
539

On the Structure of Ideal Class Groups

of CM-Fields

dedicated to Professor K. Kato on his 50th birthday

Masato Kurihara

Received: November 30, 2002

Revised: June 30, 2003

Abstract. For a CM-field K which is abelian over a totally real
number field k and a prime number p, we show that the structure of
the χ-component AχK of the p-component of the class group ofK is de-
termined by Stickelberger elements (zeta values) (of fields containing
K) for an odd character χ of Gal(K/k) satisfying certain conditions.
This is a generalization of a theorem of Kolyvagin and Rubin. We de-
fine higher Stickelberger ideals using Stickelberger elements, and show
that they are equal to the higher Fitting ideals. We also construct and
study an Euler system of Gauss sum type for such fields. In the ap-
pendix, we determine the initial Fitting ideal of the non-Teichmüller
component of the ideal class group of the cyclotomic Zp-extension of
a general CM-field which is abelian over k.

0 Introduction

It is well-known that the cyclotomic units give a typical example of Euler
systems. Euler systems of this type were systematically investigated by Kato
[8], Perrin-Riou [14], and in the book by Rubin [18]. In this paper, we propose
to study Euler systems of Gauss sum type which are not Euler systems in the
sense of [18]. We construct an Euler system in the multiplicative groups of
CM-fields, which is a generalization of the Euler system of Gauss sums, and
generalize a structure theorem of Kolyvagin and Rubin for the minus class
groups of imaginary abelian fields to general CM-fields.
The aim of this paper is to prove the structure theorem (Theorem 0.1 below),
and we do not pursue general results on the Euler systems of Gauss sum type in
this paper. One of very deep and remarkable works of Kato is his construction
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of the Euler system (which lies in H1(T )) for a Zp-representation T associated
to a modular form. We remark that we do not have an Euler system of Gauss
sum type in H1(T ), but fixing n > 0 we can find an Euler system of Gauss
sum type in H1(T/pn), which will be studied in our forthcoming paper.
We will describe our main result. Let k be a totally real number field, and K
be a CM-field containing k such that K/k is finite and abelian. We consider
an odd prime number p and the p-primary component AK = ClK ⊗ Zp of the
ideal class group of K. Suppose that p does not divide [K : k]. Then, AK
is decomposed into AK =

⊕
χA

χ
K where AχK is the χ-component which is an

Oχ-module (where Oχ = Zp[Imageχ], for the precise definition, see 1.1), and
χ ranges over Qp-conjugacy classes of Qp

×
-valued characters of Gal(K/k) (see

also 1.1).
For k = Q and K = Q(µp) (the cyclotomic field of p-th roots of unity),
Rubin in [17] described the detail of Kolyvagin’s method ([10] Theorem 7),
and determined the structure of AχQ(µp)

as a Zp-module for an odd χ, by using
the Euler system of Gauss sums (Rubin [17] Theorem 4.4). We generalize this
result to arbitrary CM-fields.
In our previous paper [11], we proposed a new definition of the Stickelberger
ideal. In this paper, for certain CM-fields, we define higher Stickelberger
ideals which correspond to higher Fitting ideals. In §3, using the Stickel-
berger elements of fields containing K, we define the higher Stickelberger ideals
Θi,K ⊂ Zp[Gal(K/k)] for i ≥ 0 (cf. 3.2). Our definition is different from Ru-
bin’s. (Rubin defined the higher Stickelberger ideal using the argument of Euler
systems. We do not use the argument of Euler systems to define our Θi,K .)
We remark that our Θi,K is numerically computable, since the Stickelberger
elements are numerically computable. We consider the χ-component Θχ

i,K .
We study the structure of the χ-component AχK as an Oχ-module. We note
that p is a prime element of Oχ because the order of Imageχ is prime to p.

Theorem 0.1. We assume that the Iwasawa µ-invariant of K is zero (cf.
Proposition 2.1), and χ is an odd character of Gal(K/k) such that χ �= ω (where
ω is the Teichmüller character giving the action on µp), and that χ(p) �= 1 for
every prime p of k above p. Suppose that

AχK � Oχ/(pn1) ⊕ ...⊕Oχ/(pnr )

with 0 < n1 ≤ ... ≤ nr. Then, for any i with 0 ≤ i < r, we have

(pn1+...+nr−i) = Θχ
i,K

and Θχ
i,K = (1) for i ≥ r. Namely,

AχK �
⊕
i≥1

Θχ
i,K/Θ

χ
i−1,K .

In the case K = Q(µp) and k = Q, Theorem 0.1 is equivalent to Theorem 4.4
in Rubin [17].
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This theorem says that the structure of AχK as an Oχ-module is determined by
the Stickelberger elements. Since the Stickelberger elements are defined from
the partial zeta functions, we may view our theorem as a manifestation of a very
general phenomena in number theory that zeta functions give us information
on various important arithmetic objects.

In general, for a commutative ring R and an R-module M such that

Rm
f−→ Rr −→M −→ 0

is an exact sequence of R-modules, the i-th Fitting ideal of M is defined to be
the ideal of R generated by all (r−i)×(r−i) minors of the matrix corresponding
to f for i with 0 ≤ i < r. If i ≥ r, it is defined to be R. (For more details, see
Northcott [13]). Using this terminology, Theorem 0.1 can be simply stated as

Fitti,Oχ(AχK) = Θχ
i,K

for all i ≥ 0.

The proof of Theorem 0.1 is divided into two parts. We first prove the inclusion
Fitti,Oχ(AχK) ⊃ Θχ

i,K . To do this, we need to consider a general CM-field which
contains K. Suppose that F is a CM-field containing K such that F/k is
abelian, and F/K is a p-extension. Put RF = Zp[Gal(F/k)]. For a character χ
satisfying the conditions in Theorem 0.1, we consider RχF = Oχ[Gal(F/K)] and
AχF = AF ⊗RF RχF where Gal(K/k) acts on Oχ via χ. For the χ-component
θχF ∈ RχF of the Stickelberger element of F (cf. 1.2), we do not know whether
θχF ∈ Fitt0,RχF (AχF ) always holds or not (cf. Popescu [15] for function fields).
But we will show in Corollary 2.4 that the dual version of this statement holds,
namely

ι(θχF ) ∈ Fitt
0,Rχ

−1
F

((AχF )∨)

where ι : RF −→ RF is the map induced by σ �→ σ−1 for σ ∈ Gal(F/k), and
(AχF )∨ is the Pontrjagin dual of AχF . We can also determine the right hand side
Fitt

0,Rχ
−1
F

((AχF )∨). In the Appendix, for the cyclotomic Zp-extension F∞/F ,

we determine the initial Fitting ideal of (the Pontrjagin dual of) the non-
ω component of the p-primary component of the ideal class group of F∞ as
a ΛF = Zp[[Gal(F∞/k)]]-module (we determine Fitt0,ΛF ((AF∞)∨) except ω-
component, see Theorem A.5). But for the proof of Theorem 0.1, we only
need Corollary 2.4 which can be proved more simply than Theorem A.5, so
we postpone Theorem A.5 and its proof until the Appendix. Concerning the
Iwasawa module XF∞ = lim← AFn where Fn is the n-th layer of F∞/F , we

computed in [11] the initial Fitting ideal under certain hypotheses, for example,
if F/Q is abelian. Greither in his recent paper [4] computed the initial Fitting
ideal of XF∞ more generally.
In our previous paper [11] §8, we showed that information on the initial Fitting
ideal of the class group of F yields information on the higher Fitting ideals of
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the class group of K. Using this method, we will show Fitti,Oχ(AχK) ⊃ Θχ
i,K in

Proposition 3.2.

In order to prove the other inclusion, we will use the argument of Euler systems.
By Corollary 2.4 which was mentioned above, we obtain

θχFA
χ
F = 0.

(We remark that this has been obtained recently also in Greither [4] Corollary
2.7.) Using this property, we show that for any finite prime ρ of F there is
an element gχF,ρ ∈ (F× ⊗ Zp)χ such that div(gχF,ρ) = θχF [ρ]χ in the divisor
group where [ρ] is the divisor corresponding to ρ (for the precise relation, see
§4). These gχF,ρ’s become an Euler system of Gauss sum type (see §4). For
the Euler system of Gauss sums, a crucial property is Theorem 2.4 in Rubin
[18] which is a property on the image in finite fields, and which was proved by
Kolyvagin, based on the explicit form of Gauss sums. But we do not know the
explicit form of our gχF,ρ, so we prove, by a completely different method, the
corresponding property (Proposition 4.7) which is a key proposition in §4.

It is possible to generalize Theorem 0.1 to characters of order divisible by p sat-
isfying some conditions. We hope to come back to this point in our forthcoming
paper.

I would like to express my sincere gratitude to K. Kato for introducing me to
the world of arithmetic when I was a student in the 1980’s. It is my great
pleasure to dedicate this paper to Kato on the occasion of his 50th birthday.
I would like to thank C. Popescu heartily for a valuable discussion on Euler
systems. I obtained the idea of studying the elements gχF,ρ from him. I would
also like to thank the referee for his careful reading of this manuscript, and for
his pointing out an error in the first version of this paper. I heartily thank C.
Greither for sending me his recent preprint [4].

