection,
and ν : Q[Gal(Q(µ2m−2)/Q)] −→ Q[Gal(Q(µ2m−1)/Q)] is the Z2-homomorphism
defined by σ 7→ Στ for σ ∈ Gal(Q(µ2m−2)/Q) where τ ranges over elements of
Gal(Q(µ2m−2)/Q) projecting to σ. Since the Hecke operator T2 can be calculated

by using the operation of
(

2 0
0 1

)
+

(
1 0
0 2

)
+

(
1 1
0 2

)
(cf. [3] p.11), a2[0] = 2[0]+[1/2]

and a2[1/2] = [0] + [1/4] + [3/4]. Hence, we have

θ2 = −(a2 − 2)L(E, 1)/ΩE

which follows from θ2 = [1/2] and [0] = −L(E, 1)/ΩE . Suppose that π :
Q[Gal(Q(µ4)/Q)] −→ Q is the augmentation map. Then, we have

π(θ4) = −(a2
2 − 2a2 − 1)L(E, 1)/ΩE

which is obtained from π(θ4) = [1/4] + [3/4] = a2θ2 − [0].

We define θQn to be the image of θ2n+2 under the natural restriction map
Q[Gal(Q(µ2n+2)/Q)] −→ Q[Gal(Qn/Q)] induced by σ 7→ σ|Qn

for σ ∈ Gal(Q
(µ2n+2)/Q). By what we described above, they satisfy

π(θQn) = a2θQn−1 − ν(θQn−2)

for n ≥ 2 (where we used the same notation π and ν which are the maps induced
by π and ν, namely the corresponding projection and the norm map, respec-
tively),

π(θQ1) =−(a2(a2
2 − 2a2 − 1)− 2(a2 − 2))L(E, 1)/ΩE

=−(a2 − 1)(a2
2 − a2 − 4)L(E, 1)/ΩE ,

and
θQ = −(a2

2 − 2a2 − 1)L(E, 1)/ΩE .

In the following, we assume that E satisfies the conditions of Theorem 0.1.
Since E has supersingular reduction at 2, E[2] is irreducible as a GQ = Gal(Q/Q)-
module. So the Manin constant of E is prime to 2 by [1]. Hence, θQn is in
Z2[Gal(Qn/Q)] (cf. [15] Theorem Corollary 3.15, see also [8]).
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Let ψn be a faithful character of Gal(Qn/Q), namely the order of ψn is 2n. We
define qn =

∑n−1
k=0(−1)k2n−1−k as in Theorem 0.1 (2). The following proposition

corresponds to Proposition 1.2 in [6].

Proposition 1.3. We have ψ1(θQ1) = 0. For n ≥ 2 we have ψn(θQn) 6= 0 and

ordζ2n−1(ψn(θQn)) = qn

where ordζ2n−1 is the normalized additive valuation of Q(µ2n) at the prime above
2 (ζ2n is a primitive 2n-th root of unity, and ordζ2n−1(ζ2n − 1) = 1).

In [6] Proposition 1.2, qn was defined separately depending on whether n is
odd or even. Here, qn is defined by a single formula.

Proof. We have ψ1(θQ1) = 2
√

2L(E, χ8, 1)/ΩE where χ8 is the Dirichlet character
corresponding to Q1 = Q(

√
2). By Corollary 1.2, we get L(E, χ8, 1) = 0, so

ψ1(θQ1) = 0.

We write θQ1 = a(1+γ) for some a ∈ Z2 where γ is a generator of Gal(Q1/Q).
By the formula on π(θQ1) which was mentioned before this proposition, we have
π(θQ1) = 2a = 2L(E, 1)/ΩE if a2 = 2, and 2a = 6L(E, 1)/ΩE if a2 = −2. Hence,
our assumption ord2(L(E, 1)/ΩE) = 0 implies that a is a unit in Z2. Therefore,
using the distribution property of θQn , we obtain ordζ2n−1(ψn(θQn)) = qn for odd
n ≥ 3 by the argument of Proposition 1.2 in [6]. For even n ≥ 2, the conclusion
also follows from the distribution property and θQ ∈ Z×2 .

