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0. INTRODUCTION

Let E be an elliptic curve defined over Q. If F has good ordinary reduction
at a prime p, the growth of Tate-Shafarevich groups (and Selmer groups) of E
in a Z,-extension can be understood by usual Iwasawa theory. But if E has
supersingular reduction at p, the growth of Selmer and Tate-Shafarevich groups
is more complicated. For an odd prime p, the most basic case was dealt with in [6]
where the main assumption was that p does not divide the L-value L(E,1)/Qpg
(where Qp is the Néron period). The aim of this paper is to study the case p = 2
under the same assumption on the L-value, namely 2 J L(E,1)/Qg.

For a prime number p, we consider the cyclotomic Zy-extension Q/Q whose
n-th layer we denote by Q,,, namely Q,, is the intermediate field with [Q,, : Q] =
p". For an odd p, the condition p f L(E,1)/Qg implies rank E(Qs) = 0 (see
[6]), but for p = 2 this does not hold. We will see that for p = 2 the condition
p=2 ) L(E,1)/Qp would imply that the Selmer groups over Q,, always have
positive corank for n > 1, hence would imply rank F(Q,) > 0 if we assume the
Birch and Swinnerton-Dyer conjecture (see Corollary 1.2). So the situation is
different.

As usual, put a, = p+ 1 — #E(F,). In the following, we suppose p = 2
and E has good supersingular reduction at 2. When as = 0, we have two nice
Iwasawa functions which describe the p-adic L-function of E by Pollack [11],
and we can define + Selmer groups as in Kobayashi [5], and can study them by
the same method as for p > 2. In this paper, we consider the case as # 0 (so
az = +2). Let Sel(E/Q,,) be the Selmer group of E over Q,, of E[2*°] (cf. 2.1).
We will determine the Galois module structure (and the structure as an abelian
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group) of Sel(E/Q;) completely in the case ag = £2 under the assumption
2 f L(E,1)/Qg, in particular Sel(E/Q) is of corank 1. (When ap = 0, the
condition 2 f L(E,1)/Qg does not determine the structure of Sel(E/Q,,) as an
abelian group (see Remark 0.2 (3)).)

Our main assumption is just 2 f L(F,1)/Qg. If the Birch and Swinnerton-
Dyer conjecture is true, this would imply that 2 does not divide the Tamagawa
factor Tam(E) = Ile, = II(E(Qy) : Eo(Qr)) (where Ep(Qg) is the subgroup
consisting of points whose images in F(Fy) are nonsingular.) We will prove

Theorem 0.1. Let E be an elliptic curve defined over Q with supersingular
reduction at 2, and L(E,s) be the L-function of E. We assume that ag # 0,
namely as = £2, and

orda(L(FE,1)/Qp) = orde(Tam(E)) =0
where ordy : Q* — Z is the normalized additive valuation at 2. Then,

(1) For anyn > 0, let 6q, be the modular element of Mazur and Tate (see §1, 1.2

for the definition). Supposen > 1. Let v : Z3|Gal(Qn—1/Q)] — Z2[Gal(Q,/Q)]

denote the Zo-homomorphism defined by o +— X1 for o € Gal(Q,-1/Q) where

T ranges over all elements of Gal(Q,/Q) projecting to o. Then, the Pontrjagin

dual Sel(E/Qy,)Y of the Selmer group over Q, of E[2%°] is isomorphic to
Z,]Gal(Qn/Q)l/(0q,,v(0q,_.))

as a Z2[Gal(Qy/Q)]-module.