Notation

Throughout this paper, p denotes a fixed odd prime number. We denote by
ordp : Q× −→ Z the normalized discrete valuation at p. For a positive integer
n, µn denotes the group of all n-th roots of unity. For a number field F , OF
denotes the ring of integers. For a group G and aG-module M , MG denotes the
G-invariant part of M (the maximal subgroup of M on which G acts trivially),
and MG denotes the G-coinvariant of M (the maximal quotient of M on which
G acts trivially). For a commutative ring R, R× denotes the unit group.
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1 Preliminaries

1.1. Let G be a profinite abelian group such that G = ∆×G′ where #∆ is finite
and prime to p, and G′ is a pro-p group. We consider the completed group ring
Zp[[G]] which is decomposed into

Zp[[G]] = Zp[∆][[G′]] �
⊕
χ

Oχ[[G′]]

where χ ranges over all representatives of Qp-conjugacy classes of characters
of ∆ (a Qp

×
-valued character χ is said to be Qp-conjugate to χ′ if σχ = χ′ for

some σ ∈ Gal(Qp/Qp)), and Oχ is Zp[Imageχ] as a Zp-module, and ∆ acts on
it via χ (σx = χ(σ)x for σ ∈ ∆ and x ∈ Oχ). Hence, any Zp[[G]]-module M is
decomposed into M � ⊕

χM
χ where

Mχ �M ⊗Zp[∆] Oχ �M ⊗Zp[[G]] Oχ[[G′]].
In particular, Mχ is an Oχ[[G′]]-module. For an element x of M , the χ-
component of x is denoted by xχ ∈Mχ.
Let 1∆ be the trivial character σ �→ 1 of ∆. We denote by M1 the trivial
character component, and define M∗ to be the component obtained from M
by removing M1, namely

M = M1 ⊕M∗.

Suppose further that G′ = G × G′′ where G is a finite p-group. Let ψ be a
character of G. We regard χψ as a character of G0 = ∆ ×G, and define Mχψ

by Mχψ = M ⊗Zp[G0]Oχψ where Oχψ is Oχψ = Zp[Imageχψ] on which G0 acts
via χψ. By definition, if χ �= 1∆, we have Mχψ � (M∗)χψ.

Let k be a totally real number field and F be a CM-field such that F/k is finite
and abelian, and µp ⊂ F . We denote by F∞/F the cyclotomic Zp-extension,
and put G = Gal(F∞/k). We write G = ∆×G′ as above. A Zp[[G]]-module M
is decomposed into M = M+ ⊕M− with respect to the action of the complex
conjugation where M± is the ±-eigenspace. By definition, M− =

⊕
χ:oddM

χ

where χ ranges over all odd characters of ∆. We consider the Teichmüller
character ω giving the action of ∆ on µp, and define M∼ to be the component
obtained from M− by removing Mω, namely

M− = M∼ ⊕Mω.

For an element x of M , we write x∼ the component of x in M∼.

1.2. Let k, F , F∞ be as in 1.1, and S be a finite set of finite primes of k
containing all the primes which ramify in F/k. We define in the usual way the
partial zeta function for σ ∈ Gal(F/k) by

ζS(s, σ) =
∑

(a,F/k)=σ
a is prime to S

N(a)−s
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for Re(s) > 1 where N(a) is the norm of a, and a runs over all integral ideals
of k, coprime to the primes in S such that the Artin symbol (a, F/k) is equal
to σ. The partial zeta functions are meromorphically continued to the whole
complex plane, and holomorphic everywhere except for s = 1. We define

θF,S =
∑

σ∈Gal(F/k)

ζS(0, σ)σ−1

which is an element of Q[Gal(F/k)] (cf. Siegel [21]). Suppose that SF is the
set of ramifying primes of k in F/k. We simply write θF for θF,SF . We know
by Deligne and Ribet the non ω-component (θF,S)∼ ∈ Qp[Gal(F/k)]∼ is in
Zp[Gal(F/k)]∼. In particular, for a character χ of ∆ with χ �= ω, we have
(θF,S)χ ∈ Zp[Gal(F/k)]χ.
Suppose that S contains all primes above p. Let Fn denote the n-th layer of
the cyclotomic Zp-extension F∞/F , and consider (θFn,S)∼ ∈ Zp[Gal(Fn/k)]∼.
These θ∼Fn,S ’s become a projective system with respect to the canonical restric-
tion maps, and we define

θ∼F∞,S ∈ Zp[[Gal(F∞/k)]]∼

to be their projective limit. This is essentially (the non ω-part of) the p-adic
L-function of Deligne and Ribet [1].

2 Initial Fitting ideals

Let k, F , F∞ be as in §1. We denote by k∞/k the cyclotomic Zp-extension,
and assume that F ∩ k∞ = k. Our aim in this section is to prove Proposition
2.1 and Corollary 2.4 below.

2.1. Let S be a finite set of finite primes of k containing ramifying primes
in F∞/k. We denote by F+ the maximal real subfield of F . Put ΛF =
Zp[[Gal(F∞/k)]] and ΛF+ = Zp[[Gal(F+∞/k)]] which is naturally isomorphic
to the plus part Λ+

F of ΛF . We denote by M∞,S the maximal abelian pro-p
extension of F+

∞ which is unramified outside S, and by XF+∞,S the Galois group
of M∞,S/F+∞. We study XF+∞,S which is a torsion ΛF+ -module.
We consider a ring homomorphism τ−1ι : ΛF −→ ΛF which is defined by σ �→
κ(σ)σ−1 for σ ∈ Gal(F∞/k) where κ : Gal(F∞/k) −→ Z×p is the cyclotomic
character giving the action of Gal(F∞/k) on µp∞ . Let (ΛF )∼ and (Λ+

F )∗ =
(ΛF+)∗ be as in §1.1. Then, τ−1ι induces

τ−1ι : (ΛF )∼ −→ (ΛF+)∗.

Let θ∼F∞,S ∈ (ΛF )∼ be the Stickelberger element defined in 1.2.
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Proposition 2.1. Assume that the the Iwasawa µ-invariant of F is zero,
namely XF+∞,S is a finitely generated Zp-module. Then, Fitt0,ΛF+ ((XF+∞,S)∗) is
generated by τ−1ι(θ∼F∞,S

) except the trivial character component, namely

Fitt0,Λ
F+ ((XF+∞,S)∗)∗ = (τ−1ι(θ∼F∞,S)).

Proof. We use the method in [11]. In fact, the proof of this proposition is much
easier than that of Theorem 0.9 in [11].
We decompose G = Gal(F∞/k) as in 1.1 (G = ∆ × G′). Suppose that c is the
complex conjugation in ∆ and put ∆+ = ∆/ < c >, and G0 = Gal(F+/k).
Then, we can write G0 = ∆+ × G where G is a p-group. For a character χ of
∆+ with χ �= 1∆+ , and a character ψ of G, we regard χψ as a character of
G0. We consider (XF+∞,S)χψ which is an Oχψ[[Gal(F∞/F )]]-module (cf. 1.1).
Our assumption of the vanishing of the µ-invariant implies that (XF+∞,S)χψ is
a finitely generated Oχψ-module. We will first show that (XF+∞,S)χψ is a free
Oχψ-module.
Let H ⊂ G be the kernel of ψ, and M be the subfield of F correspond-
ing to H , namely Gal(F/M) = H . We denote by M∞ the cyclotomic Zp-
extension of M and regard H as the Galois group of F∞/M∞. We will see
that the H-coinvariant ((XF+∞,S)χ)H is naturally isomorphic to (XM+∞,S)χ.
In fact, by taking the dual, it is enough to show that the natural map
H1
et(OM+∞ [1/S],Qp/Zp)χ

−1 −→ (H1
et(OF+∞ [1/S],Qp/Zp)χ

−1
)H of etale coho-

mology groups is bijective where OM+∞ [1/S] (resp. OF+∞ [1/S]) is the ring of
S-integers in M+

∞ (resp. F+
∞). This follows from the Hochschild-Serre spectral

sequence and H1(H,Qp/Zp)χ
−1

= H2(H,Qp/Zp)χ
−1

= 0. Hence, regarding
χψ as a character of Gal(M+/k), we have

(XF+∞,S)χψ = (XM+∞,S)χψ.