1.3. Norm maps of the formal group associated to an elliptic curve.

In this subsection, we will give a result corresponding to Proposition 2.1 in
[6]. Let F be the formal group associated to E which we assume satisfies the
condition of Theorem 0.1. Let k be the completion of Q in the 2-adic topology
(so k = Qp the p-adic field with p = 2, here Q2 is not the field of degree 22 as in
Theorem 0.1), and we denote by kn the intermediate field of the cyclotomic Z2-
extension k∞/k such that [kn : k] = 2n. We consider F (kn) which is the abelian
group defined on the maximal ideal of the integer ring of kn by the formal group
F , and also the norm map N : F (kn) −→ F (kn−1) of F .

Proposition 1.4. Let qn =
∑n−1

k=0(−1)k2n−1−k be as above. Then, we have

#(F (kn−1)/NF (kn)) ≥ 2qn .

Proof. This can be proved by the same method as [6] Proposition 2.1. The
difference is only in the conductor of the extension kn/kn−1. Let mkn (resp.
mkn−1) be the maximal ideal of the integer ring of kn (resp. kn−1). For general
p, there is a positive integer fn such that Trkn/kn−1

(mr
kn

) = mr′
kn−1

where r′ =

[ (fn+1)(p−1)+r
p ] ([13] Chap.V §3 Lemma 4). It is not difficult to compute the

value fn for intermediate fields of the cyclotomic Zp-extension, and we have
fn = (pn − 1)/(p− 1) for odd p, and fn = pn/(p− 1) = 2n for p = 2.
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We define sn = [pn/(p2 − 1)] + 1, so

sn =
{

pn−2 + pn−4 + ... + p2 + 2 for even n ≥ 2
pn−2 + pn−4 + ... + p + 1 for odd n ≥ 3,

and tn = [ (fn+1)(p−1)+sn

p ]. Then, by the method of Proposition 2.1 in [6], we have
ord2(#(F (kn−1)/NF (kn))) ≥ tn − sn. We can easily check that tn − sn = qn for
p = 2. This completes the proof.

2. Proof of the main theorem

2.1. Selmer groups.

For any number field F , we define Sel(E/F ) to be the Selmer group over F of
E[2∞] which is the group of 2-power division points, so

Sel(E/F ) = Ker(H1(F, E[2∞]) −→
∏
v

H1(Fv, E[2∞])/(E(Fv)⊗Q2/Z2))

where v ranges over all primes of F . (Here, E(Fv) ⊗Q2/Z2 is regarded to be a
subgroup of H1(Fv, E[2∞]) by the Kummer map.) Hence, Sel(E/F ) sits in an
exact sequence

0 −→ E(F )⊗Q2/Z2 −→ Sel(E/F ) −→X(E/Q){2} −→ 0

where X(E/Q){2} is the 2-primary component of the Tate-Shafarevich group
of E over F . As in [6] §4, we define the fine Selmer group Sel0(E/F ) by

Sel0(E/F ) = Ker(Sel(E/F ) −→
⊕

v|2
H1(Fv, E[2∞]))

where v ranges over primes of F lying over 2. (The terminology “fine Selmer
group” was adopted by J. Coates.)

Let T = Tp(E) be the Tate module of E with p = 2. For any prime v which
is prime to 2 (v could be an infinite prime), we have H1(Fv, T ) = lim← (E(Fv) ⊗
Z/2mZ), hence by Cassels-Tate-Poitou duality, we have

Lemma 2.1.

H1(F, T )−→
⊕

v|2
H1(Fv, T )/(E(Fv)⊗ Z2) −→ Sel(E/F )∨

−→ Sel0(E/F )∨ −→ 0.

is exact.