(2) Forn > 2, put

n—1

Gn = Z(_l)k2nflfk.
k=0
Then, we have Sel(E/Q) = 0, Sel(E/Q,) ~ Qa/Zy for n = 1, 2 as an abelian
group, and

Sel(E/Qn) ~Q2/Zs @ (Z/Qn—zz)qg—qz @ (Z/Qn—3z)q4—Q3
©... @ (Z/2Z)" 0

for all n > 3. Hence, if we assume the finiteness of the 2-primary component

HI(E/Q1){2} of the Tate-Shafarevich group of E/Q1, we have
rank £(Q,) =1 foralln>1,
HI(E/Qu){2} = II(E/Q2){2} = 0, and
HI(E/Qn){2} ~ (Z/2"2Z)B 2 g ... ¢ (Z/2Z)1 -1
for alln > 3.
(3) Sel(B/Que)” ~ Zol[Gal( Qo / Q)]

Remark 0.2. (1) There are many examples satisfying the conditions of Theorem
0.1. For example, E = X((11) gives a typical example where ag = —2. Other
examples are 67A, 7T5A, 75C, 99D, 115A, 141E, 147B, 147C, 179A, 187B, 189D,
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195B, 195C, 195D,... in the notation of Cremona [3]. It is interesting that the
simple conditions in Theorem 0.1 determine the structure of Sel(E/Qy,).

(2) Theorem 0.1 corresponds to Theorem 0.1 and Theorem 7.4 in [6].

(3) Suppose that aa = 0. Then, by Pollack [11] Theorem 5.6 we know there are
two power series f(T), g(T') € Zz[[T]] such that

Lo(B)a = F(T)log™(T) + 3g(T) log" (T)a

where Lo(E), is the p-adic L-function corresponding to a@ = /=2 (for other
notations, see [11]). Since f(0) = L(E,1)/Qg and ¢(0) = 4L(E,1)/Qp, if we
assume 2 [ L(E,1)/Qg, f(T) is a unit. But the condition 2 f L(E,1)/Qg
is not sufficient to determine the ideal (g(7")) and to determine the structure of
Kobayashi’s Selmer group corresponding to g(7"). (We will see later (cf. Corollary
1.2) that T+ 2 divides ¢(T"), but it is still insufficient because 2 divides the
constant term of ¢g(7T")/(T" + 2).) For example, for £ = X,(27) which satisfies
as = 0and 2 f L(E,1)/Qg, g(T) is (T + 2)((T + 1)* + 1) modulo unit, so the
rank of E(Qu) would be 5. But for £ = X((19) which also satisfies az = 0
and 2 fL(FE,1)/QE, we know rank E'(Qs) = 1. So the structures of the Selmer
groups of E and E’ over Q,, for n > 3 are different.

(4) For a general E and for (mainly) odd p, the asymptotic formula of #I11(E/Q,,)
{p} as n — oo was studied by Perrin-Riou [10], Kobayashi [5], Pollack [11] (ana-
lytic side) and the first author [7].

(5) The difference of the proof of Theorem 0.1 from the case for an odd p in [6]
is in that we have L(E/Qy,1) = 0 for all n > 1 in the case p = 2, and in the
conductor f, in the proof of Proposition 1.4. The rest of the proof is similar to

[6].

We would like to express our hearty admiration to John Coates for his en-
thusiasm for mathematics, especially to the arithmetic of elliptic curves. His
question to the first author on the behaviour of the Tate-Shafarevich groups in
the supersingular case was the starting point of this study. Discussions with him
on Iwasawa theory have always been encouraging. We would like to thank him
sincerely. We would like to thank K. Matsuno very much for communicating to
us Proposition 1.1 which plays an important role in this paper.

Notation
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For a group G and a G-module M, M% denotes the G-invariant part and Mg
denotes the G-coinvariants. For a field F' and a Gr = Gal(F/F)-module M, the
Galois cohomology group H(G g, M) is denoted by HY(F, M).

1. PRELIMINARIES

1.1. Conductor of an elliptic curve E with 2 f L(E,1)/Qg.
The following proposition was communicated to us by K. Matsuno.

Proposition 1.1. Suppose that E is an elliptic curve over Q, and has good
supersingular reduction at 2, and Tam(FE) is odd. Then, the conductor N of E
satisfies

N =3,5 (mod 8).

Proof. Let

y2 + 12y + a3y = 3+ a2x2 + aur + ag
be the minimal Weierstrass equation of F over Z. If E is a supersingular elliptic
curve over Fo, its j-invariant is 0, and it has a Weierstrass equation of the form
vP4+y = 23+ Bux + B (Bs, Bs € Fa, cf. [14] p.325) . Hence, considering all
possible changes of variables of the Weierstrass equation, we know that a; is even

and ag is odd. This implies that the minimal discriminant Ap = Ag(ay, ..., ag)
satisfies A =5 (mod 8).