We note that (XM+∞,S)χ does not have a nontrivial finite Oχ[[G′]]-submodule
(Theorem 18 in Iwasawa [5]), so is free over Oχ by our assumption of the µ-
invariant. We will use the same method as Lemma 5.5 in [11] to prove that
(XM+∞,S)χψ is free over Oχψ. We may assume ψ �= 1G, so p divides the order of
Gal(M+/k). Let C be the subgroup of Gal(M+/k) of order p, M ′ the subfield
such that Gal(M+/M ′) = C, and put NC = Σσ∈Cσ. We have an isomorphism
(XM+∞,S)χψ � (XM+∞,S)χ/(NC). Let σ0 be a generator of C. In order to prove
that (XM+

∞,S)χψ is free over Oχψ, it is enough to show that the map

σ0 − 1 : (XM+∞,S)χ/(NC) −→ (XM+∞,S)χ

is injective. Hence, it suffices to show ((XM+∞,S)χ)C = NC((XM+∞,S)χ), hence
to show Ĥ0(C, (XM+∞ ,S)χ) = 0. Taking the dual, it is enough to show

H1(C,H1
et(OM+∞ [1/S],Qp/Zp)χ

−1
) = 0. This follows from the Hochschild-

Serre spectral sequence and H2
et(OM ′∞ [1/S],Qp/Zp) = 0 (which is a famous

��������� 	��
������� · ���� ������ ���� ������ �������



546 Masato Kurihara

property called the weak Leopoldt conjecture and which follows immediately
from the vanishing of the p-component of the Brauer group of M ′∞).
Thus, (XF+∞,S)χψ is a free Oχψ-module of finite rank. This shows that
Fitt0,Oχψ[[Gal(F∞/F )]]((XF+

∞,S)χψ) coincides with its characteristic ideal. By
Wiles [25] and our assumption, the µ-invariant of (τ−1ι(θ∼F∞,S))χψ is also zero,
and by the main conjecture proved by Wiles [25], we have

Fitt0,Oχψ [[Gal(F∞/F )]]((XF+∞,S)χψ) = (τ−1ι(θ∼F∞,S)χψ).

This holds for any χ and ψ with χ �= 1∆. Hence, by Corollary 4.2 in [11], we
obtain the conclusion of Proposition 2.1.

2.2. For any number field F , we denote by AF the p-primary component of
the ideal class group of F . Let F be as above. We define

AF∞ = lim→ AFn

where Fn is the n-th layer of F∞/F . We denote by (AF∞)∨ the Pontrjagin
dual of AF∞ . Let Sp be the set of primes of k lying over p. By the orthogonal
pairing in P.276 of Iwasawa [5] which is defined by the Kummer pairing, we
have an isomorphism

(XF+
∞,Sp

)∗ � (A∼F∞)∨(1).

Let ι : ΛF −→ ΛF be the ring homomorphism induced by σ �→ σ−1 for
σ ∈ Gal(F∞/k). For a character χ of ∆, ι induces a ring homomorphism
ΛχF −→ Λχ

−1

F which we also denote by ι. Since there is a natural surjective ho-
momorphism (XF+

∞,S
)∗ −→ (XF+

∞,Sp

)∗, Proposition 2.1 together with the above

isomorphism implies

Corollary 2.2. Let χ be an odd character of ∆ such that χ �= ω. Under the
assumption of Proposition 2.1, we have

ι(θχF∞,S) ∈ Fitt
0,Λχ

−1
F

((AχF∞)∨).

Next, we consider a general CM-field F such that F/k is finite and abelian
(Here, we do not assume µp ⊂ F ). Put RF = Zp[Gal(F/k)]. Let G be the p-
primary component of Gal(F/k), and Gal(F/k) = ∆×G. Suppose that χ is an
odd character of ∆ with χ �= ω. We consider RχF = Oχ[G], and define ι : RF −→
RF and ι : RχF −→ Rχ

−1

F similarly as above. If we assume that the Iwasawa µ-
invariant of F vanishes, (XF (µp)∞,S)χ

−1ω is a finitely generated Oχ-module, so
we can apply the proof of Proposition 2.1 to get ι(θχF∞,S) ∈ Fitt

0,Λχ
−1
F

((AχF∞)∨).

Since A−F −→ A−F (µp)∞ is injective ([24] Prop.13.26), (AχF (µp)∞)∨ −→ (AχF )∨ is

surjective. The image of ι(θχF∞,S) ∈ Λχ
−1

F in Rχ
−1

F is ι(θχF,S). Hence, we obtain
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Corollary 2.3. Assume that the Iwasawa µ-invariant of F is zero. Then,
we have

ι(θχF,S) ∈ Fitt
0,Rχ

−1
F

((AχF )∨).

Let SF (µp)∞ (resp. SF ) be the set of ramifying primes in F (µp)∞/k (resp.
F/k). Note that SF (µp)∞ \ SF ⊂ Sp and

θF,SF(µp)∞ = (Πp∈SF (µp)∞\SF (1 − ϕ−1
p ))θF,SF

where ϕp is the Frobenius of p in Gal(F/k). If χ(p) �= 1 for all p above p,
(1 − ϕ−1

p )χ is a unit of Rχ
−1

F because the order of χ is prime to p. Therefore,
we get

Corollary 2.4. Assume that the Iwasawa µ-invariant of F is zero, and that
χ(p) �= 1 for all p above p. Then, we have

ι(θχF ) ∈ Fitt
0,Rχ

−1
F

((AχF )∨).

3 Higher Stickelberger ideals

In this section, for a finite abelian extension K/k whose degree is prime to p,
we will define the ideal Θi,K ⊂ Zp[Gal(K/k)] for i ≥ 0. We also prove the
inclusion Θχ

i,K ⊂ Fitti,Oχ(AχK) for K and χ as in Theorem 0.1.

3.1. In this subsection, we assume that O is a discrete valuation ring with
maximal ideal (p). We denote by ordp the normalized discrete valuation of O,
so ordp(p) = 1. For n, r > 0, we consider a ring

An,r = O[[S1, ..., Sr]]/((1 + S1)p
n − 1, ..., (1 + Sr)p

n − 1).

Suppose that f is an element of An,r and write f = Σi1,...ir≥0ai1...irS
i1
1 ...S

ir
r

mod I where I = ((1+S1)p
n −1, ..., (1+Sr)p

n −1). For positive integers i and
s, we set s′ = min{x ∈ Z : s < px}. Assume s′ ≤ n. If 0 < j < ps

′
, we have

ordp(
(
pn

j

)
) = ordp(pn!/(j!(pn− j)!)) ≥ n− s′+1. Hence, for i1, ..., ir ≤ s < ps

′
,

ai1,...,ir mod pn−s
′+1 is well-defined from f ∈ An,r. For positive integers i and

s with s′ ≤ n, we define Ii,s(f) to be the ideal of O which is generated by
pn−s

′+1 and

{ai1,...,ir : 0 ≤ i1, ..., ir ≤ s and i1 + ...+ ir ≤ i}.

Since ai1,...,ir is well-defined mod pn−s
′+1, Ii,s(f) ⊂ O is well-defined for any i

and s ∈ Z>0 such that n ≥ s′.
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Lemma 3.1. Let α : An,r −→ An,r be the homomorphism of O-algebras defined
by α(Sk) = Πr

j=1(1+Sj)akj−1 for 1 ≤ k, j ≤ r such that (akj) ∈ GLn(Z/pnZ).
Then, we have

Ii,s(α(f)) = Ii,s(f).

Proof. It is enough to show Ii,s(f) ⊂ Ii,s(α(f)) because if we obtain this
inclusion, the other inclusion is also obtained by applying it to α−1. Further,
since (akj) is a product of elementary matrices, it suffices to show the inclusion
in the case that α corresponds to an elementary matrix, in which case, the
inclusion can be easily checked.

In particular, let ι : An,r −→ An,r be the ring homomorphism defined by
ι(Sk) = (1 + Sk)−1 − 1 for k = 1, ..., r. Then, we have

Ii,s(ι(f)) = Ii,s(f)

which we will use later.

3.2. Suppose that k is totally real, K is a CM-field, and K/k is abelian such
that p does not divide [K : k]. Put ∆ = Gal(K/k). For i ≥ 0, we will define the
higher Stickelberger ideal Θi,K ⊂ Zp[∆]. Since Zp[∆] � ⊕

χOχ, it is enough
to define (Θi,K)χ. We replace K by the subfield corresponding to the kernel of
χ, and suppose the conductor of K/k is equal to that of χ.
For n, r > 0, let SK,n,r denote the set of CM fields F such that K ⊂ F , F/k
is abelian, and F/K is a p-extension satisfying Gal(F/K) � (Z/pn)⊕r. For
F ∈ SK,n,r, we have an isomorphism

Zp[Gal(F/k)]χ � Zp[∆]χ[Gal(F/K)] = Oχ[Gal(F/K)].

Fixing generators of Gal(F/K), we have an isomorphism between
Oχ[Gal(F/K)] and An,r with O = Oχ in 3.1 (the fixed generators σ1,...,σr
correspond to 1 + S1,...,1 + Sr).
We first assume χ is odd and χ �= ω. Then, θχF is in Zp[Gal(F/k)]χ =
Oχ[Gal(F/K)] (cf. 1.2). Using the isomorphism between Oχ[Gal(F/K)] and
An,r, for i and s such that n ≥ s′, we define the ideal Ii,s(θ

χ
F ) of Oχ (cf.

3.1). By Lemma 3.1, Ii,s(θ
χ
F ) does not depend on the choice of generators of

Gal(F/K).
We define (Θ0,K)χ = (θχK). Suppose that (Θ0,K)χ = (pm). If m = 0, we define
(Θi,K)χ = (1) for all i ≥ 0. We assume m > 0. We define SK,n =

⋃
r>0 SK,n,r .

We define (Θi,s,K)χ to be the ideal generated by all Ii,s(θ
χ
F )’s where F ranges

over all fields in SK,n for all n ≥ m+ s′ − 1 where s′ = min{x ∈ Z : s < px} as
in 3.1, namely

(Θi,s,K)χ =
⋃

F∈SK,n
n≥m+s′−1

Ii,s(θ
χ
F ).