2.2. Proof of Theorem 0.1.

Suppose that E satisfies the conditions of Theorem 0.1. We use the argument
in [6] §5. Kato constructed zeta elements

zQ∞ = (zQn) ∈ lim← H1(Qn, T )
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(cf. Kato [4] Theorems 12.4 and 12.5; the proofs of Theorem 12.4 (3) and Theorem
12.5 (4) can be applied to our case even for p = 2 because we are working on
the cyclotomic Z2-extension) satisfying the following properties. For an even
character ψ of conductor 2n+2 with n ≥ 1,

∑

σ∈Gal(Qn/Q)

ψ(σ) exp∗(σ(zQn)) = ωEL(E, ψ, 1)/ΩE

where ωE is the Néron differential, and exp∗ is the dual exponential map (cf. [2],
[12]). For the trivial character,

exp∗(zQ) = ωE(1− a2

2
+

1
2
)
L(E, 1)

ΩE
.

Let kn (resp. k) be the 2-adic completion of Qn (resp. Q) as in 1.3. Since the
image of exp∗ : H1(k, T ) −→ H0(E, Ω1

E) ⊗ k is 2−1Z2ωE (cf. [12] Proposition
5.2), the image of zQ generates H1(k, T )/E(k)⊗Z2 which is a free Z2-module of
rank 1. The argument of the Euler system (cf. [4]) shows that Sel0(E/Q) = 0,
hence we have Sel(E/Q) = 0 (cf. [6] §5) by Lemma 2.1.

We have a control theorem

Sel0(E/Qn) '−→ Sel0(E/Q∞)Gal(Q∞/Qn)

for all n ≥ 0. This can be proved by the same method as Lemma 4.2 in [6].
Hence, Sel0(E/Q) = 0 implies Sel0(E/Q∞) = 0. Using the above isomorphism
again, we obtain Sel0(E/Qn) = 0 for any n ≥ 0.

By the same method as the proof of Proposition 5.2 in [6], we can see that
H1(Q, T ) is a free Z2-module of rank 1, and zQ generates it. Hence, zQ∞ gen-
erates lim← H1(Qn, T ), and zQn generates H1(Qn, T ). Hence, by Lemma 2.1, we
have obtained

Lemma 2.2. Sel(E/Qn)∨ is isomorphic to

H1(kn, T )/(E(kn)⊗ Z2+ < zQn >)

where < zQn > is the sub Z2[Gal(Qn/Q)]-module of H1(kn, T ) generated by zQn.

Let γ be a generator of Gal(Qn/Q). In the following, we assume n ≥ 1. We
set Λn = Z2[Gal(Qn/Q)] which is isomorphic to Z2[t]/(t2

n − 1). By Proposition
1.3, γ + 1 divides θQn . We write

θQn = (γ + 1)θ′Qn
.

Then, θ′Qn
is well-defined in Z2[Gal(Qn/Q)]/(g(γ)) where g(t) is the polynomial

g(t) = (t2
n−1)/(t+1). We saw in the proof of Proposition 1.3 that θ′Q1

is a unit.
By the distribution property, we have θQ2 ≡ −(γ +1)θQ +a2θQ1 (mod (γ2−1)),
so it follows from θQ ∈ Z×2 that θ′Q2

is also a unit.

We put Λ′n = Λn/(g(γ)) where g(t) = (t2
n − 1)/(t + 1) is as above. We denote

by In the ideal (θQn , ν(θQn−1)) of Λn where ν : Λn−1 −→ Λn is the map defined
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in 1.2 (σ 7→ Στ|Qn−1
=στ). We also define I ′n to be the ideal (θ′Qn

, ν(θ′Qn−1
)) of

Λ′n where ν : Λ′n−1 −→ Λ′n is induced by ν : Λn−1 −→ Λn. We have an exact
sequence

0 −→ Λ′n/I ′n
a−→ Λn/In

b−→ Z2 −→ 0

where a is the map x 7→ (γ + 1)x, and b is the map defined by γ 7→ −1.

In order to prove Theorem 0.1, it is enough to show

Lemma 2.3. (1) Sel(E/Qn)∨ is annihilated by θQn.
(2) ord2(#(Λ′n/I ′n)) ≤ rn where rn = Σn

i=1(qi − 1).
(3) ord2(#(Sel(E/Qn)∨)tors) ≥ rn.