On the other hand, suppose that ¢ is a bad reduction prime for E. Since
Tam(FE) is odd, ¢, = (E(Qy) : E°(Qy)) is also odd, and the table by Néron and
Kodaira tells us that the number of irreducible components of the Néron model
of E over Zy is odd. It follows from Ogg’s formula that

ordg(N) = ordg(Ag) (mod 2).
Hence, the absolute value of Ag/N is a square. Thus, we have N = 3,5 (mod 8).

Corollary 1.2. Let E' be the quadratic twist of E by the Dirichlet character
corresponding to Q(v/2). If 2 is a supersingular prime for E, 2 | L(E,1)/Qg,
and 2 f Tam(E), then we have L(E’,1) = 0.

Proof. By Proposition 1.1, the conductor N of E satisfies N = 3,5 (mod 8).
Hence, the sign of the functional equation of E’ is —1 (note that the sign of the
functional equation of E is 1 because L(E, 1) # 0). So we have L(E’,1) = 0.

1.2. Modular elements of Mazur and Tate.

Let f(z) = Xa, exp(2minz) be the modular form corresponding to E. For a
rational number a/b, we define the modular symbol [a/b] by
[a/b] = Re(2mi f(2)dz)/QE
a/b
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where Qp is the Néron period. (2 = 2min{Rew > 0 | w € Ag} where Ap
is the period lattice in C corresponding to the elliptic curve E. In this paper,
we consider only real periods.) Then, we know [a/b] € Q by Manin. For a
positive integer m > 0, we consider a cyclotomic field Q(uam). For k € Z, the
element of Gal(Q(u2m)/Q) corresponding to k£ mod 2™ by the natural isomor-
phism Gal(Q(u2m)/Q) ~ (Z/2™)* is denoted by ox. The modular element for
2™ is defined by
gm
Oym = _[k/2"]o € Q[Gal(Q(am)/Q)].

k=1
2/k

Suppose that 2 is a good reduction prime. Then, for any m > 2 we have a
distribution relation

T(02m) = azblym-1 — v(fgm—2)
where 7 : Q[Gal(Q(u2m)/Q)] — Q[Gal(Q(pom-1)/Q)] is the natural projection,
and v : Q[Gal(Q(uam—2)/Q)] — Q[Gal(Q(ugm-1)/Q)] is the Zy-homomorphism
defined by o — X7 for 0 € Gal(Q(uom-2)/Q) where 7 ranges over elements of
Gal(Q(pom-2)/Q) projecting to . Since the Hecke operator 75 can be calculated

by using the operation of ((2)(1)> + ((1)(2)> + <(1) ;) (cf. [3] p.11), a2[0] = 2[0]+[1/2]
and az[1/2] = [0] 4+ [1/4] + [3/4]. Hence, we have
Oy = —(a2 — 2)L(E,1)/QE
which follows from 0y = [1/2] and [0] = —L(E,1)/Qg. Suppose that 7 :
Q[Gal(Q(p4)/Q)] — Q is the augmentation map. Then, we have
m(04) = —(a3 — 2a9 — 1)L(E,1)/Qp

which is obtained from 7(64) = [1/4] + [3/4] = a262 — [0].

We define 0, to be the image of yn+2 under the natural restriction map

Q[Gal(Q(pan+2)/Q)] — Q[Gal(Qn/Q)] induced by o — 0|, for o € Gal(Q
(ton+2)/Q). By what we described above, they satisfy

m(0q,) = asbq, , —v(fq, »)
for n > 2 (where we used the same notation 7 and v which are the maps induced
by 7 and v, namely the corresponding projection and the norm map, respec-
tively),

m(0q,) = —(az(a3 — 2a2 — 1) — 2(az — 2))L(E, 1)/Qp
=—(az — 1)(a3 — a2 — 4)L(E,1)/Qp,

and

0q = —(a3 —2as — 1)L(E,1)/Qp.