We define (Θi,K)χ by (Θi,K)χ =
⋃
s>0(Θi,s,K)χ. For χ satisfying the condition

of Theorem 0.1, we will see later in §5 that (Θi,K)χ = (Θi,1,K)χ.
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For F ∈ SK,m with m > 0, Ii,1(θ
χ
F ) contains pm (note that s′ = 1 when s = 1),

so pm ∈ (Θi,K)χ. Since (Θ0,K)χ = (pm), (Θ0,K)χ is in (Θi,K)χ. It is also clear
from definition that (Θi,s,K)χ ⊂ (Θi+1,s,K)χ for i > 0 and s > 0. Hence, we
have a sequence of ideals

(Θ0,K)χ ⊂ (Θ1,K)χ ⊂ (Θ2,K)χ ⊂ ...

We do not use the ω-component in this paper, but for χ = ω, we define
(Θ0,K)χ = (θK AnnZp[Gal(K/k)](µp∞(K)))χ. For i > 0, (Θi,K)χ is defined sim-
ilarly as above by using xθχF instead of θχF where x ranges over elements of
AnnZp[Gal(F/k)](µp∞(F ))χ. For an even χ, we define (Θi,K)χ = (0) for all
i ≥ 0.

Proposition 3.2. Suppose that K and χ be as in Theorem 0.1. Then, for any
i ≥ 0, we have

(Θi,K)χ ⊂ Fitti,Oχ(AχK).

Proof. At first, by Theorem 3 in Wiles [26] we know #AχK = #(Oχ/(θ
χ
K)),

hence (Θ0,K)χ = Fitt0,Oχ(A
χ
K). (In our case, this is a direct consequence of

the main conjecture proved by Wiles [25].) We assume i > 0. By the definition
of (Θi,K)χ, we have to show Ii,s(θ

χ
F ) ⊂ Fitti,Oχ(AχK) for F ∈ SK,n,r where the

notation is the same as above. By Lemma 3.1, Ii,s(θ
χ
F ) = Ii,s(ι(θ

χ
F )). Hence,

it is enough to show
Ii,s(ι(θ

χ
F )) ⊂ Fitti,Oχ(AχK).

We will prove this inclusion by the same method as Theorem 8.1 in [11].
We write O = Oχ = Oχ−1 , and G = Gal(F/K). As in 3.2, we fix an
isomorphism O[Gal(F/K)] � An,r by fixing generators of G. We consider
(AχF )∨ = (AF ⊗Zp[∆]O)∨ = (AF ⊗Zp[Gal(F/k)]O[G])∨ which is an O[G]-module.
Since F/K is a p-extension, it is well-known that the vanishing of the Iwasawa
µ-invariant of K implies the vanishing of the Iwasawa µ-invariant of F ([6]
Theorem 3). By Corollary 2.4, we have

ι(θχF ) ∈ Fitt0,O[G]((A
χ
F )∨).

Since χ �= ω and χ is odd, for a unit group O×F , we have (O×F ⊗ Zp)χ =
µp∞(F )χ = 0, so H1(Gal(F/K), O×F )χ = H1(Gal(F/K), (O×F ⊗ Zp)χ) = 0.
This shows that the natural map AχK −→ AχF is injective. Hence, regarding
AχK as an O[G]-module (G acting trivially on it), we have

Fitt0,O[G]((A
χ
F )∨) ⊂ Fitt0,O[G]((A

χ
K)∨),

and
ι(θχF ) ∈ Fitt0,O[G]((A

χ
K)∨).
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Hence, by the lemma below, we obtain

Ii,s(ι(θ
χ
F )) ⊂ Fitti,O(AχK).

This completes the proof of Proposition 3.2.

Lemma 3.3. Put IG = (S1, ..., Sr). Then, Fitt0,O[G]((A
χ
K)∨) is generated by

Fittj,O(AχK)(IG)j for all j ≥ 0.

Proof. Put M = (AχK)∨. Since O is a discrete valuation ring, M∨ is isomorphic
to M as an O-module. Hence, Fittj,O(M) = Fittj,O(M∨) = Fittj,O(AχK).
We take generators e1,...,em and relations Σmk=1aklek = 0 (akl ∈ O, l =
1, 2, ...,m) of M as an O-module. Put A = (akl). We also consider a rela-
tion matrix of M as an O[G]-module. By definition, IG annihilates M . Hence,
the relation matrix of M as an O[G]-module is of the form

⎛
⎜⎜⎜⎜⎝

S1 ... Sr ... ... 0 ... 0
0 ... 0 ... ... 0 ... 0
. ... . ... ... . ... . A
. ... . ... ... . ... .
0 ... 0 ... ... S1 ... Sr

⎞
⎟⎟⎟⎟⎠
.

Therefore, Fitt0,O[G](M) is generated by Fittj,O(M)(IG)j for all j ≥ 0.

4 Euler systems

Let K/k be a finite and abelian extension of degree prime to p. We also assume
that K is a CM-field, and the Iwasawa µ-invariant of K is zero. We consider
a CM field F such that F/k is finite and abelian, F ⊃ K, and F/K is a p-
extension. Since the Iwasawa µ-invariant of F is also zero, by Corollary 2.4,
we have ι(θ∼F )(A∼F )∨ = 0. Hence, we have

θ∼FA
∼
F = 0.

We denote by O×F , DivF , and AF the unit group of F , the divisor group of F ,
and the p-primary component of the ideal class group of F . We write [ρ] for
the divisor corresponding to a finite prime ρ, and write an element of DivF
of the form Σai[ρi] with ai ∈ Z. If (x) = Πρaii is the prime decomposition
of x ∈ F×, we write div(x) = Σai[ρi] ∈ DivF . Consider an exact sequence
0 −→ O×F ⊗ Zp −→ F× ⊗ Zp

div−→ DivF ⊗Zp −→ AF −→ 0. Since the functor
M �→M∼ is exact and (O×F ⊗ Zp)∼ = 0,

0 −→ (F× ⊗ Zp)∼
div−→ (DivF ⊗Zp)∼ −→ A∼F −→ 0

is exact. For any finite prime ρF of F , since the class of θ∼F [ρF ]∼ in A∼F vanishes,
there is a unique element gF,ρF in (F× ⊗ Zp)∼ such that

div(gF,ρF ) = θ∼F [ρF ]∼.

By this property, we have
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Lemma 4.1. Suppose that M is an intermediate field of F/K, and SF (resp.
SM ) denotes the set of ramifying primes of k in F/k (resp. M/k). Let ρM be a
prime of M , ρF be a prime of F above ρM , and f = [OF /ρF : OF /ρM ]. Then,
we have

NF/M (gF,ρF ) = (
∏

λ∈SF \SM
(1 − ϕ−1

λ ))∼(gM,ρM )f

where NF/M : F× −→ M× is the norm map, and ϕλ is the Frobenius of λ in
Gal(M/k).

Proof. In fact, we have

div(NL/M (gF,ρF )) = cF/M (θF )∼[NF/M (ρF )]∼

where cF/M : Zp[Gal(F/k)] −→ Zp[Gal(M/k)] is the map induced by the
restriction σ �→ σ|M and NF/M (ρF ) is the norm of ρF . By a famous property
of the Stickelberger elements (see Tate [23] p.86), we have

cF/M (θ∼F ) = ((
∏

λ∈SF \SM
(1 − ϕ−1

λ ))θM )∼,

hence the right hand side of the first equation is equal to ((
∏
λ∈SF \SM (1 −

ϕ−1
λ ))θM )∼f [ρM ]∼. This is also equal to div((

∏
λ∈SF \SM (1−ϕ−1

λ ))∼(gM,ρM )f ).
Since div is injective, we get this lemma.

Remark 4.2. By the property θ∼FA
∼
F = 0, we can also obtain an Euler system

in some cohomology groups by the method of Rubin in [18] Chapter 3, section
3.4. But here, we consider the Euler system of these gF,ρF ’s, which is an
analogue of the Euler system of Gauss sums. I obtained the idea of studying
the elements gF,ρF from C. Popescu through a discussion with him.

LetHk be the Hilbert p-class field of k, namely the maximal abelian p-extension
of k which is unramified everywhere. Suppose that the p-primary component
Ak of the ideal class group of k is decomposed into Ak = Z/pa1Z⊕ ...⊕Z/pasZ.
We take and fix a prime ideal qj which generates the j-th direct summand for
each j = 1, ..., s. We take ξj ∈ k× such that qp

aj

j = (ξj) for each j. Let U
denote the subgroup of k× generated by the unit group O×k and ξ1,...,ξs. For a
positive integer n > 0, we define Pn to be the set of primes of k with degree 1
which are prime to pq1 · ... ·qs, and which split completely in KHk(µpn ,U1/pn).

Lemma 4.3. Suppose λ ∈ Pn. Then, there exists a cyclic extension kn(λ)/k of
degree pn, which is unramified outside λ, and in which λ is totally ramified.