We first prove Theorem 0.1 assuming Lemma 2.3. Since Sel(E/Qn)∨ is a
cyclic Λn-module by Lemma 2.2, Lemma 2.3 (1) shows that Sel(E/Qn)∨ is a
cyclic Λn/In-module (cf. [6] Lemma 7.1 (3)). In particular, for n = 1, we showed
I1 = (γ + 1), so Sel(E/Q1)∨ is cyclic as a Z2-module. On the other hand,
ψ1(θQ1) = 0 implies exp∗((γ − 1)zQ1) = 0. Hence, (γ − 1)zQ1 is in the Selmer
group Sel(E/Q1, T ) with respect to T . Since (γ−1)zQ1 6= 0 (note that H1(Q1, T )
is a free Λ1-module of rank 1, which is generated by zQ1 (cf. [6] Proposition 5.2)),
rankZ2 Sel(E/Q1, T ) > 0, so corank Sel(E/Q1) > 0. Thus, we obtain

Sel(E/Q1)∨ ' Λ1/I1 ' Z2.

Since we showed Sel(E/Qn)∨ is a cyclic Λn/In-module, there is a surjective
homomorphism f : Λn/In −→ Sel(E/Qn)∨. We consider a commutative diagram

0−→ Λ′n/I ′n −→ Λn/In −→ Λ1/I1 −→ 0yf ′
yf

y'
0−→ (Sel(E/Qn)∨)tors−→ Sel(E/Qn)∨ α−→ Sel(E/Q1)∨−→ 0

Here, α is induced by the natural map Sel(E/Q1) −→ Sel(E/Qn). The exactness
of the upper row follows from the exact sequence before Lemma 2.3 and the
isomorphism Λ1/I1 ' Z2. Since f induces a surjective homomorphism Λ′n/I ′n −→
Ker(α : Sel(E/Qn)∨ −→ Sel(E/Q1)∨), the finiteness of Λ′n/I ′n (Lemma 2.3 (2))
induces # Ker(α) < ∞. Hence, Ker(α) = (Sel(E/Qn)∨)tors. The surjectivity of
α follows from the injectivity of Sel(E/Q1) −→ Sel(E/Qn) which follows from
the injectivity of H1(Q1, E[2∞]) −→ H1(Qn, E[2∞]). Thus, the bottom row is
also exact.

Since f is surjective, f ′ which is induced by f is also surjective. Furthermore,
by Lemma 2.3 (2) and (3), we obtain that #Λ′n/I ′n = #(Sel(E/Qn)∨)tors, and
that f ′ is bijective. This implies the bijectivity of f , and we have obtained
Theorem 0.1 (1).

For the proof of Theorem 0.1 (2), it is enough to determine the structure of
Λn/In, and enough to show that Λ′2/I ′2 = 0 and

Λ′n/I ′n ' (Z/2n−2Z)q3−q2 ⊕ (Z/2n−3Z)q4−q3 ⊕ ...⊕ (Z/2Z)qn−qn−1
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for n ≥ 3. Since θ′Q2
is a unit, Λ′2/I ′2 = 0. By Proposition 1.3, we have

ordζ2n−1(ψn(θ′Qn
)) = qn − 1. Hence, the above isomorphism for Λ′n/I ′n with

n ≥ 3 can be proved by the same method as Theorem 7.4 in [6].

Theorem 0.1 (3) follows from Theorem 0.1 (1) (or Lemma 2.2). This completes
the proof of Theorem 0.1.