In the following, we assume that E satisfies the conditions of Theorem 0.1.
Since E has supersingular reduction at 2, E[2] is irreducible as a Gq = Gal(Q/Q)-
module. So the Manin constant of E is prime to 2 by [1]. Hence, fq, is in
Z5[Gal(Q,/Q)] (cf. [15] Theorem Corollary 3.15, see also [8]).
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Let 1, be a faithful character of Gal(Q,,/Q), namely the order of i, is 2. We
n—1

define g, = 33—y (—1)¥2""1=* as in Theorem 0.1 (2). The following proposition
corresponds to Proposition 1.2 in [6].

Proposition 1.3. We have 11(8q,) = 0. For n > 2 we have 1, (6q,) # 0 and
orde,n —1(¥n(0q,)) = an

where orde,, —1 is the normalized additive valuation of Q(uan) at the prime above
2 (Con is a primitive 2"-th root of unity, and orde,, —1(Con — 1) = 1).

In [6] Proposition 1.2, ¢, was defined separately depending on whether n is
odd or even. Here, g, is defined by a single formula.

Proof. We have ¢ (0q,) = 2v2L(E, xs,1)/Qg where xs is the Dirichlet character
corresponding to Q1 = Q(v/2). By Corollary 1.2, we get L(E,xs,1) = 0, so
U1 (9Q1) =0.

We write 0q, = a(1+y) for some a € Zy where 7 is a generator of Gal(Q;/Q).
By the formula on 7(fq,) which was mentioned before this proposition, we have
m(0qQ,) =2a =2L(E,1)/QE if as = 2, and 2a = 6L(FE, 1)/QF if ap = —2. Hence,
our assumption ordy(L(E,1)/Qg) = 0 implies that a is a unit in Zy. Therefore,
using the distribution property of fq,,, we obtain ord¢,, —1(¥n(fq,)) = ¢ for odd
n > 3 by the argument of Proposition 1.2 in [6]. For even n > 2, the conclusion
also follows from the distribution property and 6q € ZJ'.

1.3. Norm maps of the formal group associated to an elliptic curve.

In this subsection, we will give a result corresponding to Proposition 2.1 in
[6]. Let F be the formal group associated to E which we assume satisfies the
condition of Theorem 0.1. Let k£ be the completion of Q in the 2-adic topology
(so k = Q, the p-adic field with p = 2, here Qg is not the field of degree 22 as in
Theorem 0.1), and we denote by k,, the intermediate field of the cyclotomic Zs-
extension koo /k such that [k, : k] = 2". We consider F'(k,) which is the abelian
group defined on the maximal ideal of the integer ring of k,, by the formal group
F, and also the norm map N : F(k,) — F(k,—1) of F.

Proposition 1.4. Let ¢, = Z;é(—l)@”_l_k be as above. Then, we have
#(F(kp—1)/NF(ky)) > 2.

Proof. This can be proved by the same method as [6] Proposition 2.1. The
difference is only in the conductor of the extension ky,/k,—1. Let my, (resp.
my, ) be the maximal ideal of the integer ring of k,, (resp. kn—1). For general

p, there is a positive integer f, such that Tr /kn_l(mzn) = mzlnil where 1/ =
[Wﬂ] ([13] Chap.V §3 Lemma 4). It is not difficult to compute the

value f, for intermediate fields of the cyclotomic Z,-extension, and we have
fo=(@"=1)/(p—1) for odd p, and f, =p"/(p — 1) = 2" for p = 2.
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We define s,, = [p"/(p? —1)] + 1, so
L PP Ept Tt 4+ p2+2 forevenn > 2
n — pn—2+pn_4—|——|—p—|—1 for Oddn23,

and t,, = [W]. Then, by the method of Proposition 2.1 in [6], we have
ordo(#(F(kp—1)/NF(ky))) > tn, — sp. We can easily check that ¢, — s, = ¢, for
p = 2. This completes the proof.