Proof. We prove this lemma by class field theory. Let Ck (resp. Clk) be the
idele class group (resp. the ideal class group) of k. For a prime v, we denote
by kv the completion of k at v, and define Ukv to be the unit group of the ring
of integers of kv for a finite prime v, and Ukv = kv for an infinite prime v. We
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denote by U1
kv

the group of principal units for a finite prime v. We define Ck,λ,n
which is a quotient of Ck ⊗ Zp by

Ck,λ,n = ((k×λ /U
1
kλ) ⊗ Z/pnZ ⊕

⊕
v �=λ

(k×v /Ukv) ⊗ Zp)/(the image of k×)

where v ranges over all primes except λ. Since λ splits in Hk, the class of λ in
Clk ⊗ Zp = Ak is trivial. Hence, the natural map

⊕
v

k×v ⊗ Zp −→
⊕
v

(k×v /Ukv ) ⊗ Zp −→ (
⊕
v

Zp)/(the image of k×) = Ak

(v ranges over all primes) induces Ck,λ,n −→ Ak, and we have an exact sequence

(Ukλ/U
1
kλ

) ⊗ Z/pnZ a−→ Ck,λ,n b−→ Ak −→ 0.

Let κ(λ) denote the residue field of λ. Since λ splits in k(µpn), (Ukλ/U
1
kλ

) ⊗
Z/pnZ = κ(λ)×⊗Z/pnZ is cyclic of order pn. Since λ splits in k(µpn , (O×k )1/p

n

),
O×k is in (Ukλ)

pn and a is injective (Rubin [18] Lemma 4.1.2 (i)). Next, we will
show that the exact sequence

0 −→ (Ukλ/U
1
kλ) ⊗ Z/pnZ a−→ Ck,λ,n b−→ Ak −→ 0

splits. Let qj , aj , ξj be as above. Suppose that πqj is a uniformizer of kqj . We
denote by Πqj the idele whose qj-component is πqj and whose v-component is
1 for every prime v except for qj (the λ-component is also 1). Since λ splits
in k(ξ1/p

n

j ), we have ξj ∈ (Ukλ)
pn . Hence, the class of ξj ∈ k× in (k×λ /U

1
kλ

) ⊗
Z/pnZ⊕⊕

v �=λ(k
×
v /Ukv)⊗Zp coincides with (Πqj )p

aj . This shows that the class
[Πqj ]Ck,λ,n of Πqj in Ck,λ,n has order paj because b([Πqj ]Ck,λ,n) = [qj ]Ak where
[qj ]Ak is the class of qj in Ak. We define a homomorphism b′ : Ak −→ Ck,λ,n
by [qj]Ak �→ [Πqj ]Ck,λ,n for all j = 1, ..., s. Clearly, b′ is a section of b, hence
the above exact sequence splits. By class field theory, this implies that there is
a cyclic extension kn(λ)/k of degree pn, which is linearly disjoint with kH/k.
From the construction, we know that λ is totally ramified in kn(λ), and kn(λ)/k
is unramified outside λ.

As usual, we consider Kolyvagin’s derivative operator. PutGλ = Gal(kn(λ)/k),
and fix a generator σλ of Gλ for λ ∈ Pn. We define Nλ = Σp

n−1
i=0 σiλ ∈ Z[Gλ] and

Dλ = Σp
n−1
i=0 iσiλ ∈ Z[Gλ]. For a squarefree product a = λ1 · ... ·λr with λi ∈ Pn,

we define kn(a) to be the compositum kn(λ1)...kn(λr), and Kn,(a) = Kkn(a).
We simply write K(a) for Kn,(a) if no confusion arises. For a = λ1 · ... · λr,
we also define Na =

∏r
i=1Nλi and Da =

∏r
i=1Dλi ∈ Z[Gal(kn(a)/k)] =

Z[Gal(K(a)/K)]. For a finite prime ρ of k which splits completely in K(a),
we take a prime ρK(a) of K(a). By the standard method of Euler systems
(cf. Lemmas 2.1 and 2.2 in Rubin [17], or Lemma 4.4.2 (i) in Rubin [18]),
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we know that there is a unique κa,ρK(a)
∈ (K× ⊗ Z/pn)∼ whose image in

(K×(a) ⊗ Z/pn)∼ coincides with Da(gK(a),ρK(a)
). We also have an element δa ∈

Z/pn[Gal(K/k)]∼ such that Daθ
∼
K(a)

≡ νK(a)/K(δa) (mod pn) where νK(a)/K :
Zp[Gal(K/k)]∼ −→ Zp[Gal(K(a)/k)]∼ is the map induced by σ �→ ∑

τ|K=σ τ

for σ ∈ Gal(K/k). This δa is also determined uniquely by this property. We
sometimes write κa for κa,ρK(a)

if no confusion arises.
We take an odd character χ of Gal(K/k) such that χ �= ω, and consider the
χ-component κχa ∈ (K× ⊗ Z/pn)χ, δχa ∈ Z/pn[Gal(K/k)]χ = Oχ, ...etc.

Lemma 4.4. Put Si = σλi − 1 ∈ Oχ[Gal(K(a)/K)]. Then, we have

θχK(a)
≡ (−1)rδχaS1 · ... · Sr (mod (pn, S2

1 , ..., S
2
r )).

Proof. We first prove θχK(a)
≡ aS1 · ... · Sr mod (S2

1 , ..., S
2
r ) for some a ∈ Oχ by

induction on r. For any subfields M1 and M2 such that K ⊂M1 ⊂M2 ⊂ K(a),
we denote by cM2/M1 : Oχ[Gal(M2/K)] −→ Oχ[Gal(M1/K)] the map induced
by the restriction σ �→ σ|M1

. Since cK(λ1)/K(θχK(λ1)
) = ((1−ϕ−1

λ1
)θK)χ (cf. Tate

[23] p.86) and λ1 splits completely in K, we have cK(λ1)/K(θχK(λ1)
) = 0. Hence,

S1 = σλ1 − 1 divides θχK(λ1)
. So the first assertion was verified for r = 1.

Let ai = a/λi for i with 1 ≤ i ≤ r. Then, we have cK(a)/K(ai)
(θχK(a)

) =

((1 − ϕ−1
λi

)θK(ai)
)χ. Since λi splits completely in K, ϕλi is in Gal(K(ai)/K).

Hence, 1 − ϕ−1
λi

is in the ideal IGal(K(ai)/K) = (S1, ..., Si−1, Si+1, ..., Sr). This
implies that cK(a)/K(ai)

(θχK(a)
) is in the ideal (S2

1 , ..., S
2
i−1, S

2
i+1, ..., S

2
r ) by the

hypothesis of the induction. This holds for all i, so θχK(a)
can be written as

θχK(a)
= α+β where α is divisible by all Si for i = 1, ..., r, and β is in (S2

1 , ..., S
2
r ).

Therefore, θχK(a)
≡ aS1 · ... · Sr mod (S2

1 , ..., S
2
r ) for some a ∈ Oχ.

Next, we determine a mod pn. Note that SiDλi ≡ −Nλi (mod pn). Hence,
S2
iDλi ≡ 0 (mod pn). Thus, we have

Da(θ
χ
K(a)

) ≡ Da(aS1 · ... · Sr) ≡ (−1)rNa(a) (mod pn).

Hence, Na((−1)ra) = νK(a)/K((−1)ra) ≡ νK(a)/K(δχa ) (mod pn), which implies
δχa ≡ (−1)ra (mod pn) because νK(a)/K mod pn is injective. This completes
the proof of Lemma 4.4.

We put G = Gal(K(a)/K). As in §3, we have an isomorphism Oχ[G] � An,r by
the correspondence σλj ↔ 1 + Sj where An,r is the ring in 3.1 with O = Oχ.
For i, s > 0 and θχK(a)

∈ Oχ[G], we have an ideal Ii,s(θ
χ
K(a)

) of Oχ as in 3.2.
By the definition of Ii,s(θ

χ
K(a)

) and Lemma 4.4, we know that Ir,1(θ
χ
K(a)

) is
generated by δχa and pn. Thus, we get

Corollary 4.5.

Ir,1(θ
χ
K(a)

) = (δχa , p
n).
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For a prime λ of k, we define the subgroup DivλK of DivK ⊗Zp by DivλK =⊕
λK |λ Zp[λK ] where λK ranges over all primes of K above λ. We fix a prime

λK , then DivλK = Zp[Gal(K/k)/DλK ][λK ] where DλK is the decomposition
group of λK in Gal(K/k). Let divλ : (K× ⊗ Zp)χ −→ (DivλK)χ be the map
induced by the composite of div : K× ⊗ Zp −→ DivK ⊗Zp and the projection
DivK ⊗Zp −→ DivλK . The following lemma is immediate from the defining
properties of κa,ρK(a)

and δa, which we stated above.

Lemma 4.6. Assume that ρ is a finite prime of k which splits completely in
K(a). We take a prime ρK(a) of K(a) and a prime ρK of K such that ρK(a) |
ρK | ρ.
(i) divρ(κ

χ
a,ρK(a)

) ≡ (δa[ρK ])χ (mod pn).
(ii) If λ is prime to aρ, we have divλ(κ

χ
a,ρK(a)

) ≡ 0 (mod pn).