2.3. Proof of Lemma 2.3.

Lemma 2.3 (1) can be proved by the same method as Lemma 7.1 (2) in [6]. Let
D be the Dieudonné module which is a 2-dimensional k-vector space (k = Q2, the
2-adic completion of Q), and ϕ is the Frobenius on D satisfying ϕ−2 − apϕ

−1 +
p = 0 (with p = 2). For m = n + 2, we define γm : D −→ D ⊗ k(µ2m) by
x 7→ Σm−1

i=0 ϕi−m(x)⊗ ζ2m−i + (1−ϕ)−1(x) where (ζ2i) is a generator of Z2(1) (cf.
[6] §3). For x ∈ D and z ∈ H1(k(µ2m), T ), we define

Pm(x, z) =
∑

σ∈Gal(k(µ2m )/k)

Trk(µ2m )/k[γm(x)σ, exp∗(z)]σ ∈ k[Gal(k(µ2m)/k)]

where [ , ] is the cup product of the de Rham cohomology (cf. [6] §3). Since
the corestriction map induces an isomorphism H1(k(µ2m), T )Gal(k(µ2m )/kn) '
H1(kn, T ) (kn is the n-th layer of the cyclotomic Z2-extension of k∞/k), the
map z 7→ Pm(x, z) induces a map H1(kn, T ) −→ k[Gal(Qn/Q)] which we denote
by z 7→ Pn(x, z). We have

θQn = [ϕ(ωE), ωE ]−1Pn(ϕm+1(ωE), zQn)

which can be proved by the same method as Lemma 7.2 in [6]. Hence, by the
same method as Lemma 7.1 (2) in [6], we obtain θQn Sel(E/Qn)∨ = 0.

Next, we prove Lemma 2.3 (2). By Proposition 1.3, we have

ordζ2n−1(ψn(θ′Qn
)) = qn − 1.

Hence, by the same method as Lemma 7.1 (1) in [6], we get the conclusion.

Finally, we prove Lemma 2.3 (3). We may assume n ≥ 2. Let S be the set
of primes for which E has bad reduction, and primes lying over 2 and ∞. By
induction on n, we know that the Selmer group Sel(E/Qn−1, T ) over Qn−1 of T
is isomorphic to Z2. By Cassels-Tate-Poitou duality,

0−→ Sel(E/Qn−1) −→ H1(OQn−1 [1/S], E[2∞]) −→
⊕

v∈S

H1((Qn−1)v, E[2∞])
E((Qn−1)v)⊗Q2/Z2

−→ Sel(E/Qn−1, T )∨

is exact, and the last term is isomorphic to Q2/Z2. Put G = Gal(Qn/Qn−1).
Writing down the corresponding exact sequence for Qn and taking its G-invariant
parts, we compare two exact sequences. Using the snake lemma and Sel(E/Qn−1,
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T )∨ ' Q2/Z2, we have

#Coker(Sel(E/Qn−1) −→ Sel(E/Qn)G)

≥ 1
2
#Ker(

H1(kn−1, E[2∞])
E(kn−1)⊗Q2/Z2

−→ H1(kn, E[2∞])
E(kn)⊗Q2/Z2

)

=
1
2
#Coker(N : E(kn)⊗ Z2 −→ E(kn−1)⊗ Z2).

To get the third line, we used local Tate duality. Thus, by Proposition 1.4, we
obtain

ord2(#Coker(Sel(E/Qn−1) −→ Sel(E/Qn)G)) ≥ qn − 1.

Suppose n ≥ 2, and consider a commutative diagram of exact sequences

0−→ (Sel(E/Qn)∨)tors −→ Sel(E/Qn)∨ −→ Sel(E/Q1)∨−→ 0yh1

yh2

yh3

0−→ (Sel(E/Qn−1)∨)tors−→ Sel(E/Qn−1)∨−→ Sel(E/Q1)∨−→ 0.

Here, the horizontal sequences were proved to be exact in the previous subsection
2.2. The middle vertical map h2 is induced by the natural map which is injective.
Hence, h2 is surjective. The right vertical map h3 is the identity map, so we have
Ker h1 = Ker h2. We compute

#Ker h1 = # Ker h2 ≥ #Coker(Sel(E/Qn−1) −→ Sel(E/Qn)G) ≥ 2qn−1

Thus,

ord2(#(Sel(E/Qn)∨)tors) = ord2(#Ker h1#(Sel(E/Qn−1)∨)tors)
≥ qn − 1 + rn−1 = rn

where we used ord2(#(Sel(E/Qn−1)∨)tors) ≥ rn−1 which holds by induction on
n. This completes the proof of Lemma 2.3 (3).
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