2. PROOF OF THE MAIN THEOREM

2.1. Selmer groups.

For any number field F', we define Sel(E/F') to be the Selmer group over F' of
E[2°°] which is the group of 2-power division points, so

Sel(E/F) = Ker(H'(F, E[2¥]) — | [ H' (., E2%])/(E(F,) © Q2/Z2))
where v ranges over all primes of F. (Here, E(F,) ® Q2/Zs is regarded to be a
subgroup of H(F,, E[2°°]) by the Kummer map.) Hence, Sel(E/F) sits in an
exact sequence

0 — E(F) ® Qa/Zy — Sel(E/F) — III(E/Q){2} — 0
where III(E/Q){2} is the 2-primary component of the Tate-Shafarevich group
of F over F. As in [6] §4, we define the fine Selmer group Sely(E/F') by
Selp(E/F) = Ker(Sel(E/F) — €D H'(F,, E[2°)))
v|2
where v ranges over primes of F' lying over 2. (The terminology “fine Selmer
group” was adopted by J. Coates.)

Let T'= T,(E) be the Tate module of £ with p = 2. For any prime v which
is prime to 2 (v could be an infinite prime), we have H'(F,,T) = lim(E(F,) ®

Z/2™MZ), hence by Cassels-Tate-Poitou duality, we have
Lemma 2.1.
HY(F,T)— @ H'(F,,T)/(E(F,) ® Z3) — Sel(E/F)¥
v|2
—s Sely(E/F)Y — 0.

1S exact.

2.2. Proof of Theorem 0.1.

Suppose that F satisfies the conditions of Theorem 0.1. We use the argument
in [6] §5. Kato constructed zeta elements

Q. = (2q,) € im H'(Qy, T)
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(cf. Kato [4] Theorems 12.4 and 12.5; the proofs of Theorem 12.4 (3) and Theorem
12.5 (4) can be applied to our case even for p = 2 because we are working on
the cyclotomic Zg-extension) satisfying the following properties. For an even
character 1 of conductor 2"+2 with n > 1,

Y. w0 exp(0(2q,)) = wpL(E,$,1)/Qp
0€Gal(Qn/Q)

where wp is the Néron differential, and exp* is the dual exponential map (cf. [2],
[12]). For the trivial character,
ag 1

. _ L(E,1)
exp*(zq) = wr(l 5 + 2) O

Let k,, (resp. k) be the 2-adic completion of Q,, (resp. Q) as in 1.3. Since the
image of exp* : H'(k,T) — H°(E,QL) ® k is 27 'Zowp (cf. [12] Proposition
5.2), the image of zq generates H'(k,T)/E(k) ® Zs which is a free Zs-module of
rank 1. The argument of the Euler system (cf. [4]) shows that Selp(E/Q) = 0,
hence we have Sel(E/Q) = 0 (cf. [6] §5) by Lemma 2.1.

We have a control theorem
Selo(E/Qu) — Sely(E/Qoo) ¥ (Qee/Qn)

for all n > 0. This can be proved by the same method as Lemma 4.2 in [6].
Hence, Selp(E/Q) = 0 implies Sely(E/Qx) = 0. Using the above isomorphism
again, we obtain Selp(E/Q,,) = 0 for any n > 0.

By the same method as the proof of Proposition 5.2 in [6], we can see that
H'(Q,T) is a free Zo-module of rank 1, and zq generates it. Hence, zq. gen-
erates lim H'(Q,,T), and zq, generates H'(Q,,T). Hence, by Lemma 2.1, we

have obtained
Lemma 2.2. Sel(E/Q,)" is isomorphic to
H'(kp, T)/(E(kn) ® Zo+ < 2q, >)
where < 2q, > is the sub Zs[Gal(Q,,/Q)]-module of H*(k,, T) generated by 2q,, -

Let v be a generator of Gal(Q,/Q). In the following, we assume n > 1. We
set A, = Z5[Gal(Q,/Q)] which is isomorphic to Zs[t]/(t>" — 1). By Proposition
1.3, v+ 1 divides 6q,,. We write
Then, 0q, is well-defined in Z5[Gal(Q,/Q)]/(g(7)) where g(t) is the polynomial
g(t) = (t>" —1)/(t+1). We saw in the proof of Proposition 1.3 that 0q, is a unit.
By the distribution property, we have g, = —(v+1)0q +a20q, (mod (2 —1)),
so it follows from 0q € ZJ that 0@2 is also a unit.