We next proceed to an important property of κχa,ρK(a)
. Suppose that λ is a prime

in Pn with (λ, a) = 1 and ρ is a prime with (ρ, aλ) = 1. We assume both ρ and
λ split completely in K(a). Put W = Ker(divλ : (K×⊗Zp)χ −→ (DivλK)χ), and
RλK =

⊕
λK |λ κ(λK)× where κ(λK) is the residue field of λK (κ(λK) coincides

with the residue field κ(λ) = Ok/λ of λ because λ splits in K) and λK ranges
over all primes of K above λ. We consider a natural map

�λ : W/W pn −→ (RλK/(R
λ
K)p

n

)χ

induced by x �→ (x mod λK). Note that N(λ) ≡ 1 (mod pn) because λ ∈ Pn.
So, RλK/(R

λ
K)p

n

is a free Z/pnZ[Gal(K/k)]-module of rank 1. We take a basis
u ∈ (RλK/(R

λ
K)p

n

)χ, and define �λ,u : W/W pn −→ (Z/pnZ[Gal(K/k)])χ �
Oχ/(pn) to be the composite of �λ and u �→ 1. By Lemma 4.6 (ii), κχa,ρK(a)

is in W/W pn (note that W/W pn ⊂ (K× ⊗ Z/pnZ)χ). We are interested in
�λ,u(κ

χ
a,ρK(a)

). We take a prime ρK(a) (resp. λK(a)) of K(a) and a prime ρK
(resp. λK) of K such that ρK(a) | ρK | ρ (resp. λK(a) | λK | λ).

Proposition 4.7. We assume that χ(p) �= 1 for any prime p of k above p,
and that [ρK ] and [λK ] yield the same class in AχK . Then, there is an element
x ∈W/W pn satisfying the following properties.
(i) For any prime λ′ of k such that (λ′, a) = 1, we have

divλ′(κχa,ρK(a)
/x) ≡ 0 (mod pn).

(ii) Choosing u suitably, we have

1 −N(λ)−1

pn
�λ,u(x) ≡ δχaλ (mod (δχa , p

n))

where N(λ) = #κ(λ) = #(Ok/λ).
In particular, in the case a = (1) we can take x = gχK,ρK mod W pn .
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This proposition corresponds to Theorem 2.4 in Rubin [17], which was proved
by using some extra property of the Gauss sums. For our gF,ρF we do not have
the property corresponding to Lemma 2.5 in [17], so we have to give here a proof
in which we use only the definition of gF,ρF , namely div(gχF,ρF ) = (θF [ρF ])χ.

Proof of Proposition 4.7. We denote by λK(aλ) the unique prime of K(aλ) above
λK(a) . Put N = ordp(N(λ)− 1)+2n. We take by Chebotarev density theorem
a prime ρ′ of k which splits completely in K(aλ)(µpN ) such that the class of
[ρ′K(aλ)

] in AχK(aλ)
for a prime ρ′K(aλ)

of K(aλ) over ρ′ coincides with the class of
[λK(aλ) ]. Let ρ′K be the prime below ρ′K(aλ)

. Then, the class of [λK ], the class
of [ρ′K ], and the class of [ρK ] in AχK all coincide. Hence, there is an element
a ∈ W such that div(a) = [ρK ]− [ρ′K ]. Define x ∈W/W pn by x = κχa,ρ′K(a)

·aδχa .

By Lemma 4.6 (ii), divλ′(κχa,ρK(a)
/x) ≡ 0 (mod pn) for a prime λ′ such that

(λ′, aρρ′) = 1. By Lemma 4.6 (i), the same is true for λ′ = ρ and ρ′. Thus,
we get the first assertion. In the case a = (1), we take y = gχK,ρ′K

aθ
χ
K . Then,

div(y) = div(gχK,ρK ), so y = gχK,ρK , and we have gχK,ρK mod W pn = y mod
W pn = x.
In order to show the second assertion, it is enough to prove

1 −N(λ)−1

pn
�λ,u(κ

χ
a,ρ′K(a)

) ≡ δχaλ (mod pn) (1)

for some u. Set DivλK(aλ)
=

⊕
v|λ Zp[v] and RλK(aλ)

=
⊕

v|λ κ(v)
× =⊕

v|λ(OK(aλ)/v)
× where v ranges over all primes of K(aλ) above λ. Since

the primes of K(a) above λ are totally ramified in K(aλ), (DivλK(aλ)
)χ is

isomorphic to Oχ[Gal(K(a)/K)] and (RλK(aλ)
/(RλK(aλ)

)p
n

)χ is isomorphic to
Oχ/(pn)[Gal(K(a)/K)]. We consider WK(aλ) = Ker(divλ : (K×(aλ) ⊗ Zp)χ −→
(DivλK(aλ)

)χ) and a natural map

�λ,K(aλ) : WK(aλ)/W
pn

K(aλ)
−→ (RλK(aλ)

/(RλK(aλ)
)p
n

)χ.

We take b ∈ (K×(aλ) ⊗ Zp)χ such that div(b) = [λK(aλ) ] − [ρ′K(aλ)
].

Then, b′ = �λ,K(aλ)(b
σλ−1) is a generator of (RλK(aλ)

/(RλK(aλ)
)p
n

)χ as an
Oχ/(pn)[Gal(K(a)/K)]-module ([19] Chap.4 Prop.7 Cor.1). Using this b′, we
identify (RλK(aλ)

/(RλK(aλ)
)p
n

)χ with Oχ/(pn)[Gal(K(a)/K)], and define

�λ,K(aλ),b′ : WK(aλ)/W
pn

K(aλ)
−→ Oχ/p

n[Gal(K(a)/K)].

Since λ splits completely in K(a), cK(aλ)/K(a)
(θχK(aλ)

) = 0 by the formula in the
proof of Lemma 4.1. Hence, σλ − 1 divides θχK(aλ)

. Since (σλ − 1)[λK(aλ) ] =

0, we have θχK(aλ)
[λK(aλ) ]

χ = 0. So, div(gχK(aλ),ρ
′
K(aλ)

) = div((b−θK(aλ) )χ) =
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θχK(aλ)
[ρ′K(aλ)

]χ. The injectivity of div implies that gχK(aλ),ρ
′
K(aλ)

= (b−θK(aλ) )χ.

Further, by Lemma 4.4, we can write

θχK(aλ)
≡ (−1)r+1δχaλS1 · ... · Sr(σλ − 1) + β (mod pn)

where β ∈ (S2
1 , ..., S

2
r , (σλ−1)2). Since σλ−1 divides θχK(aλ)

, σλ−1 also divides
β. We write β = (σλ − 1)β′. So θχK(aλ)

≡ (σλ − 1)((−1)r+1δχaλS1 · ... · Sr + β′)
(mod pn). Then,

�λ,K(aλ),b′(g
χ
K(aλ),ρ

′
K(aλ)

) = �λ,K(aλ),b′((b
−θK(aλ) )χ)

= −cK(aλ)/K(a)
((−1)r+1δχaλS1 · ... · Sr + β′)

= (−1)rδχaλS1 · ... · Sr − cK(aλ)/K(a)
(β′).

Since cK(aλ)/K(a)
(β′) ∈ (S2

1 , ..., S
2
r ), using SiDλi ≡ −Nλi (mod pn) and

S2
iDλi ≡ 0 (mod pn), we have

�λ,K(aλ),b′((g
χ
K(aλ),ρ

′
K(aλ)

)Da) = Da((−1)rδχaλS1 · ... · Sr − cK(aλ)/K(a)
(β′))

= Naδ
χ
aλ

= νK(a)/K(δχaλ).

We similarly define WK(a) = Ker(divλ for K(a)) ⊂ (K×(a) ⊗ Zp)χ. Recall
that W = Ker(divλ for K) ⊂ (K× ⊗ Zp)χ. Let �λ (resp. �λ,K(a) , �λ,K(aλ))
be the natural map WK/W

pn

K −→ (RλK/(R
λ
K)p

n

)χ (resp. WK(a)/W
pn

K(a)
−→

(RλK(a)
/(RλK(a)

)p
n

)χ, WK(aλ)/W
pn

K(aλ)
−→ (RλK(aλ)

/(RλK(aλ)
)p
n

)χ). We have a
commutative diagram

WK/W
pn

K −→ WK(a)/W
pn

K(a)
−→ WK(aλ)/W

pn

K(aλ)⏐⏐�
λ
⏐⏐�
λ,K(a)

⏐⏐�
λ,K(aλ)

(RλK/(R
λ
K)p

n

)χ −→ (RλK(a)
/(RλK(a)

)p
n

)χ −→ (RλK(aλ)
/(RλK(aλ)

)p
n

)χ

where the horizontal arrows are the natural maps. We take a generator u′ of
(RλK(a)

/(RλK(a)
)p
n

)χ as an Oχ/(pn)[Gal(K(a)/K)]-module, and a generator u′′

of (RλK/(R
λ
K)p

n

)χ as an Oχ/(pn)-module such that the diagram

WK/W
pn

K −→ WK(a)/W
pn

K(a)
−→ WK(aλ)/W

pn

K(aλ)⏐⏐�
λ,u′′
⏐⏐�
λ,K(a),u

′
⏐⏐�
λ,K(aλ),b

′

Oχ/(pn)
νK(a)/K−→ Oχ/(pn)[Gal(K(a)/K)] id−→ Oχ/(pn)[Gal(K(a)/K)]

commutes where νK(a)/K is the norm map defined before Lemma 4.4, and id is
the identity map.
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Using the above computation of �λ,K(aλ),b′((g
χ
K(aλ),ρ

′
K(aλ)

)Da), if we get

1 −N(λ)−1

pn
�λ,K(a)(g

χ
K(a),ρ

′
K(a)

) = �λ,K(aλ)(g
χ
K(aλ),ρ

′
K(aλ)

), (2)

we obtain (1) from the above commutative diagram.
The relation (2) is sometimes called the “congruence condition”, and can be
proved by the method of Rubin [18] Corollary 4.8.1 and Kato [8] Prop.1.1.
Put L = K(a)(µpN ) and L(λ) = K(aλ)(µpN ) (Recall that N was chosen in the
beginning of the proof). We take a prime ρ′L(λ)

of L(λ) above ρ′K(aλ)
, and

denote by ρ′L the prime of L below ρ′L(λ)
. We define �λ,L : WL/W

pN

L −→
(RλL/(R

λ
L)p

N

)χ, and �λ,L(λ) : WL(λ)/W
pN

L(λ)
−→ (RλL(λ)

/(RλL(λ)
)p
N

)χ similarly.

We identify (RλL/(R
λ
L)p

N

)χ with (RλL(λ)
/(RλL(λ)

)p
N

)χ by the map induced by
the inclusion. Then, the norm map induces the multiplication by pn. Since
NL(λ)/L(gχL(λ),ρ

′
L(λ)

) = (1 − ϕ−1
λ )gχL,ρ′L , we have pn�λ,L(λ)(g

χ
L(λ),ρ

′
L(λ)

) = (1 −
N(λ)−1)�λ,L(gχL,ρ′L). Hence,

�λ,L(λ)(g
χ
L(λ),ρ

′
L(λ)

) ≡ p−n(1 −N(λ)−1)�λ,L(gχL,ρ′L) (mod pN−n).

Let S be the set of primes of k ramifying in L(λ) and not ramifying in
K(aλ). Note that if p ∈ S, p is a prime above p. By Lemma 4.1
we have NL(λ)/K(aλ)

(gχL(λ),ρ
′
L(λ)

) = εK(aλ)g
χ
K(aλ),ρ

′
K(aλ)

and NL/K(a)
(gχL,ρ′L) =

εK(a)g
χ
K(a),ρ

′
K(a)

where εK(aλ) = (Πp∈S(1 − ϕ−1
p ))χ ∈ Oχ[Gal(K(aλ)/K)] and

εK(a) = cK(aλ)/K(a)
(εK(aλ)) (cK(aλ)/K(a)

is the restriction map). Since we as-
sumed χ(p) �= 1 for all p above p, εK(aλ) is a unit of Oχ[Gal(K(aλ)/K)]. Hence,
we obtain (2) by taking the norms NL(λ)/K(aλ)

of both sides of the above for-
mula. This completes the proof of Proposition 4.7.

5 The other inclusion

In this section, for K and χ in Theorem 0.1 and i ≥ 0, we will prove
Fitti,Oχ(AχK) ⊂ (Θi,K)χ to complete the proof of Theorem 0.1. More precisely,
we will show Fitti,Oχ(AχK) ⊂ (Θi,1,K)χ.
As in Theorem 0.1, suppose that

AχK � Oχ/(pn1) ⊕ ...⊕Oχ/(pnr )

with 0 < n1 ≤ ... ≤ nr. We take generators c1,...,cr corresponding to the above
isomorphism (cj generates the j-th direct summand). Let Pn be as in §4. We
define

Qj = {λ ∈ Pn : there is a prime λK of K above λ such that
the class of λK in AχK is cj},
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and Q =
⋃

1≤j≤r Qj. We consider an exact sequence

0 −→ (K× ⊗ Zp)χ
div−→ (DivK ⊗Zp)χ −→ AχK −→ 0.

For λ ∈ Q, we have (Zp[Gal(K/k)][λK ])χ = Oχ[λK ]χ. We define MQ to be the
inverse image of

⊕
λ∈QOχ[λK ]χ by div : (K× ⊗ Zp)χ −→ (DivK ⊗Zp)χ. On

the other hand, as an abstract Oχ-module, AχK fits into an exact sequence

0 −→
r⊕
j=1

Oχej
f−→

r⊕
j=1

Oχe
′
j

g−→ AχK −→ 0

where (ej) and (e′j) are bases of free Oχ-modules of rank r, f is the map
ej �→ pnje′j, and g is induced by e′j �→ cj . We define β :

⊕
λ∈QOχ[λK ]χ −→⊕r

j=1Oχe
′
j by [λK ]χ �→ e′j for all λ ∈ Qj and j = 1, ..., r. Then, β induces

α : MQ −→ ⊕r
j=1Oχej, and we have a commutative diagram of Oχ-modules

0 −→ MQ
div−→ ⊕

λ∈QOχ[λK ]χ −→ AχK −→ 0⏐⏐�α
⏐⏐�β ‖

0 −→ ⊕r
j=1Oχej

f−→ ⊕r
j=1Oχe

′
j

g−→ AχK −→ 0.

Put m = lengthOχ(AχK). We take n > 0 such that n ≥ 2m and µpn+1 �⊂ K. We
use the same notation as in Proposition 4.7. Especially, we consider

�λ : W/W pn −→ (RλK/(R
λ
K)p

n

)χ � Oχ/(pn)

for λ ∈ Q.

Lemma 5.1. Suppose that a, λ, ρ,...etc satisfy the hypotheses of Proposition
4.7. We further assume that the primes dividing aλρ are all in Q. Then, there
exists κ̃χa,ρK(a)

∈MQ satisfying the following properties.
(i) For any prime λ′ such that (λ′, aρ) = 1, we have

divλ′(κ̃χa,ρK(a)
) = 0.

(ii)
divρ(κ̃χa,ρK(a)

) ≡ (δa[ρK ])χ (mod pn).

(iii)
1 −N(λ)−1

pn
�λ(κ̃χa,ρK(a)

) ≡ uδχaλ (mod (δχa , p
m))

for some u ∈ O×χ .

Proof. Let x be an element in W/W pn , which satisfies the conditions in Propo-
sition 4.7, and take a lifting y ∈ W of x. By Proposition 4.7 (i) and Lemma
4.6, we can write div(y) = A + pnB where A is a divisor whose support is
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contained in the primes dividing aρ. Since the class of pmB in AχK is zero, we
can take z ∈ (K× ⊗ Zp)χ such that div(z) = pmB. Put κ̃χa,ρK(a)

= y/zp
n−m

.
Then, κ̃χa,ρK(a)

is in MQ, and satisfies the above properties (i), (ii), and (iii) by
Proposition 4.7 and Lemma 4.6.

We will prove Theorem 0.1. First of all, as we saw in Proposition 3.2,
Fitt0,Oχ(AχK) = Θχ

0,K . Recall that we put m = lengthOχ(AχK), so
Fitt0,Oχ(AχK) = (pm). Next, we consider the commutative diagram before
Lemma 5.1. We denote by αj : MQ −→ Oχej � Oχ the composite of α
and the j-th projection. We take ρr ∈ Qr and a prime ρr,K of K above
ρr. We consider gχK,ρr,K ∈ MQ. We choose λr ∈ Qr such that λr �= ρr,
ordp(N(λr) − 1) = n, the class of λr,K in AχK coincides with the class of ρr,K ,
and αr(g

χ
K,ρr,K

)mod pn = u′�λr (g
χ
K,ρr,K

) for some u′ ∈ O×χ . This is possible
by Chebotarev density theorem (Theorem 3.1 in Rubin [17], cf. also [16]). By
the commutative diagram before Lemma 5.1 and div(gχK,ρr,K ) = θχK [ρr,K ]χ, we
have

ordp(αr(g
χ
K,ρr,K

)) + nr = ordp(θ
χ
K) = m. (3)

On the other hand, by Proposition 4.7, we have �λr (g
χ
K,ρr,K

) = uδχλr mod (pm)
for some u ∈ O×χ . Hence, αr(g

χ
K,ρr,K

) ≡ u′�λr (g
χ
K,ρr,K

) ≡ uu′δχλr mod (pm).
From (3), δχλr mod pm �= 0, hence, ordp(αr(g

χ
K,ρr,K

)) = ordp(δ
χ
λr

) (for a nonzero
element x in Oχ/p

m, ordp(x) is defined to be ordp(x̃) where x̃ is a lifting of x
to Oχ). Therefore, we have

ordp(δ
χ
λr

) = m− nr.