We put Al = A, /(g(7)) where g(t) = (2" —1)/(t + 1) is as above. We denote
by I, the ideal (6q,,,v(0q, _,)) of A, where v : A,,_; — A,, is the map defined
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in 12 (0 — X7, —7). We also define I}, to be the ideal (0 ,v(0g, ,)) of
Al where v : Al,_; — A} is induced by v : A,,_1 — A,. We have an exact
sequence

a

0— AL JII — A,/1, 7, —0
where a is the map x — (v + 1)z, and b is the map defined by v — —1.

In order to prove Theorem 0.1, it is enough to show

Lemma 2.3. (1) Sel(E/Qy)Y is annihilated by 0q,, .
(2) orda(#(AL /1)) < 1y where ry, = X1 (g — 1).
(3) orda(#(Sel(E/Qn)" )tors) = Tn-

We first prove Theorem 0.1 assuming Lemma 2.3. Since Sel(E/Q,)Y is a
cyclic Ap-module by Lemma 2.2, Lemma 2.3 (1) shows that Sel(E/Q,)" is a
cyclic A,/ I,-module (cf. [6] Lemma 7.1 (3)). In particular, for n = 1, we showed
I = (y + 1), so Sel(E/Q1)" is cyclic as a Zg-module. On the other hand,
1(0q,) = 0 implies exp*((y — 1)2q,) = 0. Hence, (v — 1)zq, is in the Selmer
group Sel(E/Q,T) with respect to T'. Since (y—1)zq, # 0 (note that H'(Q,T)
is a free Aj-module of rank 1, which is generated by zq, (cf. [6] Proposition 5.2)),
rankz, Sel(£/Q1,T) > 0, so corank Sel(£/Q1) > 0. Thus, we obtain

Sel(E/Ql)v ~ Al/II ~ Z2.

Since we showed Sel(E/Q,)Y is a cyclic A, /I,-module, there is a surjective
homomorphism f : A, /I, — Sel(E/Q,,)". We consider a commutative diagram

0— AT — A/, — AN/ —0

|7 lf >

0 — (Sel(E/Qn)Y )tors — Sel(E/Qy)Y -2 Sel(E/Qy)Y — 0

Here, « is induced by the natural map Sel(F/Q1) — Sel(E/Q,). The exactness
of the upper row follows from the exact sequence before Lemma 2.3 and the
isomorphism Ay /I; ~ Zsy. Since f induces a surjective homomorphism A} /I] —
Ker(a : Sel(E/Q,)Y — Sel(E/Qq)Y), the finiteness of Al /I (Lemma 2.3 (2))
induces # Ker(a) < co. Hence, Ker(a) = (Sel(E/Qp)Y )tors. The surjectivity of
a follows from the injectivity of Sel(E/Q1) — Sel(E/Q;) which follows from
the injectivity of H'(Qq, E[2*°]) — H'(Q,, E[2*°]). Thus, the bottom row is
also exact.

Since f is surjective, f’ which is induced by f is also surjective. Furthermore,
by Lemma 2.3 (2) and (3), we obtain that #A} /I, = #(Sel(E/Qn)Y )tors, and
that f’ is bijective. This implies the bijectivity of f, and we have obtained
Theorem 0.1 (1).

For the proof of Theorem 0.1 (2), it is enough to determine the structure of
A, /I, and enough to show that A5/I) = 0 and

A;L/I/ ~ (Z/2n72z)q37q2 e (Z/2n73z)q4*q3 B...P (Z/QZ)qn*anl
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for n > 3. Since 92)2 is a unit, AL/I} = 0. By Proposition 1.3, we have
orde,, —1(¥n(fg,)) = @n — 1. Hence, the above isomorphism for A; /I, with
n > 3 can be proved by the same method as Theorem 7.4 in [6].

Theorem 0.1 (3) follows from Theorem 0.1 (1) (or Lemma 2.2). This completes
the proof of Theorem 0.1.