Hence, Fitt1,Oχ(A
χ
K) = (pm−nr ) is generated by I1,1(θ

χ
K(λr)

) by Corollary 4.5.
Thus, Fitt1,Oχ(AχK) ⊂ (Θ1,1,K)χ ⊂ (Θ1,K)χ.
For any i > 1, we prove Fitti,Oχ(A

χ
K) ⊂ Θχ

i,K by the same method. We will
show that we can take λr ∈ Qr, λr−1 ∈ Qr−1,...inductively such that δχai
generates Fitti,Oχ(AχK) where ai = λr · ... · λr−i+1. For i such that 1 < i ≤ r,
suppose that λr ,...,λr−i+2 were defined. We first take ρr−i+1 ∈ Qr−i+1, which
splits completely in K(ai−1). We consider κ = κ̃χai−1,ρr−i+1,K(ai−1)

∈ MQ where
we used the notation in Lemma 5.1. We choose λr−i+1 ∈ Qr−i+1 such that
λr−i+1 �= ρr−i+1, ordp(N(λr−i+1)−1) = n, λr−i+1 splits completely in K(ai−1),
the class of λr−i+1,K in AχK coincides with the class of ρr−i+1,K in AχK , and
αr−i+1(κ) mod pn = u′�λr−i+1(κ) for some u′ ∈ O×χ . This is also possible
by Chebotarev density theorem (Theorem 3.1 in Rubin [17], cf. also [16]).
By Lemma 5.1 (ii), divρr−i+1(κ) ≡ δχai−1 [ρr−i+1]χ (mod pn). Hence, from the
commutative diagram before Lemma 5.1, we obtain

ordp(αr−i+1(κ)) + nr−i+1 = ordp(δχai−1
).
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By the hypothesis of the induction, we have ordp(δ
χ
ai−1) = n1 + ...+nr−i+1. It

follows that
ordp(αr−i+1(κ)) = n1 + ...+ nr−i.

On the other hand, by Lemma 5.1 (iii), we have

ordp(αr−i+1(κ)) = ordp(�λr−i+1(κ)) = ordp(δ
χ
ai−1λr−i+1

)

= ordp(δχai).

Therefore,
ordp(δχai) = n1 + ...+ nr−i.

This shows that δχai generates Fitti,Oχ(AχK) = (pn1+...+nr−i). Hence, by Corol-
lary 4.5 we obtain

Ii,1(θ
χ
K(ai)

) = (δχai) = Fitti,Oχ(AχK).

Thus, we have Fitti,Oχ(AχK) ⊂ (Θi,1,K)χ ⊂ (Θi,K)χ.
Note that for i = r, we have got Θχ

r,K = (1). Hence, Θχ
i,K = (1) for all i ≥ r,

and we have Fitti,Oχ(AχK) = Θχ
i,K for all i ≥ 0. This completes the proof of

Theorem 0.1.

A appendix

In this appendix, we determine the initial Fitting ideal of the Pontrjagin dual
(A∼F∞)∨ (cf. §2) of the non-ω component of the p-primary component of the
ideal class group as a Zp[[Gal(F∞/k)]]-module for the cyclotomic Zp-extension
F∞ of a CM-field F such that F/k is finite and abelian, under the assumption
that the Leopoldt conjecture holds for k and the µ-invariant of F vanishes.
Our aim is to prove Theorem A.5. For the initial Fitting ideal of the Iwasawa
module XF∞ = lim← AFn of F∞, see [11] and Greither’s results [3], [4].
Suppose that λ1,...,λr are all finite primes of k, which are prime to p and
ramifying in F∞/k. We denote by Pλi the p-Sylow subgroup of the inertia
subgroup of λi in Gal(F∞/k). We first assume that

(∗) Pλ1 × ...× Pλr ⊂ Gal(F∞/k).

(Compare this condition with the condition (Ap) in [11] §3.)
We define a set H of certain subgroups of Gal(F∞/k) by

H = {H0 ×H1 × ...×Hr | H0 is a finite subgroup of Gal(F∞/k)
with order prime to p and Hi is
a subgroup of Pλi for all i (1 ≤ i ≤ r)}.
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We also define

M = {M∞ | k ⊂M∞ ⊂ F∞, M is the fixed field of some H ∈ H}.

For an intermediate field M∞ of F∞/k, we denote by

νF∞/M∞ : Zp[[Gal(M∞/k)]]∼ −→ Zp[[Gal(F∞/k)]]∼

the map induced by σ �→ Στ|M∞ =στ for σ ∈ Gal(M∞/k). We define Θ∼F∞/k
to be the Zp[[Gal(F∞/k)]]∼-module generated by νF∞/M∞(θ∼M∞) for all M∞ ∈
MF∞/k.
Put ΛF = Zp[[Gal(F∞/k)]]. Let ι : ΛF −→ ΛF be the map defined by σ �→ σ−1

for all σ ∈ Gal(F∞/k). For a ΛF -module M , we denote by M≈ to be the
component obtained from M− by removing Mω−1

, namely M− = M≈⊕Mω−1

if µp ⊂ F , and M− = M≈ otherwise (cf. 1.1). The map ι induces M∼ ι−→M≈

which is bijective.

Proposition A.1. We assume that the µ-invariant of F vanishes. Under the
assumption of (∗), we have

Fitt0,ΛF ((A∼F∞)∨)≈ = ι(Θ∼F∞/k).

Proof. This can be proved by the same method as the proof of Theorem 0.9
in [11] by using a slight modification of Lemma 4.1 in [11]. In fact, instead of
Corollary 5.3 in [11], we can use

Lemma A.2. Let L/K be a finite abelian p-extension of CM-fields. Suppose
that P is a set of primes of K∞ which are ramified in L∞ and prime to p. For
v ∈ P , ev denotes the ramification index of v in L∞/K∞. Then, we have an
exact sequence

0 −→ A∼K∞ −→ (A∼L∞)Gal(L∞/K∞) −→ (
⊕
v∈P

Z/evZ)∼ −→ 0

Proof of Lemma A.2. It is enough to prove Ĥ0(L∞/K∞, A∼L∞) =
(
⊕

v∈P Z/evZ)∼. Let P ′n be the set of primes of Kn ramifying in
Ln. Then, by Lemma 5.1 (ii) in [11], we have Ĥ0(Ln/Kn, A

∼
Ln

) =
(
⊕

v∈P ′
n
H1(Ln,w/Kn,v, O

×
Ln,w

))∼ = (
⊕

v∈P ′
n
Z/evZ)∼ where w is a prime

of Ln above v. If v is a prime above p, it is totally ramified in K∞
for sufficiently large n, hence we have lim→ (

⊕
v∈P ′

n,v|p Z/evZ)∼ = 0. On

the other hand, lim→ (
⊕

v∈P ′
n,v � |p Z/evZ)∼ = (

⊕
v∈P Z/evZ)∼. Thus, we get

Ĥ0(L∞/K∞, A∼L∞) = (
⊕

v∈P Z/evZ)∼.

Next, we consider a general CM-field F with F/k finite and abelian. We assume
that the Leopodt conjecture holds for k.
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Lemma A.3. (Iwasawa) Let λ be a prime of k not lying above p. Suppose that
k(λp∞) is the maximal abelian pro-p extension of k, unramified outside pλ.
Then the ramification index of λ in k(λp∞) is pnλ where nλ = ordp(N(λ)−1).

In fact, Iwasawa proved that the Leopoldt conjecture implies the existence of
“λ-field” (q-field) in his terminology ([5] Theorem 1). This means that the
ramification index of λ is pnλ .

Lemma A.4. Let F/k be a finite abelian extension such that F is a CM-field.
Then, there is an abelian extension F ′/k satisfying the following properties.
(i) F ′∞ ⊃ F∞, and the extension F ′∞/F∞ is a finite abelian p-extension which
is unramified outside p.
(ii) F ′∞ satisfies the condition (∗).
Proof. This follows from Lemme 2.2 (ii) in Gras [2], but we will give here a
proof. Suppose that λ1,...,λr are all finite primes ramifying in F∞/k, and prime
to p. We denote by e(p)λi the p-component of the ramification index of λi in F∞.

By class field theory, e(p)λi ≤ pnλi . We take a subfield ki of k(λip∞) such that

ki/k is a p-extension, and the ramification index of ki/k is e(p)λi . This is possible
by Lemma A.3. Take F ′ such that F ′∞ = F∞k1...kr. It is clear that F ′ satisfies
the condition (i). Since k1...kr ⊂ F ′∞, F ′ satisfies the condition (∗).

We define ι(Θ∼F∞/k) by ι(Θ∼F∞/k) = cF ′∞/F∞(ι(Θ∼F ′∞/k)) where cF ′∞/F∞ :
ΛF ′ −→ ΛF is the restriction map. This ι(Θ∼F∞/k) does not depend on the
choice of F ′. In fact, we have

Theorem A.5. We assume the Leopoldt conjecture for k and the vanishing of
the µ-invariant of F . Then, we have

Fitt0,ΛF ((A∼F∞)∨)≈ = ι(Θ∼F∞/k).

Proof. We take F ′ as in Lemma A.4. By Proposition A.1, Theorem A.5 holds
for F ′∞. Since F ′∞/F∞ is unramified outside p, by Lemma A.2 the natural map
A∼F∞ −→ (A∼F ′∞

)Gal(F ′
∞/F∞) is an isomorphism. Hence, we get

Fitt0,ΛF ((A∼F∞)∨)≈ = cF ′∞/F∞(Fitt0,ΛF ′ ((A∼F ′∞
)∨)≈) = cF ′∞/F∞(ι(Θ∼F ′∞/k))

= ι(Θ∼F∞/k).

This completes the proof of Theorem A.5.
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