2.3. Proof of Lemma 2.3.

Lemma 2.3 (1) can be proved by the same method as Lemma 7.1 (2) in [6]. Let
D be the Dieudonné module which is a 2-dimensional k-vector space (kK = Q2, the
2-adic completion of Q), and ¢ is the Frobenius on D satisfying ¢ =2 — apgo_l +
p = 0 (with p = 2). For m = n + 2, we define v, : D — D ® k(uam) by
z = o™ (2) @ Com—s + (1 — @) "H(z) where ((y:) is a generator of Zg(1) (cf.
[6] §3). For z € D and 2z € H'(k(uam),T), we define

Pr(z,2) = > Tri(uym) /e [ym (€)%, exp™(2)]o € k[Gal(k(ugm)/k)]
ceGal(k(ugm)/k)

where [, ] is the cup product of the de Rham cohomology (cf. [6] §3). Since
the corestriction map induces an isomorphism H l(k‘(ugm),T)Gal(k(Mm) Jhn)
H'(k,,T) (k is the n-th layer of the cyclotomic Zg-extension of ks /k), the
map z — P, (z, z) induces a map H'(k,,T) — k[Gal(Q,/Q)] which we denote
by z — Pp(x,z). We have

m+1(

0q, = [p(wr),ws] " Pu(¢"(wE), 2q,)

which can be proved by the same method as Lemma 7.2 in [6]. Hence, by the
same method as Lemma 7.1 (2) in [6], we obtain fq, Sel(E/Q,)" = 0.

Next, we prove Lemma 2.3 (2). By Proposition 1.3, we have

Hence, by the same method as Lemma 7.1 (1) in [6], we get the conclusion.

Finally, we prove Lemma 2.3 (3). We may assume n > 2. Let S be the set
of primes for which F has bad reduction, and primes lying over 2 and co. By
induction on n, we know that the Selmer group Sel(E/Qj—1,T) over Q,—1 of T
is isomorphic to Zy. By Cassels-Tate-Poitou duality,

D H'((Qn-1)v, E[2%])

0 — Sel(E/Qy-1) — H'(Oq, ,[1/9], E[2]) — E(Qn-1)v) ® Q2/Zs

veS
—Sel(E/Qpn-1,T)"

is exact, and the last term is isomorphic to Qg2/Zs. Put G = Gal(Q,,/Qn-1).
Writing down the corresponding exact sequence for Q,, and taking its G-invariant
parts, we compare two exact sequences. Using the snake lemma and Sel(E/Q—1,
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~ Qg2/Zy, we have

# Coker(Sel(E/Q,—1) — Sel(E/Qn)%)
H'(kn-1, E2])  H'(kn, B[2¥))
E(kn—1) ® Q2/Zs E(kn) ® Qa/Zs

= %# Coker(N : E(ky) ® Zg — E(kp—1) ® Zs2).

> %#Ker( )

To get the third line, we used local Tate duality. Thus, by Proposition 1.4, we
obtain

ordg (# Coker(Sel(E/Qun_1) — Sel(E/Q,,)%)) > ¢, — 1.

Suppose n > 2, and consider a commutative diagram of exact sequences

0— (Sel(E/Qn>v)tors I Sel(E/Qn)v - Sel(E/Ql)v — 0
h1 ha hs
0— (Sel(E/anl)v)tors B Sel(E/anl)v - Sel(E/Ql)v —0.

Here, the horizontal sequences were proved to be exact in the previous subsection
2.2. The middle vertical map hs is induced by the natural map which is injective.
Hence, ho is surjective. The right vertical map hj is the identity map, so we have
Ker h; = Ker ho. We compute

#Kerhy = # Ker hy > # Coker(Sel(E/Qn_1) — Sel(E/Q,)%) > 20!

Thus,

0rd2(#(sel(E/Qn)v)tors) = 0rd2(# Ker hl#(sel(E/Qn—l)v)tors)
>qn—1+rp1=1,

where we used ords(#(Sel(F/Qn-1)")tors) > Tn_1 which holds by induction on
n. This completes the proof of Lemma 2.3 (3).
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